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Abstract

Worldwide, it is estimated that more than 400 million people are currently living with 
chronic hepatitis B virus (HBV) infection, contributing to more than one million deaths 
annually as a result of liver cirrhosis and hepatocellular carcinoma (HCC). HBV DNA 
integrates into the cellular DNA in liver tissue of patients with chronic HBV infection 
and HCC. Following HBV infection, DNA methyltransferases (DNMTs) methylate any 
HBV DNA integrated into the human genome. This novel epigenetic mechanism enables 
the suppression of HBV antigens, leading to reduced viral replication. HBV is thought to 
induce DNA methylation via hepatitis B x (HBx) protein, which modulates cellular sig-
nalling pathways by activating DNMT 1 and 3 to benefit the virus. Activation of DNMT 
1 and 3 inappropriately methylates host cellular genes including tumour suppressor 
genes whose disruption causes transformation of hepatocytes and hepatic malignancy. 
By being localised in the cytoplasm, nucleus and mitochondria of HBV-infected hepato-
cytes, it appears that HBx protein manages to exploit the entire body of cellular signalling 
pathways for viral survival and propagation. HBx protein may achieve its transcriptional 
transactivation action by either interacting with key genes or altering their related cellu-
lar signalling pathways or by hijacking their binding partners and taking over their roles. 
Although the underlying mechanisms are still unclear, processes such as cell cycle pro-
gression, calcium homeostasis, hepatic metabolism, protein ubiquitination, RNA splicing 
and vitamin D receptor regulation are key mechanisms that HBx protein alters to favour 
viral replication and cell survival. These detrimental effects would connect HBV infec-
tion to malignant transformation by inducing uncontrolled cell growth, proliferation and 
disrupting apoptosis.

Keywords: epigenetics alterations, viral integration, hepatitis B virus, hepatocellular 
carcinoma, hepatitis X antigen
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1. Hepatitis B virus

Hepatitis B virus (HBV) is one of the most prevalent infections in humans and important 

cause of acute and chronic hepatitis. Chronic infection is defined as the presence of hepatitis B 
surface antigen (HBsAg) in the blood more than 6 months following initial infection. Without 

treatment, chronic HBV infection may result in the development of liver cirrhosis and hepa-

tocellular carcinoma (HCC) [1–3].

HBV was first identified in the 1960s and was the first human hepatitis virus to be well 
characterised at a molecular level [3, 4]. Long-term inflammatory changes due to chronic 
hepatitis cause hepatocyte injury and the release of reactive oxygen species (ROS) and 

Kupffer cells activation. These produce proinflammatory and fibrogenic cytokines result-
ing in the recruitment of immune cells. The Kupffer cells also activate hepatic stellate 
cells which produce extracellular matrix proteins and cytokines. Repeating cycles of this 

activation and inflammation lead to cirrhosis characterised by regenerative nodules and 
 irreversible fibrosis [2, 3, 5].

The ability of the virus to cause liver injury is associated with genetic changes that affect both 
viral and host DNA leading to mutations that predispose to liver injury and possible cancer. 

These events link chronic HBV infection with HCC. More than 80% of HCC cases arise in 

chronic HBV infection, strongly suggesting that HBV is an important contributor to the devel-

opment of tumour [2, 3].

Possible mechanisms by which HBV infection causes HCC have been described, and these 

include HBV DNA integration, epigenetic alterations (change in gene expression) and aber-

rant transcriptional activities of HBx protein [3, 6, 7]. Nearly 90% of HBV-related HCC cases 
show evidence of HBV integration into the host genome [3, 8]. This is associated with genetic 

changes such as genomic instability, deletions and chromosomal translocations in the host 

cells, which may lead to accumulation of mutations and epigenetic changes with a malig-

nant phenotype. Several contributing environmental and viral factors such as chronic tobacco 

smoking, alcohol consumption, aflatoxins, HBV e antigen positive status, high viral load and 
HBV genotype have been identified in HBV-related HCC cases and are associated with many 
epigenetic changes [3, 8–10].

1.1. Transmission Routes of HBV

HBV can be stable for 7 days or more on dry environmental surfaces. The two major routes of 

HBV transmission are horizontal and perinatal or vertical transmission. The efficient modes 
of transmission are blood and sexual contact with an infected person. The virus is horizon-

tally transmissible during child to child physical contact or through contact with blood or 

infected toys. Horizontal transmission can also occur through body fluids such as semen and 
vaginal secretions. Perinatal or vertical transmission of HBV occurs through blood or secre-

tions from an infected mother to the newborn baby during delivery. Perinatal transmission 

is high in mothers who are positive for hepatitis B e antigen (HBeAg) at 85–90% and lower in 
those who are negative for HBeAg where the rate is 5–20% [1, 3, 11–13].
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1.2. Global epidemic of HBV infection

Worldwide, it is estimated that more than 400 million people are currently living with chronic 

HBV infection, contributing to more than one million deaths annually [1]. The prevalence of 

HBV infection is determined by the seroprevalence of HBsAg. HBV is highly endemic in Asia 

and sub-Saharan Africa with HBsAg seroprevalence rates exceeding 8% (Figure 1) [3, 14]. In 

these regions, the infection is typically acquired at birth or in early childhood. Progression to 

chronic HBV infection is common in these regions and is associated with prevalence rates of 

30% for hepatic cirrhosis and 53% for HCC [16].

