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Abstract

We discovered that optical vortices with an annular spatial form and an orbital angular 
momentum owing to a helical wave front enable us to twist materials, such as metal, sili-
con and azo-polymer, to form various structured matters including microneedles, chiral 
nanostructures and chiral surface reliefs. Such structured matters will potentially open 
the door to advanced devices, for instance, silicon photonic device, biomedical micro-
electro-mechanical systems, ultrasensitive detector for chiral chemical composites and 
plasmonic metasurfaces for chiral chemical reactions.

Keywords: singular optics, optical vortices, orbital angular momentum, laser materials 
processing, chiral structured materials

1. Introduction

Optical vortices [1–3] carry an annular spatial form and an orbital angular momentum (l) 

owing to an associated helical wave front with phase singularity lϕ (where l is an integer and 

ϕ is the azimuthal angle) (Figure 1) and they have widely received much attention in a variety 
of fields, such as optical trapping and manipulations [4–6], space division multiplexing opti-

cal telecommunications [7, 8], quantum physics [9] and “super-resolution” microscopes with 

a spatial resolution beyond the diffraction limit [10–12].

In recent years, we discovered that optical vortices enable us to twist various materials, for 

example, metal, silicon and azo-polymer, so as to form a variety of structured matters including 
microneedles, chiral nanostructures and chiral surface reliefs. Such structured matters created 
by optical vortex illumination will potentially open the door to various material sciences and for 
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instance, they will enable advanced photonic devices [13], biomedical micro-electro-mechanical 

systems [14], ultrasensitive detector for chiral chemical composites [15] and plasmonic metasur-

faces for chiral chemical reactions [16], etc.

2. Microneedle

2.1. Metal microneedle [17]

Metal microneedles, in particular, two-dimensional metal microneedle arrays should allow 

many applications, such as high-speed microscopic imaging [18], energy-saving field emis-

sion displays [19] and biomedical micro-electro-mechanical systems.

To date, several methods to fabricate metal microneedles have been proposed [20–22]; how-

ever, they are mostly based on a bottom-up technique including several chemical processes. 
Thus, their time- and cost-efficiencies are limited. Laser ablation, in which a target is broken 
down into its compositional elements, that is, ions and electrons, by the laser pulse illumina-

tion, has been widely studied for materials processing such as microdrilling [23], cutting [24] 

and scribing of metals [25], dielectric materials and semiconductors; however, it is ill-suited 

to collect compositional elements and create structured matters.

Laser ablation using optical vortex pulse (optical vortex laser ablation) [26], in which compo-

sitional elements created through laser ablation process receive orbital angular momentum 

from optical vortex pulse, enables us to fabricate structured materials. It allows us to form a 

metal microneedle with typically a 10 μm height and a <0.3 μm tip diameter merely by depo-

sition of a few optical vortex pulses onto a metal, so as to fabricate two-dimensional metal 

microneedle arrays at high time- and cost-efficiencies [17].

A schematic diagram of an experimental setup for metal microneedle is shown in Figure 2. The 

circular polarization associated with a helical electric field also adds spin (s) angular momen-

tum to the light [27]. The resulting circularly polarized optical vortex exhibits a total angular 

momentum (J) defined as the sum of the orbital (l) and spin (s) angular momenta [28]. The 

quarter-wave plate also suppressed the polarization dependence of the ablation efficiency.

Figure 1. Optical vortex.
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The target used was a polished tantalum plate with a 1-mm thickness. The pump laser used 
was a conventional Q-switched Nd:YAG laser with a wavelength of 1064 nm, a pulse duration 

of 30 ns and a Gaussian spatial form and its output was converted to the circularly polarized 

optical vortex by utilizing a spiral phase plate (SPP) [29], fabricated by electron beam etching, 

with azimuthal 2π phase and a quarter-wave plate. The optical vortex with J = 2 was focused 

to be ~130-μm annular spot onto the target output by an objective lens (M Plan Apo NIR, 

magnification factor 10, NA 0.26 from Mitutoyo Co.). The output energy on the sample sur-

face was then fixed at 2 mJ. The ablated Ta plate was observed using a confocal laser-scanning 
microscope (Keyence VK-9700/VK9710GS) with a spatial resolution of 30 nm in both depth 

and transverse displacements. All experiments were performed at atmospheric pressure and 

room temperature.

