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1. Introduction 

Autonomous mobile robots have a wide range of applications in industries, hospitals, 
offices, and even the military, due to their superior mobility. Some of their capabilities 
include automatic driving, intelligent delivery agents, assistance to the disabled, exploration 
and map generation for environmental cleanup, etc. In addition, their capabilities also allow 
them to carry out specialized tasks in environments inaccessible or very hazardous for 
human beings such as nuclear plants and chemical handling. They are also useful in 
emergencies for fire extinguishing and rescue operations. Combined with manipulation 
abilities, their capabilities and efficiency will increase and can be used for dangerous tasks 
such as security guard, exposition processing, as well as undersea, underground and even 
space exploration. 
In order to adapt the robot's behavior to any complex, varying and unknown environment 
without further human intervention, intelligent mobile robots should be able to extract 
information from the environment, use their built-in knowledge to perceive, act and adapt 
within the environment. An autonomous robot must be able to maneuver effectively in its 
environment, achieving its goals while avoiding collisions with static and moving obstacles. 
As a result, motion planning for mobile robots plays an important role in robotics and has 
thus attracted the attention of researchers recently. The design goal for path planning is to 
enable a mobile robot to navigate safely and efficiently without collisions to a target position 
in an unknown and complex environment. The navigation strategies of mobile robots can be 
generally classified into two categories, global path planning and local reactive navigation. 
The former is done offline and the robot has complete prior knowledge about the shape, 
location, orientation, and even the movements of the obstacles in the environment. Its path 
is derived utilizing some optimization techniques to minimize the cost of the search. 
However, it has difficulty handling a modification of the environment, due to some 
uncertain environmental situations, and the reactive navigation capabilities are 
indispensable since the real-world environments are apt to change over time. On the other 
hand, local reactive navigation employing some reactive strategies to perceive the 
environment based on the sensory information and path planning is done online. The robot 
has to acquire a set of stimulus-action mechanisms through its sensory inputs, such as 
distance information from sonar and laser sensors, visual information from cameras or 
processed data derived after appropriate fusion of numerous sensor outputs. The action 
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taken by the robot is usually an alternation of steering angle and/or translation velocity to 
avoid collisions and reach the desired target. Nevertheless, it does not guarantee a solution 
for the mission, nor is the solution the optimal one. 
Reactive behavior-based mobile robot responds to stimuli from the dynamic environment, 
and its behaviors are guided by local states of the world. Its behavior representation is 
situated at a sub-symbolic level that is integrated into its perception-action (i.e., sensor-
motor) capacities analogous to the manifestation of the reflex behavior observed in 
biological systems. Some researches have focused on this kind of robot system and have 
demonstrated its robustness and flexibility against an unstructured world (Chang, 1996). 
Reactive behavior-based strategy is now becoming attractive in the field of mobile robotics 
(Lee, et al., 1997) to teach the robot to reach the goal and avoid obstacles. Two different kind 
of reactive navigation strategies have been studied. The first application task for the mobile 
robot is to navigate in a stationary environment while avoiding static obstacles but reaching 
a goal safely. A well-known drawback is that the mobile robot suffers from local minima 
problems in that it uses only locally available environmental information without any 
previous memory. In other words, a robot may get trapped in front of an obstacle or wander 
indefinitely in a region whenever it navigates past obstacles toward a target position. This 
happens particularly if the environment consists of concave obstacles, mazes, etc. Several 
trap escape algorithms, including the random walk method (Baraquand and Latombe, 1990), 
the multi-potential field method (Chang, 1996), the tangent algorithm (Lee, et al., 1997), the 
wall-following method (Yun and Tan, 1997), the virtual obstacle scheme (Liu et al., 2000), 
and the virtual target approach (Xu, 2000) have been proposed to solve the local minima 
problems. The second application task is to navigate mobile robot in an unknown and 
dynamic environment while avoiding moving obstacles. Various methods have been 
proposed for this purpose, such as configuration-time space based method (Fujimura and 
Samet, 1989), planning in space and time independently (Ferrari et al., 1998), cooperative 
collision avoidance and navigation (Fujimori, 2005), fuzzy based method (Mucientes et al., 
2001), velocity obstacles method (Prassler et al., 2001), collision cone approach (Qu et al., 
2004), and potential field method (Ge and Cui, 1989). Another approach for motion planning 
of mobile robots is the Velocity Obstacle (VO) method first proposed by Fiorini and Shiller 
(Fiorini and Shiller, 1998).  
In the last decade, it has been shown that the biologically inspired artificial immune system 
(AIS) has a great potential in the fields of machine learning, computer science and 
engineering (Castro and Jonathan, 1999). Dasgupta (1999) summarized that the immune 
system has the following features: self-organizing, memory, recognition, adaptation, and 
learning. The concepts of the artificial immune system are inspired by ideas, processes, and 
components, which extracted from the biological immune system. A growing number of 
researches investigate the interactions between various components of the immune system 
or the overall behaviors of the systems based on an immunological point of view. 
Immunized systems consisting of agents (immune-related cells) may have adaptation and 
learning capabilities similar to artificial neural networks, except that they are based on 
dynamic cooperation of agents (Ishida, 1997). Moreover, immune systems provide an 
excellent model of adaptive process operating at the local level and of useful behavior 
emerging at the global level (Luh and Cheng, 2002). Accordingly, the artificial immune 
system can be expected to provide various feasible ideas for the applications of mobile 
robots (Ishiguro et al., 1997; Lee and Sim, 1997; Hart et al., 2003; Duan et al., 2005). As to 
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mobile robot navigation problem, Ishiguro et al. (1995) proposed a two-layer (situation-
oriented and goal-oriented) immune network to behavior control of autonomous mobile 
robots. Simulation results show that mobile robot can reach goal without colliding fixed or 
moving obstacles. Later, Lee et al. (2000) constructed obstacle-avoidance and goal-approach 
immune networks for the same purpose. Additionally, it shows the advantage of not falling 
into a local loop. Afterward, Vargas et al. (2003) developed an Immuno-Genetic Network for 
autonomous navigation. The simulations show that the evolved immune network is capable 
of correctly coordinating the system towards the objective of the navigation task. In 
addition, some preliminary experiment on a real Khepera II robot demonstrated the 
feasibility of the network. Recently, Duan et al. (2004) proposed an immune algorithm for 
path planning of a car-like wheeled mobile robot. Simulations indicate that the algorithm 
can finish different tasks within shorter time. It should be noted that, however, all of the 
above researches did not consider solving the local minima problems. Besides, none relative 
researches implement AIS for mobile robot navigating in dynamic environments. 
Two different kind of reactive immune networks inspired by the biological immune system 
for robot navigation (goal-reaching and obstacle-avoidance) are constructed in this study. 
The first one is a potential filed based immune network with an adaptive virtual target 
mechanism to solve the local minima problem navigating in stationary environments. 
Simulation and experimental results show that the mobile robot is capable of avoiding 
stationary obstacles, escaping traps, and reaching the goal efficiently and effectively. 
Employing the Velocity Obstacle method to determine the imminent collision obstacle, the 
second architecture guide the robot avoiding collision with the most danger object (moving 
obstacle) at every time instant. Simulation and experimental results are presented to verify 
the effectiveness of the proposed architecture in dynamic environment. 