Annually, approximately one million people are diagnosed with HCC worldwide, and more 

than half of these people die within a year of diagnosis. Studies show that the highest HCC 

incidence rates of 70–80% occur in South-East Asia and sub-Saharan Africa, the regions with 

a high prevalence of chronic HBV infection [16]. This is due to various factors that include the 

late presentation of patients with large tumours, failure to recognise those at risk, high preva-

lence of risk factors in the population, lack of medical facilities for early diagnosis and limited 

access to effective treatment after diagnosis [3, 16].

An intermediate HBsAg seroprevalence of 2–7% is seen in some parts of Asia, Europe, 

America and Russia. The prevalence of HBV infection is low in Western Europe, Australia 

and United States where HBsAg seroprevalence is <2% [3, 17].

1.3. Epidemic of HBV infection in Africa

There are 65 million individuals infected with chronic HBV in Africa and 250,000 of these people 

die annually due to HBV-related diseases. The prevalence of chronic HBV infection in Africa 

varies by geographic region. It is high in sub-Saharan Africa, with HBsAg seroprevalence rates 

Figure  1. Global geographical distribution of chronic hepatitis B infection (Adapted from Lavanchy D [13]).

Recent Advancement in Hepatitis B Virus, Epigenetics Alterations and Related Complications
http://dx.doi.org/10.5772/66879

151



of more than 8%. In Kenya, Sierra Leone, Zambia, Senegal and Liberia, the prevalence of HBV 

infection is intermediate with HBsAg seroprevalence rates ranging from 2 to 8%. North African 

countries including Morocco, Egypt, Algeria and Tunisia have low prevalence rates of <2%.

In South Africa and other African countries, the prevalence of HBV infection is much higher 

in rural compared to urban areas [18]. Low socio-economic status, infected household contact, 

unsafe sexual intercourse, sharing of partially eaten sweets or chewing gum, dental work and 

bathing towels may be some of the contributing factors for the high prevalence of HBV infec-

tion in rural areas [3, 12, 18].

1.4. HBV genotypes and genomic alterations

HBV is classified into eight genotypes (A–J) with four major serotypes (adw, adr, ayw and 
ayr) [3, 19, 20]. HBV genotypes are differentiated by more than 8% sequence divergence in 
the entire genome and more than 4% at the level of S gene. They have distinct geographi-

cal distribution as illustrated in Table 1. Genotype A is predominant in sub-Saharan Africa, 

North-West Europe and North America.

Genotype A has four subgenotypes. Subgenotype 1A is common in South Africa, Malawi, 

Tanzania, Uganda, Somalia, Yemen, India, Nepal, Brazil and the Philippines [3, 20]. There 

Genotype Geographic distribution Mutation Host CpG promoter methylation

A North America, Sub-Saharan 

Africa, North-West Europe

G1888A 1762T1764A G1862T Induces hypomethylation and 

down-regulation of the DLEC1 

gene

B Indonesia, China, Vietnam Unknown Unknown

C East Asia, Korea, China, Japan, 
Polynesia, Vietnam

Unknown Unknown

D Mediterranean area, Middle 

East

G1896A Induces hypermethylation and 

down-regulation of GSTP1 gene

E Africa Unknown Unknown

F Central and South America, 

Polynesia

Unknown Unknown

G France, America Unknown Unknown

H Mediterranean area, Middle 

East

Unknown Unknown

I South-East Asia Unknown Unknown

J Japan Unknown Unknown

Abbreviations: A, adenine; CpG, cytosine-phosphate-guanine; DLEC1, deleted in lung and esophageal cancer 1; G, 

guanine; GSTP1, glutathione S transferase pi 1; HBV, hepatitis B virus; T, thymine.

Table 1. The global geographic distribution of HBV genotypes, mutations and associated CpG promoter DNA 

methylation.
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are three CpG islands within HBV genotype A, which are associated with methylation of the 

promoter of Deleted in Lung and Esophageal Cancer 1 (DLEC) gene and down-regulation of its 

expression in HBV-induced HCC. DLEC is a tumour suppressor gene and has been reported 

to be down-regulated in ovarian, liver, lung and EBV-related cancers [3, 21].

Genotypes B and C are more prevalent in Asia, Indonesia and Vietnam [20]. Based on the phy-

logenetic analysis, it was demonstrated that HBV genotype C is subdivided into 5 subgeno-

types (C1–C5). Geographical clustering of these subgenotypes was clear. The subgenotype 

C1 was found to be prevalent in East Asia, subgenotype C2 in South-East Asia, subgenotypes 

C3 and C4 in Southern Pacific Ocean and subgenotype C5 in Philippines [3, 22–34]. Genotype 

D is commonly found in the Mediterranean region and Middle East. The hepatitis B x (HBx) 

protein is associated with hypermethylation and down-regulation of the GSTP1 gene which 

plays an important role in the development of cancer. Genotype E is found mainly in Africa. 

Genotype F is found in Europe and the United States, and genotype G, in France and America. 

Genotype H is predominant in Central America, California and Mexico. Genotype I and J are 
prevalent in South-East Asia and Japan, respectively [3, 20].