Laser-scanning microscope images of processed Ta surfaces by optical vortex pumping are 
shown in Figure 3. After the single-shot deposition, a small bump with an approximately 4.4 μm 

height and 9.2 μm thickness appears at the center of the processed surface. When four optical 
vortex pulses were overlaid, the bump was shaped to be a needle with a height of ~10 μm and a 

tip diameter of less than 0.5 μm.

When J = 0 (the direction of the vortex is opposite to that of the circular polarization), in which 

the orbital and spin angular momenta work against with each other, the surface of Ta plate 
has no small bump and a lot of debris along the azimuthal direction around the outer circum-

ference. Even when several pulses were overlaid onto the surface, only a small bump with an 

aspect ratio of <3 is structured.

Figure 2. Schematic diagram of optical vortex laser ablation.
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The following model will support the aforementioned experiments. The focused optical vor-

tex forces the laser-induced melted or vaporized matters to revolve azimuthally along the 
annular intensity profile of the optical vortex. After that, the melted matter is confined in the 
dark core and accumulates at the center of the processed surface, resulting in a structured 
microneedle. We also successfully fabricated a two-dimensional and uniformly well-shaped 

5 × 6 microneedle array with an average length and tip diameter of 11 and 0.5 μm by optical 

vortex laser ablation (Figure 4). Two optical vortex pulses are then overlaid on a target and 

after that, the target was translated.

Figure 3. Metal microneedles fabricated by illumination of optical vortices with (a) J = 2 and (b) J = 0.

Figure 4. Two-dimensional microneedle array.
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2.2. Silicon microneedle [30]

Monocrystalline silicon nano- or microstructures can improve significantly the performance of 
several photonic devices, such as photonic crystals [31], optical waveguides [32],  photovoltaic 

devices [33], field emission arrays and metamaterials. Optical vortex laser ablation might pro-

vide us to fabricate silicon nanostructures at high cost- and time-efficiencies.

The experimental setup was almost identical with that in the metal microneedle fabrication. 

The pump laser used in this study was a picosecond Nd:YAG laser with a wavelength of 1064 

nm, a pulse repetition rate of 10 Hz and a pulse duration of 20 ps and its output was con-

verted to a circularly polarized optical vortex with a total angular momentum of 2. The opti-

cal vortex pulse was focused to be a 60-μm annular spot on the Si target by an object lens. A 

polished (100) monocrystalline silicon plate was used as the target. The ablated surface of the 

Si plate with a sputtered platinum coating was observed by a scanning electron microscope 
(JEOL, JSM-6010LA) with a spatial resolution of 8 nm at 3 kV. These experiments were also 
performed at atmospheric pressure and room temperature.

Picosecond optical vortex pulse with an energy of 0.6 mJ, which is sufficiently higher than 
the ablation threshold of ~0.03 mJ, was deposited on the target, so as to fabricate a debris-free 
needle with a height of 14 μm (the “length” defined as the length between the top and bottom 
ends of the needle was also measured to be 15 μm), a tip curvature of 160 nm and a thickness, 
defined as the full-width at 50% height of the needle, of approximately 2.9 μm (Figure 5a).

Worse heating effects arising from nanosecond pulse illumination (wavelength, 1064 nm; 
pulse energy, 0.6 mJ; pulse duration, 20 ns) suppress such needles formation, thereby yielding 
only a bump with a height of ~10μm (a length of ~12 μm) and a thickness of ~9.8 μm (>3 times 
that of the needle obtained by picosecond pulse illumination), even at the high-energy pump-

ing (Figure 5b). These results indicate that the silicon needle formation requires picosecond 

pulse illumination with less heating effects.