2. Biological immune system 

The immune system protects living organisms from foreign substances such as viruses, 
bacteria, and other parasites (called antigens). The body identifies invading antigens 
through two inter-related systems: the innate immune system and the adaptive immune 
system. A major difference between these two systems is that adaptive cells are more 
antigen-specific and have greater memory capacity than innate cells. Both systems depend 
upon the activity of white blood cells where the innate immunity is mediated mainly by 
phagocytes, and the adaptive immunity is mediated by lymphocytes as summarized in Fig. 
1. The phagocytes possess the capability of ingesting and digesting several microorganisms 
and antigenic particles on contact. The adaptive immune system uses lymphocytes that can 
quickly change in order to destroy antigens that have entered the bloodstream. 
Lymphocytes are responsible for the recognition and elimination of the antigens. They 
usually become active when there is some kind of interaction with an antigenic stimulus 
leading to the activation and proliferation of the lymphocytes. Two main types of 
lymphocytes, namely B-cells and T-cells, play a remarkable role in both immunities [34]. 
Both B-cell and T-cell express in their surfaces antigenic receptors highly specific to a given 
antigenic determinant. The former takes part in the humoral immunity and secrete 
antibodies by the clonal proliferation while the latter takes part in cell-mediated immunity. 
One class of the T-cells, called the Killer T-cells, destroys the infected cell whenever it 
recognizes the infection. The other class that triggers clonal expansion and stimulates or 
suppresses antibody formation is called the Helper T-cells. 
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Figure 1 Illustration of the biological immune system 

When an infectious foreign pathogen attacks the human body, the innate immune system is 
activated as the first line of defense. Innate immunity is not directed in any way towards 
specific invaders but against any pathogens that enter the body. It is called the non-specific 
immune response. The most important cell in innate immunity is a phagocyte, which 
internalizes and destroys the invaders to the human body. Then the phagocyte becomes an 
Antigen Presenting Cell (APC). The APC interprets the antigen appendage and extracts the 
features by processing and presenting antigenic peptides on its surface to the T-cells and B-
cells. These lymphocytes will be able to sensitize this antigen and be activated. Then the 
Helper T-cell releases the cytokines that are the proliferative signals acting on the producing 
B-cell or remote the other cells. On the other hand, the B-cell becomes stimulated and creates 
antibodies when it recognizes an antigen. Recognition is achieved by inter-cellular binding, 
which is determined by molecular shape and electrostatic charge. The secreted antibodies 
are the soluble receptor of B-cells and these antibodies can be distributed throughout the 
body (Oprea, 1996). An antibody’s paratope can bind an antigen’s epitope according to its 
affinity. Moreover, B-cells are also affected by Helper T-cells during the immune responses 
(Carneiro et al., 1996). The Helper T-cell plays a remarkable key role for deciding if the 
immune system uses cell-mediated immunity or humoral immunity (Roitt et al. 1998), and it 
connects the non-specific immune response to make a more efficient specific immune 
response. The Helper-T cells work primarily by secreting substances known as cytokines 
and their relatives  (Roitt et al. 1998) that constitute powerful chemical messengers. In 
addition to promoting cellular growth, activation and regulation, cytokines can also kill 
target cells and stimulated macrophages. 
The immune system produces the diverse antibodies by recognizing the idiotype of the 
mutual receptors of the antigens between antigen and antibodies and between antibodies. 
The relation between antigens and antibodies and that amongst antibodies can be evaluated 
by the value of the affinity. In terms of affinities, the immune system self-regulates the 
production of antibodies and diverse antibodies. Affinity maturation occurs when the 
maturation rate of a B-cell clone increases in response to a match between the clone’s 
antibody and an antigen. Those mutant cells are bound more tightly and stimulated to 
divide more rapidly. Affinity maturation dynamically balances exploration versus 
exploitation in adaptive immunity (Dasgupta, 1997). It has been demonstrated that the 
immune system has the capability to recognize foreign pathogens, learn and memorize, 
process information, and discriminate between self and non-self. In addition, the system can 
be maintained even faced with a dynamically changing environment. 
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Jerne (1973) has proposed the idiotypic network hypothesis (immune network hypothesis) 
based on mutual stimulation and suppression between antibodies as Fig. 2 illustrates. This 
hypothesis is modeled as a differential equation simulating the concentration of a set of 
lymphocytes. The concept of an immune network states that the network dynamically 
maintains the memory using feedback mechanisms within the network. The various species 
of lymphocytes are not isolated but communicate with each other through the interaction 
antibodies. Jerne concluded that the immune system is similar to the nervous system when 
viewed as a functional network. Based on his speculation, several theories and mathematical 
models have been proposed (Farmer et al., 1986; Hoffmann, 1989; Carneiro et al., 1996). In 
this study, the dynamic equation proposed by Farmer (1986) is employed as a reactive 
immune network to calculate the variation on the concentration of antibodies, as shown in 
the following equations: 
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where i, ℓ, k = 0, 1,…, NAb are the subscripts to distinguish the antibody types and NAb is the 