HBV has a mutation rate of 10%, which is relatively high compared to other viruses. It repli-

cates via reverse transcription of RNA intermediates that result in random mismatched base 

errors during genomic replication. HBV DNA polymerase lacks the ability to proofread these 

errors, and this predisposes HBV to mutations [3, 25]. HBV develops four major mutations 

which are the precore, basic core promoter, tyrosine-methionine-aspartate-aspartate (YMDD) 

and asparagines-to-threonine (rtN236T) mutations. The precore mutants were the first to be 
identified and are characterised by a nonsense G1896A mutation [3, 26]. The G1896A mutation 
is responsible for HBeAg negativity in chronic HBV carriers and induces the down-regulation 

of HLA class II molecules in hepatocytes. This mutation is common in individuals infected 

with HBV genotype D [3, 27]. The basic core promoter mutations include A1762T and G1764A 

and were identified after the precore mutations. Similar to the precore mutations, the basic 
core promoter mutations are found in HBeAg-negative individuals where they prevent HBeAg 

expression [3, 28].

1.5. Prevention and treatment

HBV infection can be prevented by avoiding direct contact with any HBV-contaminated flu-

ids and materials. Immunisation with recombinant hepatitis B vaccines is recommended for 

all infants at birth and in individuals who are at high risk of acquiring the infection. Passive 

immunoprophylaxis with hepatitis B immunoglobulin derived from sera of positive HBV 

individuals is used to prevent mother-to-child HBV transmission at birth, after liver trans-

plantation for HBV infection, needle-stick injuries and sexual intercourse [3, 20, 29].

Acute HBV infection does not require treatment as it usually resolves spontaneously. Two 

major classes of drugs available for treating chronic HBV infection include the injectable 

standard interferon-α and pegylated interferon-α2, and the oral nucleos(t)ide analogues. 
Nucleoside analogues are lamivudine, entecavir, telbivudine, whilst nucleotide analoques 
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are adefovirdipivoxil and tenofovir. The main aims of treatment are to improve long-term 

survival by reducing the risk of developing cirrhosis and HCC [3, 30, 31].

Treatment with oral nucleos(t)ide analogues is associated with the development of mutations. 

Lamivudine induces point mutations in the YMDD motif of the HBV polymerase, and these 

include rtM204V and rtM204I mutations. The viral replication rate increases in the presence 

of lamivudine resistance, and when lamivudine treatment is stopped, the wild-type virus 

reestablishes itself. Lamuvidine resistance mutations are responsible for the development 

of resistance in entecavir that is also associated with similar mutations and more including 

rtI169T, rtT184G, rtS202I and rtM250V [3, 32, 33]. Telbivudine has a high antiviral potency 

and relatively low resistance than lamuvidine and entecavir. It is associated with mutations at 

rtL80I/V, rtL180M, rtA181T/V, rtM204I and rtL229W/V. Telbivudine results in myoparthy and 
neuropathy when used simultaneously with pegylated interferon-α2, and therefore, combi-
nation of these two agents is avoided [3, 32, 34].

Adevovir treatment causes mutations that are associated with the emergence of resistant 

strains such as the rtN236T mutation which is downstream to the YMDD motif [35]. The use 

of adevovir treatment is now rare as it is associated with severe kidney injury, which may 

be a consequence of mitochondrial DNA depletion and activity of multidrug resistance-

associated protein 4 [3, 36].

Despite the availability of treatment for chronic HBV infection, many patients will develop 

cancer, and this remains a major medical problem worldwide. This may be attributed to 
HCC-associated risk factors such as the HBV genotype, alanine aminotransferase (ALT), 

HBV load and HBV surface antigen level, which may influence the response to chronic HBV 
treatment. The response to interferon is significantly higher in patients infected with HBV 
genotype A compared to D and in patients with lower levels of HBV DNA and higher levels 

of ALT [3, 37, 38].

Aberrant methylation of promoter CpG islands is the primary epigenetic change seen 

during the course of HBV infection as it progresses to cirrhosis and HCC. Such methyla-

tion is detected at higher rates in HCC tissues compared to liver cirrhosis without can-

cer [10]. In a recent large cohort study report by Tseng et al., high HBV surface antigen 

levels are associated with a risk of developing HCC even in the presence of low HBV 

DNA levels. This finding may be due to a higher degree of viral HBV surface antigen 

integration into the host genome that would result in mutations and epigenetic alteration 

particularly DNA methylation, causing chronic liver damage, malignant transformation 

and HCC [3, 38–40].

The association of DNA methylation with chronic HBV treatment was first observed dur-

ing telbivudine treatment. Telbivudine is a thymidine agent that interacts with protein 

kinases to form telbivudine 5′–triphosphate via phosphorylation. Telbivudine 5′–triphos-

phate competes with thymidine 5′–triphosphate, leading to the suppression of HBV DNA 
polymerase and reduced viral replication. Interestingly, telbivudine was recently reported 

to correct HBV-induced histone methylation in HBV-infected hepatocytes [3, 41].
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1.6. Virological characteristics of HBV

HBV virions are infectious double-shelled particles of approximately 40–42 nanometre (nm) 

in diameter. They consist of a nucleocapsid core of 27 nm in diameter, which forms the inner 

part of enveloped virions known as Dane particles. The nucleocapsid core is surrounded by 

an outer surface antigen coat of ~4 nm thickness. It contains HBsAg and hepatitis B core 

antigen (HBcAg), which are detected in the sera of HBV-infected individuals in the form of 

spherical and filamentous particles [1, 3, 19, 42].