Several overlaid picosecond vortex pulses enabled us to shape the needle with a height of 

~40 μm. The experimental height, length and thickness of the needle as a function of the 
vortex pulse energy are shown in Figure 6.

Figure 5. Monocrystalline silicon needles fabricated by (a) picosecond and (b) nanosecond optical vortex pulses.
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The needle fabricated by picosecond vortex pulse irradiation exhibits the identical electron 

backscattering diffraction pattern to that of the silicon substrate with a lattice index of (1 0 0), 
although the needle had submicron-sized voids arising from thermal shock by illumination 
with optical vortex pulses (Figure 7). Namely, the monocrystalline needle was epitaxially 

grown on the silicon substrate.

In general, the silicon irradiated by ultrafast (femtosecond or picosecond) laser pulse was 

recrystallized mostly to form polycrystalline materials [34, 35]. How does the optical vortex 

illumination create such monocrystalline silicon structures?

The temporal dynamics of the silicon needle formation was investigated by utilizing an ultra-

high-speed camera with a frame rate of 5 × 106 frame/s. Optical vortex pulse deposition pro-

vides the melted silicon optical radiation forces such as an optical angular momentum and a 

forward scattering force, F
s
(r), written as follows:

   F  
S
   ∝  r   2   e   −2 r   2 / ω  

0
  2    (1)

where |u(r)|2 is the intensity profile of the optical vortex, r is the radial coordinate of the 

optical field and ω
0
 is the beam waist of the vortex pulse on the Si substrate, respectively. The 

resulting radial gradient ΔF(r) of the forward scattering force around the dark core (r < ω
0
) is 

then given by

  Δ  F  
S
   ∝ − 2r  e   −2 r   2 / ω  

0
  2   ⋅   (  1 − 2    r   

2  _ 
 ω  

0
  2 
   )    ≈ − 2r.  (2)

The radial gradient ΔF(r) acts as a restoring force to collect the melted silicon within the dark 
core of the optical vortex. Also, the vaporization-induced recoil pressure [36] directs the 

melted silicon to the dark core. After the vortex pulse is gone (the recoil pressure is also gone), 
the melted silicon further transports toward the dark core by thermal diffusion effects. An 

Figure 6. (a) Monocrystalline silicon needle by 10 overlaid vortex pulses and (b) height and thickness of the needle as a 
function of number of overlaid pulses.
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additional 200–600 ns later, the silicon is supercooled to recrystallize at the core (Figure 8a). A 

capillary wave [36] induced by the optical vortex illumination also ejects superfluous silicon 
droplets with a radius a given by the following formula,

  a =   3πσ ________ 
4ρ  v   2   √ 

_____
 1 −  M   2   
    (3)

where σ is the surface tension coefficient (770 mN/m), v is the velocity of the silicon droplet 

(~50 m/s; the velocity was estimated from Figure 8a) and M is the Mach number (~0.3), respec-

tively. The estimated a (~1.3 μm) is consistent with experimental one (~2.0 μm). Such slow 

solid-liquid hydrodynamics at a microsecond time scale enables us to establish the monocrys-

talline silicon needle.

Also, the silicon was pumped by a circularly polarized annular beam with the pulse energy of 

0.8 mJ (without any orbital angular momentum) produced by a damaged mirror. The silicon 
cone-shaped structure with a height of ~9.0 μm and a thickness of ~3.6 μm then was formed. 
The silicon droplets flied away with a wide divergence angle θ (>6°) from the silicon sub-

strate, so as to impact efficient accumulation of the silicon on the substrate (Figure 8b). We 

conclude that such straight flight straight flight of silicon droplets with spinning motion is 
induced by the optical vortices to establish the silicon needle.