number of antibodies. Ai and ai  are the stimulus and concentration of the ith antibody. st
ijm , 

su
kim  indicate the stimulative and suppressive affinity between the ith and the jth, kth 

antibodies, respectively. mi denotes the affinity of antigen and antibody i, and ki represents 
the natural death coefficient. Equation (1) is composed of four terms. The first term shows 
the stimulation, while the second term depicts the suppressive interaction between the 
antibodies. The third term is the stimulus from the antigen, and the final term is the natural 
extinction term, which indicates the dissipation tendency in the absence of any interaction. 
Equation (2) is a squashing function to ensure the stability of the concentration (Ishiguro et 
al., 1997). 

 

Figure 2. Idiotypic network hypothesis 

On the other hand, Hightower et al. (1995) suggested that all possible antigens could be 
declared as a group of set points in an antigen space and antigen molecules with similar 
shapes occupy neighboring points in that space. It indicates that an antibody molecule can 
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recognize some set of antigens and consequently covers some portion of antigen space as 
Fig. 3 illustrated. The collective immune response of the immune network is represented 

as ∑
=

AbN

i
iAbf

1

)( , where f(Abi) indicates the immune response function between antigen and the 

ith antibody. Note that any antigen in the overlapping converge could be recognized by 
several different antibodies simultaneously. Afterward, Timmis et al. (1999) introduced 
similar concept named Artificial Recognition Ball (ARB). Each ARB represents a certain 
number of B-cells or resources, and total number of resources of system is limited. In 
addition, each ARB describes a multi-dimensional data item that could be matched to an 
antigen or to another ARB in the network by Euclidean distance. Those ARBs located in the 
other’s influence regions would either be merged to limit the population growth or pulled 
away to explore new area. ARBs are essentially a compression mechanism that takes the B-
cells to a higher granularity level. 

coverage area
antigen

antibody

antigen space

overlapping 
coverage area

 

Figure 3. The antigen space 

3. Motion Planning in Stationary Environments 

3.1 Reactive immune network 

A reactive immune network inspired by the biological immune system for robot navigation 
(goal-reaching and obstacle-avoidance) in stationary environments is described in this 
section. The architecture of the proposed navigation system is depicted in Fig. 4. The 
antigen’s epitope is a situation detected by sensors and provides the information about the 
relationship between the current location and the obstacles, along with the target. This 
scene-based spatial relationship is consistently discriminative between different parts of an 
environment, and the same representation can be used for different environments. 
Therefore, this method is tolerant with respect to the environmental changes. The interpreter 
is regarded as a phagocyte and translates sensor data into perception. The antigen 
presentation proceeds from the information extraction to the perception translation. An 
antigen may have several different epitopes, which means that an antigen can be recognized 
by a number of different antibodies. However, an antibody can bind only one antigen’s 
epitope. In the proposed mechanism, a paratope with a built-in robot’s steering direction is 
regarded as a antibody and interacts with each other and with its environment. These 
antibodies/steering-directions are induced by recognition of the available 
antigens/detected-information. In should be noted that only one antibody with the highest 
concentration will be selected to act according to the immune network hypothesis. 
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Figure 4. The architecture of the immunized network reactive system 

In the proposed immune network, antibodies are defined as the steering directions of 
mobile robots as illustrated in Fig. 5, 

( ) Ab
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ii Nii
N
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360
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where NAb is the number of antibodies/steering-directions and θi is the steering angle 

between the moving path and the head orientation of the mobile robot. Note that 0°≤ θi 
≤360°.  
 

 

Figure 5. Configuration of mobile robot and its relatives to target and obstacles 

In addition, the antigen represents the local environment surrounding the robot and its 

epitopes are a fusion data set containing the azimuth of the goal position θg, the distance 

between the obstacles and the jth sensor dj, and the azimuth of sensor θSj, 
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where Ns is the number of sensors equally spaced around the base plate of the mobile robot, 

dmin≤ dj≤ dmax and 0°≤ θSj≤360°. Parameters dmin and dmax represent the nearest and longest 

distances measured by the range sensors, respectively. It should be noted that different 
antigens (local environments) might have identical epitopes (fusion information from range 
sensors). There is no necessary relationship between NAb and Ns since they depend on the 
hardware (i.e. motor steering angles and number of sensors installed) of mobile robot. 
Nevertheless, simulation results show that better performance could be derived if Ns equal 
to or larger than NAb. 
The potential-field method is one of the most popular approaches employed to navigate the 
mobile robot within environments containing obstacles, since it is conceptually effective and 
easy to implement. The method can be implemented either for off-line global planning if the 
environment is previously known or for real-time local navigation in an unknown 
environment using onboard sensors. The Artificial Potential Field (APF) approach considers 
a virtual attractive force between the robot and the target as well as virtual repulsive forces 
between the robot and the obstacles. The resultant force on the robot is then used to decide 
the direction of its movements. In the proposed immune network, the resultant force on the 
robot is defined as mi, the affinity value between the antigen/local environment and the ith 
antibody/steering angle, 