HBV is classified as an Orthohepadnavirus which belongs to the family Hepadnaeviridae. 

Contained in this family are other viruses such as the hepatic viruses of woodchucks, ducks, 

herons, ground and tree squirrels. These viruses replicate via reverse transcription of RNA 

intermediates, the step in which the DNA is packaged into hepadnaviral infectious particles. 

They are classified as Hepadnaeviridaedue to their structure and genomic organisation being 

similar to that of HBV. HBV genome is a small and relaxed circular molecule of 3.2 kb in 

size. It contains two strands of different length, a long minus strand and a short plus strand 

Figure  2. The structure of the HBV genome.
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as illustrated in Figure 2. The minus strand is terminally redundant and contains a second 

copy of direct repeat 1 (DR1), ε signal and poly A tail. It serves as a template for reverse 
transcription of a plus strand and also as a transcript for the translation of viral proteins 

including polymerase, HBcAg and HBeAg. The 5′ end of a minus strand is covalently linked 
to the viral reverse transcriptase and polymerase through a phosphor-tyrosine bond. The 

plus strand overlaps part of the minus strand whilst its 5′ end bears the oligoribonucleotides 
[3, 42, 43].

The HBV genome contains four ORFs, which have the same orientation and partially overlap. 

These ORFs encode the viral envelope pre-S/S, a pre-core/core, a polymerase and X proteins. 

The viral envelope also encodes three surface glycoproteins, which are the large (L), middle 

(M) and small (S) glycoproteins (Figure 2). These surface glycoproteins are synthesised by 

the initial transcription of pre-S/S. The L surface glycoprotein is important for viral assembly 

and infectivity, whilst the function of M surface glycoprotein is unknown. The longest open 

reading frame encodes the viral polymerase which serves as a reverse transcriptase and DNA 

polymerase. The pre-S/S envelope open reading frame overlaps the precore/core and X open 

reading frames and encodes HBsAg. The precore/core open reading frame produces HBeAg 

and HBcAg through cleavage by cellular proteases. HBcAg is the nucleocapsid and encloses 

the viral DNA [3, 11, 42, 43].

HBx protein is a transactivating protein that alters the expression of some genes via DNA 

methylation leading to tumourigenesis. It consists of 154 amino acid residues with a molecu-

lar weight of 27 kDa and is encoded by the smallest ORF. It stimulates viral replication either 

by activating viral transcription or by enhancing the reverse transcription of the viral poly-

merase [44, 45]. In hepatoma cell lines, HBx protein enhances viral replication by interacting 

with DNA binding protein 1 which interferes with cell growth and viability. In mice infected 

with wild-type HBV, viral replication is stimulated by HBx protein, suggesting that HBx pro-

tein is required for viral replication in normal hepatocyte cells [3, 44, 46, 47].

1.7. Life cycle of HBV

Due to the lack of efficient in vitro infection systems and animal models in which to study the 
life cycle of HBV infection, a lot of data are from the duck model infected with duck hepatitis 

B virus (DHBV) [3, 48]. HBV life cycle begins through the interaction of HBsAg with cellular 

receptor/s at the surface of hepatocytes. A number of potential cellular receptors that interact 

with HBsAg during HBV infection have been previously identified, but the mechanisms of 
action still remain controversial as none of them has been proved to be functional to HBV. 

These receptors include retinoid X receptor (RXR), peroxisome proliferator-activated receptor 

(PPAR) and farnesoid X receptor (FXR) [3, 49, 50].

Sodium taurocholate cotransporting polypeptide (NTCP) was discovered as the potential recep-

tor for HBV infection (Figure 2). NTCP is abundantly expressed in the liver and is involved in 

the transportation and clearance of bile acids from portal blood into hepatocytes. Yan et al. [51] 

have shown by using near-zero-distance photo-cross-linking, tandem affinity purification and 
mass spectrophotometry that the pre-S/S envelope domain, a key determinant for receptor/s 

binding, selectively interacts with NTCP to facilitate HBV infection. Knockdown of the NTCP 
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expression in duck primary hepatocytes infected with DHBV significantly decreased HBV 
infection, suggesting that NTCP is actually required for HBV infection [3, 51, 52].

HBV requires DNA polymerase and reverse transcriptase to replicate through RNA interme-

diates known as pregenomic RNA. Following the interaction of surface antigen with NTCP, 

the viral nucleocapsid enters the host cell’s nucleus to deliver dsDNA (Figure 3) [3, 51, 52]. In 

the nucleus, the dsDNA gets repaired and converted to covalently closed circular  super-coiled 

DNA (cccDNA) by DNA polymerase. The cccDNA molecule serves as a template for the tran-

scription of four viral RNA transcripts 3.5, 2.4, 2.1 and 0.4 kb in size, pregenomic RNA and 

RNA intermediate for viral replication before moving to the cytoplasm. The mRNA tran-

scripts are then translated to produce the envelope (pre-S/S), precore/core, viral polymerase 

and X proteins. The 3.5 RNA transcript is reverse-transcribed into viral dsDNA [3, 8, 11, 40, 

48, 53]. Some of the resulting viral DNA and polymerase-containing capsids are enveloped 

via budding into the endoplasmic reticulum (ER). The rest of the viral DNA is recycled or is 

migrated back to the nucleus where it produces new generations of cccDNA which maintains 

persistent HBV infection [1, 3, 11, 36, 40].