Figure 7. (a) Electron backscattering pattern of the silicon needle, (b) lattice index of the silicon needle and (c) energy 
dispersive X-ray spectrum of the silicon needle.
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The spinning motion of the droplets cannot be directly observed, because of a relatively low 

spatial resolution (~1.2 μm) of the high-speed camera and it should be further investigated by 

utilizing nanosecond pump–probe analysis with high spatial and temporal resolutions [37].

Also, note that the spin–orbital angular momentum coupling effect is negligible in the present 
experiments based on optical vortex pumping with a low numerical aperture and a short pulse 

duration. The fabrication efficiency of the needles is almost 100%, though the individual nee-

dles to exhibit an individual length and height with a relatively large standard error of 3–4 μm.

Figure 8. Temporal evolutions of silicon needle formation pumped by (a) optical vortex pulse and (b) annular beam 

without orbital angular momentum.
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3. Chiral structures

3.1. Chiral metal nanoneedle [38, 39]

Chiral metal nanoneedles will explore potentially various material sciences, for instance, 
selective assignment of the chirality and optical activity of molecules and chemical compos-

ites on a nanoscale and asymmetric chemical synthesis on plasmonic metasurfaces. However, 

no technique for twisting metal to form chiral metal nanoneedles has been established yet. 

Laser material processing has not been used to produce chiral metal nanoneedles, either.

Optical vortex with a helical wave front carries a handedness determined by the sign of the 

orbital angular momentum. If optical vortices can transfer their handedness to the melted 

metal through laser ablation processes, they will twist metal to form chiral metal nanoneedles.

Schematic diagram of experimental setup is almost identical with that as shown in Figure 2. A 

circularly polarized nanosecond optical vortex pulse (wavelength 1 μm, pulse width 30 ns, total 

angular momentum 2) was focused to be an annular spatial form with a diameter of <65 μm 

onto a metal. Four vortex pulses then were overlaid. The pulse energy was ~0.3 mJ, correspond-

ing to <1/6 that used in Section 2. The handedness of the optical vortex pulse was reversed by 

inverting the SPP and QWP.

A needle with a tip curvature of <72 nm and a height of <10 μm, respectively, was formed at 

the center of the ablated zone with a smooth outline (Figure 9a) and its conical surface was 

also twisted azimuthally in the clockwise direction (Figure 9b). At higher energy pumping, 

the chiral nanoneedle formation was inhibited. When the handedness of the optical vortex 

(total angular momentum 2) was reversed, a needle was twisted azimuthally in the counter-

clockwise direction (Figure 9c and d). These results, in which the handedness of the optical 

vortex can determine the twisting direction, for example, chirality of the nanoneedle, evidence 

that the metal melt by optical vortex illumination is forced to revolve azimuthally around the 

dark core by orbital angular momentum transfer effects.

The tip curvature of the twisted nanoneedle was further found to be inversely proportional 

to NA of the focusing optics (vortex pulse fluence was fixed to <9 J/cm2) and the minimum 

value was measured to be 36 nm, which is <1/25 of the optical vortex wavelength (1064 nm) 

(Figure 10).

The electric resistance of the nanoneedle was measured to be <0.05 Ω by using two 
50-μm-diameter tungsten probes. This value was identical to that of the substrate. Energy-

dispersive X-ray (EDX) spectrum of the nanoneedle was also almost identical to that of the 

substrate, evidencing that the nanoneedle is perfectly metallic (Figure 11).

To make clear whether the wave front or polarization helicity primarily contributes to chiral 
nanoneedle fabrication or whether both helicities have similar contributions to chiral nanon-

eedle formation, the structures of chiral nanoneedles were further studied by using optical 

vortices with various values of the angular momenta J, l and s. The numerical aperture of the 

objective lens and the optical vortex pulse energy were then tuned in the range of 0.04–0.15 

and 0.2–0.8 mJ, respectively, so as to maintain a constant beam waist and a constant fluence.
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The chirality of the nanoneedles is determined only by the handedness of orbital angular 

momentum l (the handedness of spin angular momentum s does not matter). The spiral den-

sity of the nanoneedle (defined as the number of turns divided by the length of the nanon-

eedle) was determined by the magnitude of J rather than l and it also increased as increasing 

Figure 9. Chiral metal nanoneedles. (a) and (b) Left-handed needle, (c) and (d) right-handed needle.