 Abobsgoali NiFwFwm
ii

,,2,1           21 ⋅⋅⋅=+=   (3) 

The weighing values w1 and w2 indicate the ratio between attractive and repulsive forces. 
Note that 0≤w1, w2≤1 and w1+w2=1. The attractive force Fgoali of the ith steering direction (i.e. 

the ith antibody) is defined as follows: 
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Note that Fgoali is normalized and 0≤ Fgoali≤1. Obviously, the attractive force is at its maximal 

level (Fgoali=1) when the mobile robot goes straightforward to the target (i.e. θi = θg). On the 

contrary, it is minimized (Fgoali=0) if the robot’s steering direction is the opposite of the goal. 

The repulsive force for each moving direction (the ith antibody θi) is expressed as the 
following equation, 

 ∑
=

⋅=
S

i

N

j
jijobs dF
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   α   (5) 

where aij=exp(-Ns×(1-δij)) with δij=[1+cos(θi- θSj)]/2. Fig. 6 demonstrates the relationship 

between αij and δij. The parameter αij indicates the weighting ratio for the jth sensor to 

steering angle θi while jd  represents the normalized distance between the jth sensor and the 
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obstacles. Coefficient δij expresses influence and importance of each sensor at different 
locations. The equation shows that the information derived from the sensor closest to the 

steering direction is much more important due to its biggest δij value. Kubota et al. (2001) 
have proposed a similar ‘delta rule’ to evaluate the weighting of each sensor too. 
 

 

Figure 6. Relation between αij and δij 

The normalized obstacle distance for each sensor jd  is fuzzified using the fuzzy set 

definitions. The mapping from the fuzzy subspace to the TSK model is represented as three 
fuzzy if-then rules in the form of 
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where L1, L2, and L3 are defined as 0.25, 0.5 and 1.0, respectively. The input variable of each 
rule is the detected distance dj of the jth sensor. The antecedent part of each rule has one of 
the three labels, namely, s (safe), m (medium), and d (danger). Consequently, the total 
output of the fuzzy model is given by the equation below, 
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where µsafe(d), µmedium(d), µdanger(d) represent the matching degree of the corresponding rule. 
Fig. 7 illustrates the membership function and labels for measured distance dj. 
 

 

Figure 7. Membership function and labels for measured distance dj 

As to the stimulative-suppressive interaction between the antibodies/steering-directions are 
derived from equation (1) as follows, 
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and the stimulative-suppressive affinity ss
im `  between the ith and jth antibody/steering-

angle is defined as 
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Obviously, stimulative-suppressive effect is positive ( ss
im ` >0) if °<Δ<°− 9090 `iθ . On the 

contrary, negative stimulative-suppressive effect exists between two antibodies if their 

difference of steering angles are greater than 90° or less than -90° (i.e., °>Δ 90`iθ  or 

°−<Δ 90`iθ ). In addition, there is no any net effect between orthogonal antibodies (i.e. 

°±=Δ 90`iθ ). The immune system responses to the specified winning situation that has the 

maximum concentration among the trigged antibodies by comparing the currently 
perceived situations (trigged antibodies). In other words, antibody with the highest 
concentration is selected to activate its corresponding behavior to the world. Therefore, 
mobile robot moves a step along the direction of the chosen steering angle/antibody. 

3.2 Local minimum recovery  
As mentioned in the previous section, one problem inherent in the APF method is the 
possibility for the robot to get trapped in a local minima situation. Traps can be created by a 
variety of obstacle configurations. The key issue to the local minima problems is the detection 
of the local minima situation during the robot’s traversal. In this study, the comparison 

between the robot-to-target direction θg and the actual instantaneous direction of travel θi was 
utilized to detect if the robot got trapped. The robot is very likely to get trapped and starts to 

move away from the goal if the robot’s direction of travel is more than 90°off-target (i.e. |θi -

 θg|>90°). Various approaches for escaping trapping situations have been proposed as 
described previously. In this study, an adaptive virtual target method is developed and 
integrated with the reactive immune network to guide the robot out of the trap. 
In immunology, the T-cell plays a remarkable key role in distinguishing a “self” from other 
“non-self” antigens. The Helper-T cells work primarily by secreting substances to constitute 
powerful chemical messengers to promote cellular growth, activation and regulation. 
Simulating the biological immune system, this material can either stimulate or suppress the 
promotion of antibodies/steering-directions depending on whether the antigen is non-self 
or self (trapped in local minima or not). Different from the virtual target method proposed 

in [10-11], an additional virtual robot-to-target angle θv (analogous to the interleukine 

secreted by T-cells) is added to the goal angle θg whenever the trap condition (|θi - θg|>90°) 
is satisfied, 
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 θg(k+1)= θg(k)+ θv(k) (8) 
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Figure 8. Flowchart of the mobile robot navigation procedure 
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Parameters k-1, k, and k+1 represent the previous state, the current state and the future state, 

respectively. Symbol “±” indicates that the location of the virtual target can be randomly 

switched to either the right (i.e. “+”) or the left (i.e. “−”) side of the mobile robot so that the 

robot has a higher probability of escaping from the local minima in either direction. λ is an 
adjustable decay angle. The bigger the value is, the faster the location of virtual target 
converges to that of the true one and the easier it is for the robot to get trapped in the local 

minima again. In this study, λ is determined after multiple simulation runs and set to 0.2. 