Figure  3. The life cycle of HBV infection and underlying mechanisms.
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2. Epigenetics and HBV-induced hepatocarcinogenesis

Epigenetics involves attachment of chemical compounds and proteins on the DNA sequence 
leading to altered gene expression and normal function. There are two major ways through 

which gene transcription can be regulated through epigenetic changes. One way of  regulating 

gene transcription is directly through DNA methylation. This involves the addition of a 

methyl group into DNA sequence. Methyl groups are carbon and hydrogen molecules which 

bind to the genome through the action of methyl cytosine-phosphate-guanine (CpG)-binding 

proteins (MeCPs), DNA methyltransferases (DNMTs), histone acetyltransferases (HATs) 

and histone deacetylases (HDACs), which inactivate gene transcription. Other transcription 

repressors including nuclear factor kappa B (NF-κB), c-myc/c-myn, activator protein (AP)-2, 
E2 promoter binding factor (E2F) and cyclic adenosine monophosphate (cAMP) response 

element binding protein (CREB) may also be activated by methyl groups to inhibit gene tran-

scription [3, 53, 54].

In addition to DNA methylation, epigenetics can also be regulated by histone protein 

modifications. Histone protein modifications may be caused by over-expression or aber-

rant recruitment of HDACs that remodel the chromatin shape and structure. The two basic 

mechanisms responsible for chromatin remodelling are histone acetylation and deacety-

lation [3, 53, 55]. These mechanisms are controlled by the enzyme activity of HATs and 

HDACs, respectively [3, 54].

Acetylation of histone proteins is generally acknowledged as playing a key role in gene 

regulation. For a gene to be transcribed, it must become physically accessible to the tran-

scriptional machinery. Acetylation by HATs substitutes the positive charges on the amino 

terminal tails of histone proteins with an acetyl group derived from acetyl coenzyme A, 

causing uncoiling of the DNA and euchromatin into an open-relaxed form of chromatin. 

Consequently, this makes genes accessible to several binding factors such as RNA poly-

merase II and transcriptional factors, allowing gene expression to occur and proteins to be 

made. Deacetylation of histone proteins by HDACs results in the tight coiling of the DNA 

and closed form of chromatin regions known as heterochromatin. This prevents the interac-

tion between DNA and transcription factors leading to suppression of gene transcription. 

In some cancer cells, there is increased expression or aberrant recruitment of HDACs and 

decreased expression of HATs. This results in the hypoacetylation of histone proteins and 

therefore a condensed or closed chromatin structure [3, 54–56].

Epigenetics plays important roles in oncogenic viruses including HBV, human papillomavi-

rus and Epstein Barr virus. In episomal HBV DNA, 3 CpG islands have been identified and 
described. These are island 1 located on nucleotide positions 55–286, island 2 on 1224–1667 

and island 3 on 2257–2443 [57]. Methylation of CpG islands in the human genome is known 

to regulate gene transcription. These prompted Vivekanandan et al. [58] to hypothesise that 

methylation of CpG islands in HBV DNA may regulate viral gene expression. To test this 

hypothesis, in vitro methylation of the transfected HBV DNA was done, and this resulted in 

decreased expression of HBV mRNA and proteins in the cells. In addition, the effect of viral 
cccDNA methylation in the liver tissue of patients with chronic HBV infection was investigated 
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and found to be associated with reduced HBV replication [58]. These findings support the 
work of Pollicino et al. [3, 58] who showed that HBV replication is regulated by the acetylation 

of HBV cccDNA bound H3 and H4 histone proteins. Although these data suggest that HBV 

DNA methylation is a novel mechanism that influences the regulation of viral gene expression, 
the mechanisms of action are still not known.

Previous human studies have shown that DNA viruses integrate into the host genome and 

that the expression levels of DNMTs increase in response to active viral replication [59]. 

Vivekanandan et al. [58] hypothesised that the up-regulation of DNMTs gives infected cells 

the ability to methylate viral DNA and therefore control viral replication. To investigate 

this, the expression of DNMTs was measured in cell lines exposed to HBV DNA using 

two experimental systems, one of temporary transfection of cells and another that mim-

icked natural chronic infection. High-level expressions of DNMT 1, 2 and 3 were observed 

in response to persistent HBV infection. This correlated with suppressed viral replication 

associated with methylation of HBV DNA and increased methylation of host CpG islands 

[3, 58].

The seminal work of Vivekanandan et al. [58] allows for the development of a model that 

explains the development of liver injury and HCC in chronic HBV infection (Figure 4). In 

this model, infected host cells respond to HBV infection by up-regulating the expression of 

DNMTs. Up-regulation of DNMTs can also result from interaction with HBx transcriptional 

Figure  4. Model of chronic HBV infection and DNA methylation.
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activator protein. Once activated, DNMTs methylate HBV DNA and switch off the expres-

sion of viral mRNA and proteins, thereby reducing viral replication. The methylation of 

integrated HBV DNA may be detrimental to the host genome through the inappropriate 

methylation of the neighbouring host genome, particularly if the promoter CpG islands 

regions of the gene are affected. A consequence of this effect would be the transcriptional 
repression of host immunoregulatory and tumour suppressor genes that prevent the devel-

opment of cancer [3, 58].