Figure 10. (a) Tip curvature of the nanoneedle as a function of NA and (b) nanoneedle with a tip curvature of 36 nm.
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J (Figure 12). Namely, it is found that nanoneedles created by linearly polarized second-order 

(l = 2, s = 0) and circularly polarized first-order (l = 1, s = 1) optical vortices exhibit the same 

chirality and spiral density (Figure 13).

3.2. Other chiral structures [40]

Chiral monocrystalline silicon nanostructures are difficult to fabricate even by utilizing 
advanced chemical technologies [41, 42].

Figure 11. Energy dispersive X-ray spectrum of the 36-nm chiral metal nanoneedle.

Figure 12. Chiral nanoneedles at total angular momenta J of 0, 1 and 2.
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The target used was a polished (1 0 0) monocrystalline silicon plate. The circularly polarized 

nanosecond optical vortex pulse (total angular momentum 2) was focused to be a ϕ25-μm 
annular spot onto a silicon. With this system, the experimental ablation threshold of the sili-

con was measured to be 0.02 mJ.

At a pulse energy of 0.1 mJ, a silicon cone with a spiral conical surface (chiral silicon cone) was 
fabricated and its tip curvature and height were measured to be 110 nm and 1.0 μm, respec-

tively (Figure 14).

The length of the chiral silicon cone was also measured to be 4.8 μm. The chirality of the sili-

con cone was also reversed by inverting the handedness of the optical vortex pulse.

Also, note that the silicon cone had the lattice index of (1 0 0) and its electron diffraction pat-
tern and Raman spectrum were fully identical with those for the silicon substrate.

Even a copper, which has been widely investigated as a plasmonic metal, was twisted by opti-

cal vortex illumination, so as to form chiral needles (Figure 15).

Figure 14. (a) Chiral silicon cone, (b) right-handed cone and (c) left-handed cone.

Figure 13. Spiral frequency of chiral metal nanoneedle at various J, l and s.
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4. Surface relief

4.1. Chiral surface relief formation [43]

Surface relief formation has been established on azo-polymer films through mass trans-

port owing to a driving force based on an optical gradient force, anisotropic photo-fluid-

ity and cis-trans photoisomerization [44, 45]. Such surface relief provides many photonic 

devices, for instance, holographic memories [46], holographic waveguides [47] and pho-

tonic circuits.

In general, the mass transport driving force arises from the spatially inhomogenous intensity 

of the structured illumination, so as to direct the azo-polymer from a bright fringe toward a 

dark fringe along the polarization direction of the light. Thus, a spiral surface relief formation 
even by using circularly polarization is mostly inhibited.

Ambrosio et al. demonstrated the formation of spiral surface relief (termed “spiral relief” 

in their work), in which tightly focused higher-order optical vortices with a high numerical 
aperture (NA ~1.3) objective lens create a spiral surface relief with a shallow depth (10–20 nm) 

through azimuthal mass transport owing to interference between longitudinal and transverse 

optical fields [48].

Recently, we first demonstrated the formation of a single-arm chiral surface relief with a deep 
modulation depth of over 1 μm by using a lower-order optical vortex together with the spin 

angular momentum associated with the circular polarization.