The incremental virtual angle θv(k) in the proposed scheme is state dependent and self-
adjustable according to the robot’s current state and the action it took previously. This 
provides powerful and effective trap-escaping capability compared to virtual target method, 

which keeps θv a constant value. θc is a converging angle and its initial value is 0. Fig. 8 
shows the flowchart of navigation procedure for mobile robot employing the proposed 
reactive immune network. 
For carrying out the necessary simulation and validating the efficacy of the proposed 
methodology, a computer program was developed using C++ language with graphical user 
interface. The simulation environment contains a robot and obstacle constructed by 
numerous square blocks 10cm in length. The environmental condition adopted in 
simulation is a 300cm×300cm grid. The size of the simulated robot is a circle with 10cm 
diameter. During each excursion, the robot tries to reach target and avoid collision with 
obstacle. Fig. 9 elucidates and demonstrates the performance of the proposed strategy for 
the robot to escape from a recursive U-trap situation, which may make the virtual target 
switching strategy (Xu, 2000) ineffective as Chatterjee and Matsuno (2001) suggested. 

 

Figure 9. Robot path and state of the indices along the trajectory 

The robot first enters a U-shaped obstacle and is attracted to the target due to the target’s 

reaching behavior until it reaches the critical point . Clearly, the azimuth of goal θg is kept 
the same during this stage; however, the distance between the robot and the target is 
decreased quickly. The detection of the trap possibility because of the abrupt change of 

target orientation at location  (θg) makes the target shift to a virtual position A* (θg - Δθg). 
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Δθg is defined as 45° is this study. Note that the switch-to-left or the switch-to-right of the 

virtual target (i.e., minus or plus Δθg) is selected randomly. On the way → , Δθg is 

decreased gradually according to equation (8) until a new local minimal is found at location 
. Again, the location of virtual target switches from A* to B*. Fig. 9 and Fig. 10 show that 

there is a successive virtual target switching A*→B1→B2→B* when the robot moves around 

the left upper corner where it is tracked in a trap (to satisfy condition |θi - θg|>90°) three 
times. After passing through the critical point , the robot keeps approaching the virtual 

target until reaching the third critical point . Concurrently, the associated orientation of 

the virtual target is decreased from B* to C. Once more, it takes three times for the robot to 

escape from the trap situation in the left lower corner on the path →  (orientation of the 

virtual target C→C1→C2→C*→D). Similar navigation procedures take place on the way 

→  (orientation of virtual target D→D1→D2→D*→E→E*). After escaping from the 

recursive U-shaped trap, the mobile robot revolves in a circle and finally reaches target  

without any trapping situations (azimuth of virtual target θg decreases gradually from E* to 
T illustrated with a dashed line). The derived trajectory illustrated in Fig. 8 is quite similar to 
the results derived by Chatterjee and Matsuno (2001). Fig. 10 illustrates the other possible 
trajectory to escape the same trap situation due to the random choice of the “plus” or 

“minus” robot-to-target angle Δθg, as shown in equation (8). Obviously, the mechanism for 

virtual target switching to the right or to the left (i.e., ± Δθg) increases the diversity and 
possibility of the robot’s escaping from the local minima problem. 

 

Figure 10. The other possible trajectories to escape the recursive trap situation 

4. Motion Planning in Dynamic Environments 

4.1 The velocity Obstacle method 

This section briefly describes the velocity obstacle (VO) method for the obstacles. For 
simplicity, the mobile robot and moving obstacles are assumed to be approximated by 
cylinders and move on a flat floor. Fig. 11(a) shows two circular objects A and B with 
velocities vA and vB at time t0, respectively. Let circle A represent the robot and circle B 
represent the obstacle. To compute the VO, obstacle B must be mapped into the 
configuration space of A, by reducing A to a point Â and enlarging B by the radius of A 

to B̂ as Fig. 11(b) demonstrates. The Collision Cone, CCA,B, is thus defined as the set of 

colliding relative velocities between Â and B̂ : 

 { }0ˆ| ,, /≠∩= BCC BAA,BBA λv  (9) 
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where vA,B = vA − vB is the relatively velocity of Â with respect to B̂ , and λA,B is the line of 
vA,B.This collision cone is the light gray sector with apex in Â, bounded by the two tangents 

λf and λr from Â to B̂  as shown in Fig. 11(b). Clearly, any relative velocity vA,B outside CCA,B 

is guaranteed to be collision-free, provided that the obstacle B̂  maintains its current shape 
and speed. The collision cone is specific to a particular robot/obstacle pair. To consider 
situation of multiple obstacles, it is better to establish an equivalent condition on the 
absolute velocities vA. This could be done simply by adding the velocity vB to each velocity 
in CCA,B, or equivalently, translating the collision cone CCA,B by vB, as shown in Figure 11(b). 
The velocity obstacle VO (in dark gray sector) is thus defined as: 

 A,BBACCVO v⊕= ,  (10) 

where ⊕ is the Minkowski vector sum operator. The VO partitions the absolute velocities vA 
into avoiding and colliding velocities. Selecting vA outside of VO would avoid collision with 
B. Velocities vA on the boundaries of VO would result in A grazing B. 