Chromosomal fragile sites Target gene Role in tumour development

FRA1A (1p36) TCEA; RAR; CHML Alters gene expression and promote 

cell survival

FRA2C (1q) EMX2-like gene Modulates β-catenin signalling 
pathway and cell survival

FRA4E (4p) Cyclin A Stimulate cell cycle and anti-apoptotic 

effect

FRA3D (3q25.3) IRAK2 Promotes apoptosis and tumour 

progression

FRA5C (5p31.1) PDGFRβ Regulates DNA synthesis and fibrotic 
genes

FRA7 (7p) SERCA 1; NCF1 β-Catenin activation

FRA9 (9q) KLF1; CASPR3 Promote cell growth; regulates DNA 

methylation

FRA10A (10q) PTEN; PI3K Promotes metastasis; promotes cell 

cycle progression

FRA11A (11q13) EMS1, FGF4; BIRC3 Modulates β-catenin signaling 
pathway; alters cell fate

FRA12A (12q24) ErbB3; Mill2 Promotes tumour progression

FRA13A (13q32) CTGF; CCNL; IMP-2 Tumour suppression

FRA18 (18q) DCC; DPC4 Regulates methyl-CpG-binding 

proteins

FRA19A (19q13) Cyclin E Delays DNA synthesis and promotes 

immortalisation

FRA20 (20P12.3) hTERT Alters gene expression and promotes 

cell survival

Abbreviations: BIRC3, baculoviral IAP repeat containing 3; CASPR3, contactin-associated protein-like 3;CCNL, cyclin 

L1;CHML, choroideremia-like gene; CTGF, connective tissue growth factor; DCC, deleted in colorectal cancer; DPC4, 

deleted in pancreatic cancer 4; EMSL, EMSL; EMX2, empty spiracle homeobox 2; ErbB3, V-erb-b2 erythroblasticleukemia 

viral oncogene homolog 3; FGF4, fibroblast growth factor 4; FRA, fragile site; hTERT, human telomerase reverse 
transcriptase; IMP-2, insulin-like growth factor II mRNA binding protein 2; IRAK2, interleukin-1 receptor-associated 

kinase 2; KLF1, Krueppel-like factor 1; Mill2, major histocompatibility complex I like leukocyte 2; NCF1, neutrophil 

cytosolic factor 1; PDGFRβ, platelet-derived growth factor receptor beta; PI3K, phosphatidylinositol 3 kinase; PTEN, 
phosphatise and tension homolog; RAR, retinoic acid receptor; SERCA, sarco/endoplasmic reticulum calcium transport 

ATPase; TCEA, transcription elongation factor A.

Table 2.  Examples of chromosomal fragile sites associated with HBV insertions and their roles in tumour development.
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HBV integrates into the host genome and promotes viral persistence. Infected cells 

increase the expression of DNMTs in response to viral replication. This causes methyla-

tion of HBV cccDNA and reduces viral replication. The same methylation system meth-

ylates the adjacent host tumour suppressor and immunoregulatory genes leading to 

hepatocarcinogenesis.

2.1. Integration of HBV DNA into the human genome

HBV integration was first discovered in 1980 using Southern blot hybridisation. It was asso-

ciated with genomic instability such as loss of heterozygocity (LOH), resulting in the rear-

rangements, deletions, duplications and inversions of the host and viral genomic sequences. 

Viral integration results in the insertion of HBV DNA sequences such as HBx gene in the host 

genome and enables viral persistence [3, 7, 8].

Integration of HBV in the host genome also occurs in woodchucks and other animal models. 

In woodchucks and California ground squirrels (Spermophilusbeecheyi), HBV genome inte-

grates close to ras and myc family oncogenes including c-myc, N-myc1 and N-myc2. Modulation 

of myc and ras family oncogenes through cis-activation enhances cell proliferation and trans-

formation. These events occur via transactivation action of HBx protein and favour the devel-

opment of cancer [3, 60, 61].

The occurrence of integrated HBV DNA at preferential sites in the human chromosomes 

has been identified using Alu-PCR-based technique. The preferential sites are known as 
chromosomal fragile sites (CFS) and are non-random [3, 8]. HBV DNA integrates into the 

human genome soon after the repair and conversion of HBV DNA to cccDNA [3, 57, 58, 62]. 

The HBV genome integrates within the coding sequence or close to an array of key regu-

latory cellular genes that can deregulate proto-oncogenes and tumour suppressor genes. 