A ~4 μm-thick-spin-coated azo-polymer (poly-orange tom-1, POT) film [49] used had absorp-

tion band in the wavelength range of 300–550 nm; thus, it exhibits a photo-isomerization 

behavior by green laser irradiation (Figure 16). A continuous-wave frequency-doubled 

Figure 15. Left-handed and right-handed copper needles.
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Nd:YVO
4
 laser output (a wavelength of 532 nm) was converted to be a circularly polarized 

first-order optical vortex by employing a computer-generated hologram displayed on a 
 spatial light modulator (Hamamatsu photonics, X10468-03) and a quarter-wave plate. The 

sign of the orbital angular momentum was then made the same (or opposite) to that of the 

spin angular momentum, resulting in the total angular momentum J of 2 or 0. The optical vor-

tex beam with a power of ~300 μW was focused to an annular spot with a diameter of 4 μm 

on the azo-polymer film by an objective lens with NA ~0.45, corresponding to a focused spot 
intensity of ~2.5 kW/cm2. An exposure time on the film was fixed to be 8 s. All experiments 
were performed at room temperature and in the atmosphere.

In the case of a linearly polarized optical vortex, the mass transport occurs along the polar-

ization direction to collect azo-polymer toward the dark core, so as to establish a cat-shaped 
(non-spiral) surface relief (Figure 17a). Loosely focusing in our experiments impacts to pro-

duce transverse optical field, thereby preventing the spiral surface relief.

A circularly polarized optical vortex with positive orbital and spin angular momenta forces 

the orbital motion of the azo-polymer in a clockwise direction to complete a single-arm spiral 
structure. The resulting chiral surface relief then had a height of ~1 μm and a diameter of ~5 

μm, respectively (Figure 17b). In contrast, a circularly polarized optical vortex beam with 

negative spin angular momentum inhibited the spiral surface relief formation to establish 

only non-spiral bump relief (Figure 17c).

Only circularly polarized optical vortex with positive (or negative) orbital and positive (or 

negative) spin angular momenta can produce such clockwise (or counter-clockwise) spiral 
surface relief on the azo-polymer film for all topological charges in a range of 1 3. The experi-
mental data are summarized in Figure 18.

In general, mass transport arising from the photo-isomerization occurs at a temperature 

below the glass transition temperature of the polymer, meaning that the polymer volume 

before and after the relief formation should be preserved [50]. In fact, the spiral surface relief 

can be easily erased by the spatially uniform green laser illumination (0.36 W/cm2), indicating 

that photo-isomerization but rather heat-induced effects (melting, expansions, ablation, etc.) 
contributes predominantly to the spiral surface relief formation (Figure 19).

Figure 16. (a) Photoisomerization of azo-polymer, (b) absorption of poly orange-tom 1 and (c) mass transport on azo-

polymer film to form surface relief.
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4.2. Theoretical discussion [51]

Why can organic azo-polymers be deformed to create a chiral surface relief by circularly 

polarized optical vortices with positive (or negative) orbital and positive (or negative) spin 

angular momenta?

Figure 17. Surface reliefs formed in azo-polymer film by illumination of (a) linearly polarized optical vortex, (b) 
circularly polarized optical vortex with total angular momentum J of 2, and (c) circularly polarized optical vortex with 

total angular momentum J of 0.
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Conventional optical manipulation, in which particles play a role as electric dipoles with opti-
cally induced surface charges at the interface between themselves and a solution, has been 

theoretically well established [52, 53]. However, there were few theoretical works concerning 
the formation of spiral structures in isotropic and homogeneous materials using the optical 

radiation force, in which the wavefront-sensitive light-induced mass transport occurs.

Figure 18. Surface reliefs formed in an azo-polymer thin film by irradiation with optical vortices with spin and orbital 
angular momenta of (a) J = 0 (l = 1, s = −1), (b) J = 1 (l = 2, s = −1), (c) J = 1 (l = 1, s = 0), (d) J = 2 (l = 3, s = −1), (e) J = 2 (l = 2, s = 0), 