 

Figure 11. The Velocity Obstacle approach 

In the case of multiple obstacles, they are prioritized according to their danger level so that 
the most imminent collision obstacle is avoided first. In this study, a “collision distance 
index” is defined as follows to compute the danger level for each obstacle: 

 
obs

sj

obsr
Nj

Tv

d
j ,,2,1     ,

,
⋅⋅⋅=

×
=δ  (11) 

where dr,obsj represents the distance between robot and the jth obstacle, vj is speed of the jth 

obstacle, and Ts is the sampling time. Obviously, the smaller the collision distance index, the 
more dangerous to collide obstacle. 

4.2 Potential field immune network 

A potential field immune network (PFIN) inspired by the biological immune system for 
robot navigation in dynamic environment is described in this section. For simplicity, one can 
make the following choices without loss of any generality: 

• The mobile robot is an omni-directional vehicle. This means any direction of velocity 
can be produced at any time. In addition, maximum velocity and acceleration are 
assumed to be limited considering dynamics of robot and obstacles. 
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• The mobile robot and moving obstacles under consideration are approximated by 
cylinder with radius rr, and ro. This is not a severe limitation since general polygons can 
be represented by a collection of circles. Chakravarthy and Ghose (1998) showed that 
the union of all these circles can still be meaningfully used to predict collision between 
the irregularly shaped objects. Moreover, the resulting inexact collision cone can still be 
used effectively for motion planning. 

• The mobile robot and moving obstacles move in a flat floor. Moving obstacles may 
change their velocities (amplitude and direction) at any time. 

• The obstacles move along arbitrary trajectories, and that their instantaneous states 
(position and velocity) are either known or measurable. Prassler et al. (2001) have 
proposed such a sensor system includimg a laser range finder and sonar. 

Fig. 12 illustrates the architecture of the proposed potential field immune network. The 
mechanism, imitating the cooperation between B-T cells, can help the robot adapt to the 
environment efficiently. In the immunology, the T-cell plays a remarkable key role for 
distinguishing a “self” from other “non-self” antigens. Resembling the biological immune 
system, its function is to prioritize the obstacles employing the VO method so that the 
obstacle with most imminent collision can be identified. In other words, T-cell in PFIN 
distinguishes an “imminent” from other “far-away” obstacles. 

 

Figure 12. The architecture of the potential field immune network 

In PFIN, the antigen’s epitope is a situation detected by sensors and provides the 
information about the relationship between the robot’s current states and the obstacles, 
along with the target as Fig. 12 depicted. Therefore, the antigen represents the local 
environment surrounding the robot each time interval and its epitopes are a fusion data set 
for each obstacle as Fig. 13 shows. 

{ } obsobsrobsrgrgrj NjddAg
jj

,,2,1          , , , ,,,, ⋅⋅⋅=≡ θθ , 

where θr,g and θr,obsj represent the orientations between robot and target, and the jth obstacle, 

respectively. dr,g and dr,obsj represent the distance between robot and target, and the jth 

obstacle, respectively. Nobs is the number of moving obstacles. 
This scene-based spatial relationship is consistently discriminative between different parts 
of an environment. The interpreter is regarded as a phagocyte and translates sensor data 
into perception. The antigen presentation proceeds from the information extraction to the 
perception translation. An antigen may have several different epitopes, which means that an 
antigen can be recognized by a number of different antibodies. However, an antibody can 
bind only one antigen’s epitope. In the proposed immune network, the antibody’s receptor 
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is defined as the situation between robot and the imminent collision obstacle as the 
following 

obsrobsrgrgr AbdAbAbdAb ,4,3,2,1     ;    ;    ; θθ ≡≡≡≡  

where dr,obs and θr,obs represent the distance and orientation between robot and the imminent 
collision obstacle, respectively. 

 

Figure 13. Configuration of mobile robot and its relatives to target and obstacles 

The response of the overall immune network is thus derived by determining the set of 
affinities associated with the receptors and the structural similarity between antigen and 
antibody defined by quantification of the distance in antigen space. In this study, the 
collective immune response function of the immune network is defined as the following 
immune functions, 

 
⎩
⎨
⎧

+=

+=

)()(

)()(

42

31

AbfAbf

AbfAbfv

r

r

ω
 (12) 

where vr and ωr are the robot’s velocity and angular velocity outputs, respectively. This is a kind 
of artificial potential field approach since it considers a virtual attractive force between the robot 
and the target (i.e. f(Ab1) and f(Ab2)) as well as virtual repulsive forces between the robot and the 
obstacle (i.e. f(Ab3) and f(Ab4)). The resultant force on the robot is then used to decide the 

velocities (i.e. vr and ωr) of its movements. Functions f(Abi) are expressed as following, 
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where mi is the affinity of antigen (the most imminent collision obstacle) and the ith 
antibody, mij is the stimulation/suppressive affinity between the ith and jth antibody. 
Corresponding constant parameters are K1= 20, K2= 30, K3= 15, K4= 30, respectively. Note 
that these values are defined according to the velocity limitation of the robot and obstacles. 
The affinity of the antigen and the ith antibody mi is fuzzified using the fuzzy set definitions 
as Fig. 14 illustrates. 
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Figure 14. Membership functions of antibodies 

The mapping from the fuzzy subspace to the TSK model is represented as fuzzy if-then rules 
in the form of 

IF dr,g is zero  THEN vr = 0cm/s 
IF dr,g is near  THEN vr = 10cm/s 
IF dr,g is medium  THEN vr = 15cm/s 
IF dr,g is far  THEN vr = 20cm/s 