Activation or inactivation of such genes promotes genomic chromosomal instability by alter-

ing various cellular signalling pathways, triggering genetic mutations and epigenetic altera-

tion. Mutagenesis and epigenetic alteration result in the abnormal regulation of the targeted 

genes. This promotes malignant transformation by altering the control of cell growth, dif-

ferentiation, proliferation and apoptosis [3, 57, 58, 63]. The integration of HBV at or within 

cyclin A and RARβ genes is associated with increased protein activities and hepatocellular 

growth in HBV-induced HCC, suggesting that HBV integration contributes to hepatocytes 

transformation [60]. Examples of known active CFS targeted by HBV integration are out-

lined in Table 2. The 60s ribosomal protein, hTERT, major histocompatibility complex I like 

leukocyte (Mill), platelet-derived growth factor receptor (PDGFR) and calcium signalling-related 

genes are also common sites or targets of HBV integration. These genes are important in 

cellular signalling pathways that control DNA damage, oxidation stress and cell growth, 

and their alteration is associated with the development and progression of cancer [3, 9, 64].

2.2. HBx protein and its carcinogenic effects

HBx protein is a transcriptional transactivator that HBV uses to integrate into the host cel-

lular DNA and is associated with malignant transformation in hepatocytes. It interacts with 

nuclear transcription factors such as NF-κB, AP1, CREB, TATA-binding protein (TBP), per-
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oxisome proliferator-activated receptor γ (PPARγ) and transcription factor II H (TFIIH) [44]. 

Interaction of HBx protein with these transcription factors disrupts multiple cellular signal-

ling pathways that include janus kinase 1 (JAK1)-signal transducer activator of transcrip-

tion (STAT), mitogen-activated protein kinase (MAPK), phosphatidylinositol 3-kinase (PI3K) 

and p53 signalling pathways. Cellular signalling pathways are important in regulating DNA 

repair, cell growth, differentiation, adhesion, proliferation and apoptosis. Although the pre-

cise mechanisms of action are still being elucidated, HBx protein has also been shown to 

induce methylation of important tumour suppressor genes critical in HBV-induced hepato-

carcinogenesis by modulating DNMTs [3, 44, 45, 47, 63, 65, 66].

The transcriptional transactivation role of HBx protein on the transforming growth factor 

beta 1 (TGF-β1) protein may be important in explaining liver inflammation and fibrosis. 
TGF-β1, encoded by TGF-β1 gene, is a cytokine that is produced in response to liver injury 

by activated hepatocytes, platelets and Kupffer cells. It triggers apoptosis, cell growth and 
differentiation in human hepatocytes, hepatoma cell lines and transgenic mice [3, 67, 68]. 

It promotes the development of fibrosis and cirrhosis in chronic HBV infection and other 
liver-related diseases. HBx protein induces the expression of TGF-β1 through the trans-

activation of TGF-β1 gene, the down-regulation of α
2
-macroglobulin and the induction of 

TGF-β1 mediator Smad4. High levels of TGF-β1 protein are observed in the sera of chronic 
HBV-induced HCC patients and correlate with the mutation and loss of mannose-6-phos-

phate/IGF-II receptor that mediates TGF-β1 signalling [3, 67, 69, 70]. In addition, HBx pro-

tein alters the signalling pathway of TGF-β1 from being tumour suppressive to oncogenic 
in early chronic HBV infection. This occurs via the activation of c-Jun N-terminal kinase 
(JNK) which shifts epithelial tumour suppressive pSmad3C signal to mesenchymal onco-

genic pSmadL signal pathway [3, 70].

Studies show that in HBx transgenic mice and hepatoma cell lines, HBx protein can transac-

tivate the NF-κB, MAPK/ERK, STAT3 and PI3K/Akt cellular signalling pathways by inducing 
the production of ROS. Accumulation of ROS in human cancers is associated with anti-apop-

totic activity, DNA damage and mutations which promote malignant transformation. HBx-

induced ROS and 8-oxoguanine alter the expression of PTEN protein by oxidising cysteine 

residues within the promoter region encoding PTEN gene, which activates Akt pathway and 

contributes to hepatocarcinogenesis [3, 65, 70–72].

2.3. HBx protein and DNA methylation

HBx protein has been labelled an epigenetic deregulating agent. It uses its oncogenic ability 

to induce promoter methylation of some cellular tumour suppressor genes that contrib-

ute to the development of liver cancer [3, 73]. Cancer-associated DNA methylation may 

be global hypomethylation (less methylation) or hypermethylation (increased methylation). 

Abnormal hypermethylation of various cellular genes including host tumour suppressors 

has been described in liver cancer, and it is associated with silencing of genes critical for pre-

venting malignant transformation [3, 56]. Altered gene expression has been reported in HBV 

infection where the DNA methylation machinery is induced as a host defence mechanism 

to suppress viral genes [3, 53, 57, 58]. This correlates with loss of normal activity in genes 

important for wound healing and immune processes. Disruption of these processes will 
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interfere with normal cell proliferation and apoptosis and potentiates the ability to metasta-

size in abnormal cells as seen in chronic liver disease and malignant transformation [3, 58, 

63]. By modulating the transcriptional activation of DNMTs, HBx protein induces the hyper-

methylation of tumour suppressor gene promoters and silences their expression [3, 74–77].

HBx protein induces the hypermethylation of RARβ2 gene by up-regulating DNMT1 and 

3A activities and down-regulating the expression of RARβ2 protein [3, 73, 77]. RARβ2 binds 

to and inactivates the E2F1 transcription factor, which is essential for cell cycle progression 

[3, 64, 73, 77]. Down-regulation of RARβ2 protein expression is associated with activation of 
E2F1 transcription factor, which abolishes the ability of retinoic acid to regulate the expres-

sion of G
1
 checkpoint regulators, leading to up-regulation of p16, p21 and p27 proteins. The 

activation of E2F1 transcription factor is associated with uncontrolled cell proliferation which 

contributes to carcinogenesis [3, 77].