(f) J = 2 (l = 1, s = 1), (g) J = 3 (l = 4, s = −1), (h) J = 3 (l = 3, s = 0), and (i) J = 3 (l = 2, s = 1).
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A few researchers have proposed theoretical models for such light-induced wavefront-sen-

sitive mass transport in the azo-polymer, in which the azo-molecule is considered to be a 

microscopic dipole; however, their models based on a finite difference time-domain method 
are difficult to understand directly how the azo-polymer homogeneous materials deform 
by optical vortex illumination and how the spin and orbital angular momenta contribute to 

wavefront-sensitive structures formation? [54–56]

An analytical formula for the optical vortex induced optical radiation force in an isotropic 

and homogeneous material is proposed, so as to directly understand how the homogenous 

materials deform by the irradiation of optical vortices with arbitrary orbital and spin angular 

momenta.

The optically induced polarization charge density on an isotropic and homogeneous mate-

rial surface is zero; thus, the time-averaged optical radiation force F arising from optically 

induced electric polarization is expressed by

  F = 〈− iω  ε  
0
   χE × B〉 =   

ω  ε  
0
  
 ___ 

2
    [   χ  

r
   Im   (  E ×  B   *  )    +  χ  

i
   Re  (  E ×  B   *  )    ]     (4)

where E is the electric field vector, B is the magnetic flux density vector, ε
0
 is the dielectric 

constant in a vacuum, ω is the angular frequency of the optical field and χ ( = χ
r 
+ iχ

i
) is the 

macroscopic complex electric susceptibility, respectively. The angle brackets < > then denote 
the time average.

Assuming a paraxial approximation, in which the continuous-wave optical vortex beam is 

loosely focused and it propagates along the z-axis without diffraction in the material, the 
scholar electric field, E(r, ϕ, z), of the right-handed optical vortex with a positive topological 

charge in cylindrical coordinates is given by,

  E  (  r, φ, z )    =  A  
𝓁
  (r )  e   ikz   e   i𝓁φ   e   −iωt   (5)

Figure 19. (a) Microscope image of surface relief before uniform green laser irradiation and (b) microscope image of 

surface relief after uniform green laser irradiation.
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where A
l
(r) is the axisymmetric amplitude and k is the wave number.

The resulting optical radiation force F can be expressed as follows:
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where e
r
, e

f
 and e

z
 are the unit vectors along the r, ϕ and z-axes, respectively; e

x
 and e

y
 are also 

unit vectors for the polarization state in a Cartesian coordinate system.

The optical radiation force, given by the first and second terms in Eq. (6), is proportional to 
the gradient of the optical intensity along the polarization direction and it plays a role as the 

mass transport driving force. The radial optical radiation force, expressed as the third and 

fourth terms in Eq. (6), acts as a restoring (or repulsive) force to direct the materials toward 

(or outwards from) the dark inner core of the optical vortex with a mode field radius of x
0.

The axisymmetric amplitude A
l
(r) is given as
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Also, note that the radial optical radiation force is proportional to the real part χ
r
 of the polar-

ization susceptibility. The optical absorption force (fifth and sixth terms), which is proportional 
to the imaginary part χ

i
 of the electric susceptibility, also gives the torque to the materials. The 

optical absorption force given by the seventh and eighth also induces the orbital motion of 

materials around the dark core. The forward scattering force given by the last term also serves 
as a restorative force to confine the materials to the inner dark core, thereby yielding the radial 
force proportional to the gradient of the forward scattering force.

A linearly x-polarized optical vortex without spin angular momentum (s = 0) exhibits the opti-

cal radiation force F given by,
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The optical radiation force provides mostly the clockwise torque to the materials along the 
y direction (along the vertical direction to the polarization) and thereby, it prevents chiral 

structures formation. The complex electric susceptibility of the material was then assumed to 

be 2 + 2i, corresponding to that of the azo-polymer. The gradient of forward scattering force 
will also drive the materials toward the dark core of the optical vortex, resulting in the mass 
transport along the x direction (along the direction of polarization).