IF θr,g is -far   THEN ωr = -30º/s 

IF θr,g is -medium  THEN ωr = -25º/s 

IF θr,g is -near  THEN ωr = -20º/s 

IF θr,g is -close  THEN ωr = -10º/s 

IF θr,g is +close  THEN ωr = 10º/s 

IF θr,g is +near  THEN ωr = 20º/s 

IF θr,g is +medium  THEN ωr = 25º/s 

IF θr,g is +far  THEN ωr = 30 º/s 
IF dr,obs  is zero  THEN vr = -15cm/s 
IF dr,obs  is near  THEN vr = -10cm/s 
IF dr,obs  is medium  THEN vr = -5cm/s 
IF dr,obs  is far  THEN vr = 0cm/s 

IF θr,obs  is -far  THEN ωr = 10º/s 

IF θr,obs  is -medium   THEN ωr = 20º/s 

IF θr,obs  is -near  THEN ωr = 30º/s 

IF θr,obs  is +near  THEN ωr = -30º/s 

IF θr,obs  is +medium  THEN ωr = -20º/s 

IF θr,obs  is +far  THEN ωr = -10º/s 
Consequently, the centroid defuzzification method is employed to calculate the weighted 
average of a fuzzy set, 
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where µk represent the matching degree of the kth rule and yk represent its corresponding 
output value. Finally, the stimulation and suppressive interaction mij between the ith and jth 
antibodies are optimized utilizing genetic algorithms. Hundreds of different circumstances 
with randomly generated moving obstacles were employed to optimize the affinity values 
mij of PFIN. Fig. 15 demonstrates one of the cases in which several tens of obstacles 
circumrotate at randomly generated positions with different radius. Fig. 15(a) shows that 
robot reaches target successfully while Fig. 15(b) demonstrates that robot is failed to reach 
target in the optimization procedure. Table 1 lists the derived optimal stimulation and 
suppressive affinity value mij between the ith and jth antibodies. 

 

Figure 15. Randomly generated moving obstacles for optimizing mij 

mij j=1 j=2 j=3 j=4 

i=1 1 -0.13 -0.24 -0.04

i=2 -0.02 1 -0.11 -0.42

i=3 -0.37 -0.84 1 0.92 

i=4 -0.21 -0.92 -0.31 1 

Table 1. The stimulation and suppressive interaction affinity value mij 

5. Simulation and discussions 

5.1 Motion Planning in Stationary Environments 

Numerous simulation examples presented by researchers (Xu, 2000; Chatterjee & Matsuno, 
2001; Kubota et al., 2001) were conducted to demonstrate the performance of mobile robot 
navigation employing RIN to various unknown environments; in particular, the capability 
of escaping from the traps or the wandering situations described. Assuming that the robot 
has eight uniformly distributed distance sensors (i.e. Ns=8) and eight moving directions 
including forward, left, right, back, forward left, forward right, back left, and back right (i.e. 
NAb=8) as Fig. 16 shows. Fig. 17(a) demonstrates the similar trajectory of the mobile robot to 
escape from loop-type and dead-end-type trapping situations in (Chatterjee & Matsuno, 
2001). Again, Fig. 17(b) demonstrates the other possible trajectory (escaping from the left 

side) due to the random selection scheme (“±”) mentioned previously. 
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Figure 16. Configuration of mobile robot employed in simulation 

 

Figure 17. Robot trajectories to escape from loop type and dead-end type trap situation 

 

Figure 18. Robot trajectories to escape from different trapping situations 
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To validate the efficiency of the proposed scheme further, three trap environments adopted 
in (Madlhava & Kalra, 2001) were utilized in this study. Obviously, the simulation results 
depicted in Fig. 18 show that the robot is capable of escaping from all the traps as expected. 
Finally, the most famous and utilized example, U-shaped trap problem, is employed in this 
study. Fig. 19 shows part of the paths of the robot escaping from the U-shaped trap with 
different L/W (length/width) ratios. Clearly, the robot is capable of escaping from different 
ratio U-shaped environments. As to the double U-shaped trap environment (Kunota et al., 
2001), Fig. 20 demonstrates the four trajectories for the robot to escape utilized RIN. 
Apparently, RIN successfully drives the robot to escape the double U-shaped trap. 

 

Figure 19. Robot trajectories to escape from U-shaped trap with different length/width ratio 

 

Figure 20. Robot trajectories to escape from double U-shaped trap 

5.2 Motion Planning in Dynamic Environments 

Numerous simulations have been utilized to evaluate the performance and effectiveness of a 
mobile robot among multiple moving obstacles using the proposed PFIN. In the simulations, 
the size of the test field is 5m ×5m, and the radius of robot and obstacles are rr = 0.1 m and ro = 
0.1 m, respectively. In addition, the speed constraints on mobile robot and moving obstacles 

are vr max = 20 cm/s, vo max = 20 and ωr max = 30º/s. The sampling time for each step is Ts = 
0.03sec. To carry out these computations, a computer program was developed employing C++ 
programming tools with a graphical user interface. The simulation examples demonstrated in 
figures are given with graphical representations in which the trajectories of the moving object 
and the robot are described. Moreover, figures show the velocity-time history and azimuth-
time history of the robot, respectively. In each figure, circles indicate the position of the robot 
and obstacles at each time instant when the robot executed an action. A high concentration of 

www.intechopen.com



An Immunological Approach to Mobile Robot Navigation 

 