Insulin-like growth factor binding 3 (IGJBP-3) is another potential tumour suppressor gene which 

is both hyper- and hypomethylated in HBV-induced HCC. Hypermethylation of IGJBP-3 

gene is mediated by DNMT 1 and 3A which are upregulated via the transcriptional activities 

of HBx protein, and this is associated with loss of IGJBP-3 gene expression. In contrast, HBx 

protein reduces the transcriptional activities of DNMT 3B, leading to hypomethylation and 

up-regulation of the IGJBP-3 gene [3, 45].

DLEC1 is a functional tumour suppressor gene silenced by promoter methylation in lung, 

gastric, colon and nasopharyngeal cancers. Similar methylation has also been observed in 

HCC where it is associated with induction of G1 cell cycle arrest and loss of gene expression. 

Silencing of DLEC 1 gene expression is mediated by both DNA hypermethylation and histone 

acetylation [3, 21, 78]. HBx protein encoded by HBV genotype A enhances the transcription 

of DLEC 1 gene by increasing the level of histone acetylation through the activation of HATs, 

leading to suppression of tumour progression. Through the activation of DNMT1 expression 

mediated by the pRB-E2F pathway, HBx protein induces DNA hypermethylation of DLEC1 

gene and suppresses its transcriptional activities [3, 78].

Caveolin-1, encoded by caveolin-1 gene, is an integral membrane protein abundantly expressed 

in adipose, fibrous and endothelial tissue. High-level expression of caveolin-1 protein disrupts 
growth factor signalling pathways, which in turn alters cell growth, proliferation and differ-

entiation. HCC cells expressing high levels of caveolin-1 are associated with uncontrolled cell 

growth, motility, in vivo tumour aggressiveness and metastasis. Conversely, HBx-induced 

methylation of Caveolin-1 gene promoter region suppresses its transcriptional activities, and 

this correlates with reduced tumour aggressiveness and metastasis, indicating a role of DNA 

methylation in HBV-related HCC [3, 80, 81].

Hypermethylation of p16ink4agene is a frequent event in several malignancies including HBV-

induced HCC. HBx protein silences the expression of p16ink4agene through the activation of DNA 

methyltransferase 1 and the cyclin D1-CDK 4/6-pRb-E2F1 pathway. Methylation of p16ink4agene is 

associated with increased viral replication, integration and loss of protein expression [3, 80, 81].

HBx-protein-induced DNA hypermethylation has also been connected with loss of expression 

and normal function of LINE-1, pRB, ASPP, E-cadherin, GSTP1 and hTERT tumour  suppressor 
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genes [3, 76, 78, 82, 83]. This methylation is associated with increased up-regulation of DNMTs 

with DNMT1 being the most active one. Aberrant methylation of these genes is associated with 

perturbed cellular signalling pathways such as ubiquitination, DNA repair,  transcription, pro-

liferation and apoptosis, which may lead to the development of HBV-related HCC [3, 21, 45, 78].

Genome-wide studies aided in identifying DNA methylation, histone modifications and 
miRNA expression profiling across the entire samples with CHB and HBV-related HCC 
[3, 84–86]. Preliminary data conducted by Kgatle et al. [84] demonstrate that HBV-induced 

methylation may affect cellular processes such as cell cycle progression, calcium homeo-

stasis, hepatic metabolism, protein ubiquitination, RNA splicing and vitamin D receptor 

regulation, which are key mechanisms that HBx protein alters to favour viral replication 

and cell survival. Disruption in these cellular processes could cause genetic instability, 

hepatocyte transformation and tumour development. However, amongst most conducted 

genome-wide studies, there are some discrepancies and data variations due to lack of 

proper normal control, heterogeneity of disease, variations of samples source, use of differ-

ent technologies for analysis and validation with gene expression analysis, suggesting need 

for further validations [3, 84].

3. Summary

Substantial data show that there is an association between the methylation of CpG islands and 

transcriptional changes in gene promoter regions. Transcriptional alterations within gene pro-

moter regions interfere with the normal function of a wide spectrum of cellular genes includ-

ing tumour suppressor genes which are potential inducers of malignancies. Oncogenic viruses 

integrate themselves into the human genome and alter gene transcription through DNA meth-

ylation. During HBV infection, the expression levels of DNMTs are elevated in response to 

viral replication as viral genes are methylated to suppress viral replication. This may result 

in inappropriate random methylation of neighbouring host cellular genes, including tumour 

suppressor genes. This would cause malignant transformation and ultimately liver cancer. 

In addition, other genes affected by methylation may contribute to the development of liver 
inflammation, fibrosis and cirrhosis. As a multifunctional viral transactivator, the HBx protein 
may be the driving force behind the activation of DNMTs, causing gene promoter hypermeth-

ylation and gene silencing. The epigenetic alteration of genes may affect cellular signalling 
pathways and favour uncontrolled hepatocyte proliferation and HBV-induced inflammation, 
fibrosis and cancer.
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