The circularly polarized optical vortex (s = ±0) produces the optical radiation force written as 
follows:
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Figure 20. Spatial distributions of the radial and azimuthal optical radiation forces produced by optical vortices with 

total angular momenta of (a) J = 0 (l = 1, s = −1), (b) J = 1 (l = 2, s = −1), (c) J = 1 (l = 1, s = 0), (d) J = 2 (l = 3, s = −1), (e) J = 2 (l 

= 2, s = 0), (f) J = 2 (l = 1, s = 1), (g) J = 3 (l = 4, s = −1), (h) J = 3 (l = 3, s = 0), and (i) J = 3 (l = 2, s = 1). The optical field of the 
vortex, shown in white, underlies the optical radiation forces.
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When the product of l and s is positive, the radial optical radiation force acts as a restoring 

force for the materials toward the dark core and the azimuthal optical absorption force drives 
the orbital motion of the materials around the dark core. The forward scattering force also 
plays a role as the restoring force to confine the materials inside the dark core, thereby estab-

lishing a chiral structure.

In the case of the negative product of l and s, the optical vortex provides the repulsive radial 

optical radiation force, which competes with the effective radial force produced by the for-

ward scattering force, so as to prevent the efficient confinement of the materials in the dark 
core. Furthermore, the radial radiation force and azimuthal absorption force are reversed 

outside the dark core. The resulting non-twisted orbital motion of the materials will occur, 
thereby yielding non-chiral structures (Figure 20).

These results, in which only optical vortices with a positive product of orbital and spin angu-

lar momenta (constructive spin-orbital coupling) enable the formation of chiral structures, 

can support well the experiments of the chiral surface relief formation in the azo-polymer 

film. The degeneracy among optical vortices with the same total angular momentum J is then 

resolved.

As mention in Section 3, the pulsed optical vortices illumination forms spiral metal structures, 

in which the melted metal is collected in the dark core after the vortex pulse has gone. Only an 
optical absorption force Fl,s will then act as the mass transport driving force through the laser 

ablation process. The resulting general relationship given by
 

   F  
 
  𝓁−1,1  =  F  

 
  𝓁,0      𝓁 ≥ 2   (10)

is established.

Two optical vortices with the same total angular momentum J should provide the same azi-
muthal optical radiation force and they are degenerate. This theoretical analysis can also 

support well the experimental results obtained previously in the metal with pulsed optical 

vortices illumination.

5. Conclusion

The optical vortex carries an annular intensity profile and an orbital angular momentum 
owing to a helical wave front. We discovered, for the first time, that the optical vortex with 
orbital angular momentum enables us to twist a melted metal, silicon and a photo-isomer-

ized polymer to establish monocrystalline achiral or chiral structures (i.e., microneedles, 

microspheres, chiral nanostructures and chiral surface relief). The chirality of the structured 

materials is determined selectively by the handedness of the optical vortex. A spin angular 

momentum arising from to a helical electric field of the circular polarization then accelerates 
(or decelerates) the chiral materials formation. Two-dimensional chiral nanostructures array 

can be easily fabricated merely by translating the target and then irradiating the optical vortex 

onto the target.
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We also found that chiral surface relief formation in the azo-polymers requires the irradiation 

with continuous-wave optical vortices with a positive product of orbital and spin angular 

momenta (constructive spin-orbital angular momentum coupling); therefore, the degeneracy 

among the optical vortices with the same total angular momentum is resolved.

In contrast, spiral metal structures formation by the pulsed optical vortices illumination, the 

melted metal receives only an optical absorption force as the mass transport driving force 

through the laser ablation process. Thus, optical vortices with the same total angular momen-

tum J are degenerate and they create the same chiral structures.

Such chiral nanostructures will open potentially the door to develop various advanced mate-

rial sciences and technologies, such as selective identification of chiral chemical composites, 
enhancement of chiral chemical reactions, plasmonic metasurfaces, nanoimaging systems, 

energy-saving displays and biomedical nanoelectromechanical systems.
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