311 

circles indicates a lower velocity (of the obstacle and of the robot) whilst a low concentration is 
a reflection of a greater velocity. In addition, the state responses (speed and orientation) of 
robot and obstacles are depicted in the figures. Obviously, the robot smoothly avoids the 
moving obstacles and reaches goal as expected for all cases. 
Fig. 21 reveals that an obstacle coming from left side along a straight line cross the robot 
path. Within the interval of points A and D (at fifth and fourteenth sampling instant 
respectively), the obstacle slows down its speed in front of the robot’s way to goal. 
Obviously, the robot appears a “hunting” behavior in this duration. Figs. 22(a)-22(d) explain 
this behavior employing the VO concept. At position A as Fig. 22(a) shown, the robot will 
collide with the obstacle since the relative velocity between robot and obstacle (i.e. vro) is 
inside the velocity cone CCAB. Thus the robot turns left (positive angular velocity as Fig. 21 
shown) to avoid collision and reach position B. Because vro is outside the velocity cone in 
position B and there is no danger to collide the obstacle as Fig. 22(b) depicted, the robot 
turns right again due to the attraction force from the target. Once more, robot turns left to 
avoid collision at position C as Fig. 22(c) demonstrated. The “hunting” behavior (i.e. turn left 
and then turn right) is repeated until the robot reaches the position D. Subsequently, the 
robot finds that it may collide with the obstacle in next time step again as Fig. 22(d) shown. 
Robot decelerates its speed to stop quickly and then goes back to the position E (negative 
velocity from position D to E as Fig. 21 shown). Finally, the robot turns right and passed 
over behind the obstacle rapidly to reach the goal since the obstacle is no longer a threat. 

 

Figure 21. Trajectories and associated state responses of mobile robot and obstacle 

 

Figure 22. Velocity cone of robot at different positions 
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Fig. 23 shows a simulation result by which the robot can avoid two moving obstacles one 
after another then reach the goal. These obstacles come from different sides with arbitrary 
trajectory and varying speed cross the robot path. Similar to the previous simulation, the 
robot decelerates its speed at points A and B to avoid the first and second obstacles 
separately. Then it accelerates and moves towards the goal without collision 

 

Figure 23. Trajectories and associated state responses of mobile robot and obstacles 

Fig. 24 demonstrates the motion planning of a mobile robot tracking a moving goal while 
avoiding two moving obstacles. Obviously, mobile robot is able to reach goal and avoid 
moving obstacles no matter what the goal is fixed or moving employing the proposed PFIN. 
The robot decelerates at position A’ to wait for the first obstacle while accelerates at position 
C’ to exceed the second obstacle. Moreover, robot turns bigger angles at position B’ to follow 
the moving target compared with that of fixed target case. Note that the two obstacles have 
the same trajectories in both cases. 

 

Figure 24. Trajectories of robot and obstacles for fixed/moving goals 

Fig. 25 demonstrates another example of motion planning for the case of suddenly 
moving/stopped obstacle. Figs. 25(a)-25(d) illustrate a simulation result by which the robot 
successfully avoid two moving and two static obstacles. As usual, the robot exceeds the first 
moving obstacle at position A’ and waits for the second moving obstacle at position C’. Fig. 
25(e) demonstrates that the robot reaches target safely even though the second static obstacle 
abruptly moves when the robot approaches it. Fig. 25(f) shows the similar result except that 
the second moving obstacle unexpectedly stops when it near the robot. Note that both the 
moving and stopping actions of the second static obstacle shown in Fig. 25(e) and Fig. 25(f) 
are pre-programmed to test the performance of the proposed architecture. 
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Figure 25. Trajectories of robot and obstacles for suddenly moving/stopped obstacle 
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6. Experimental Results 

Numerous experiments were implemented to evaluate the performance in real application. 
Fig. 26 shows the mobile robot (with omni-directional wheel) used. Its dimension is 
416mm×363.7mm×670mm. The robot installed with 8 ultrasonic sensors, two web-cams, and 
a laser range finder. Figs.27, 28 demonstrate the pictures of the robot navigate in two “U” 
shape obstacles (with different length and width: 160mm×320mm, and 300mm×100mm) and 
their corresponding trajectories, respectively.  
 

 

Figure 26. Dimension and pictures of the mobile robot 

 

  

Figure 27. Navigation of robot in 160mm×320mm “U” obstacle and corresponding 
trajectories 

 

   

Figure 28. Navigation of robot in 300mm×100mm “U” obstacle and corresponding 
trajectories 
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Fig. 29 illustrate the pictures of the robot navigate in a “sequential-U” shape obstacle 
(400mm×190mm with a 90mm bar in middle) and its corresponding trajectory, respectively. 

    

Figure 29. Trajectories in “sequential-U” shape obstacle and corresponding trajectories 

All these figures show that the mobile robot is capable of navigating to the goal and 
escaping from local minimum traps employing the proposed reactive immune network. 
Note that mobile robot can approach target from both sides randomly as described in 
previous section. 

6. Conclusion 

Two different kind of reactive immune networks inspired by the biological immune system 
for robot motion planning are constructed in this study. The first one is a potential filed 
based immune network with an adaptive virtual target mechanism to solve the local minima 
problem navigating in stationary environments. Simulation and experimental results show 
that the mobile robot is capable of avoiding stationary obstacles, escaping traps, and 
reaching the goal efficiently and effectively. Employing the Velocity Obstacle method to 
determine the imminent collision obstacle, the second architecture guide the robot avoiding 
collision with the most danger object (moving obstacle) at every time instant. Simulation 
results are presented to verify the effectiveness of the proposed architecture in dynamic 
environment. Currently, laser range finder is utilizing to evaluate the performance of the 
proposed mechanism. 
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