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Abstract

Climate system consisting of the atmosphere, ocean, cryosphere, land and biota is
considered as a complex adaptive dynamical system along with its essential physical
properties. Since climate system is a nonlinear dissipative dynamical system that pos-
sesses a global attractor and its dynamics on the attractor are chaotic, the prediction of
weather and climate change has a finite time horizon. There are two kinds of predict-
ability of climate system: one is generated by uncertainties in the initial conditions
(predictability of the first kind) and another is produced by uncertainties in parameters
that describe the external forcing (predictability of the second kind). Using the concept
of the ‘perfect’ climate model, two kinds of predictability are considered from the
standpoint of the mathematical theory of climate.

Keywords: climate system, deterministic chaos, predictability, stability

1. Introduction

High-complexity computational models that simulate earth's climate system (ECS) have

earned well-deserved recognition as the indispensable and primary instrument for numerical

weather prediction (NWP) as well as for the study of climate change and variability caused by

both natural processes and human activities [1–4]. In spite of dramatic progress achieved over

the past few decades in weather forecasting and climate simulation thanks to the advances in

computing hardware and algorithms and to a substantial increase in the volume of climato-

logical data, contemporary computational climate models can reconstruct the real world only

with a certain degree of validity [3]. There are several major sources of discrepancy between

climate model simulation results and reality. First of all, climate models remain an ideal

mathematical abstraction of a real physical system, namely the ECS. These models ignore
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some physical, dynamical and chemical processes or, at least, represent them in a simplified

fashion. As a result, various physical simplifications in the formulation of climate models

substantially influence their adequacy [5]. Second, the NWP and climate simulation are math-

ematically an initial-value (Cauchy) and/or a boundary-value (Dirichlet or von Neumann)

problem, which is solved numerically using finite-difference, spectral or another appropriate

method. Consequently, uncertainties emerging in the initial and boundary conditions as well

as in the climate model parameters and external forcing, approximation, truncation and

round-off errors lead to distinctions between the model output and the observed real state of

the ECS. Third, let us suppose that we have the ‘perfect’model of the ECS. It means that exact

governing equations are known exactly and can be solved. However, even in this, hypotheti-

cally ideal, case the ability of climate models to predict the future remains limited. This can be

explained by the fact that the atmosphere, which is the most rapidly changing component of

the ECS, is strongly nonlinear and exhibits irregular (chaotic) spatial-temporal oscillations on

all scales ranging from millimetre seconds (turbulent fluctuations) to thousands of kilometres

and several years (climate variability). This phenomenon known as deterministic chaos was

first discovered by Lorenz [6]. The chaotic nature of the atmosphere significantly limits our

ability to successfully predict the weather and climate since the predicted trajectory of the ECS

is unstable with respect to both the infinitesimal errors in initial conditions and external forcing

[7]. Even with a perfect atmospheric model and accurate initial condition, we cannot predict

the weather beyond approximately two weeks.

For further discussion, we need to clarify that terms ‘weather’ and ‘climate’ have different

meanings. Weather is defined as the daily conditions of the atmosphere in terms of such

atmospheric variables as temperature, humidity, wind direction and velocity, surface pressure,

cloud cover and precipitation. In turn, the climate represents an ensemble of states traversed

by climate system over a sufficiently long temporal interval (about 30 years, according to the

World Meteorological Organization). Here, the ensemble includes not only a set of system

states but also the probability measure defined on this set. Therefore, climate, roughly speak-

ing, can be considered as the ‘average’ weather, in terms of mean and variance, in a certain

geographical location over many years.

Time horizon of a forecast's usefulness and validity can be characterized by the specific measure

known as predictability. Predictability is commonly understood as the degree to which it is

possible to make an accurate qualitative or quantitative forecast of the future system's state. The

study of atmospheric predictability was initiated by Thompson [8] and Lorenz [6, 9] more than

50 years ago and was extensively explored theoretically using various numerical and statistical

models since then (e.g. [10–17]). One of the obvious measures of predictability that can be used to

verify a weather forecast is the mean-squared error (the average of the squared differences

between forecasts and observations). This measure increases over time and asymptotically

approaches some finite value known as the saturation value. Therefore, predictability is lost

when the forecast errors become comparable to the saturation value in magnitude. If this

happens, the forecast result is not better than any randomly selected trajectory of the system.

However, for a number of reasons, mean-squared error and other weather forecast verification

metrics (e.g. mean absolute error and mean error) are rarely used to estimate the climate system

predictability in practice (for details, see Ref. [18]).
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Predictability characterizes both the physical system itself and the model of this system that is

used to make a forecast. However, in atmospheric and climate studies we are interested in the

predictability of real dynamical processes rather than the predictability of the model used in

simulations.

According to Lorenz [19], in weather and climate modelling we are facing the predictability of

two kinds reflecting the internal and external variability of the climate system, respectively.

The predictability of the first kind relates to the Cauchy (initial value) problem, namely the

prediction of sequential states of the ECS for constant values of external parameters and given

variations in the initial conditions. In contrast, the predictability of the second kind refers to a

boundary-value problem, specifically to the prediction of response of the climate system in

asymptotical equilibrium to perturbations in external parameters (forcing).

This chapter considers both the predictability of atmospheric and climate processes with

respect to the initial data errors (predictability of the first kind) as well as the predictability

with respect to external perturbations (predictability of the second kind). The stability of

dynamical system is also discussed since stability is a key problem related to predictability in

dynamical systems.

2. Climate system as a complex adaptive dynamical system

Let us begin with some preliminary notes and definitions which will be used in this chapter.

The term ‘system’ generally refers to a goal-oriented set of interconnected and interdependent

elements that operate together to achieve some objectives [20]. The system is called complex if

it possesses such characteristics as emergent behaviour, nonlinearity and high sensitivity to

initial conditions and/or to perturbations, self-organization, chaotic behaviour, feedback loop,

spontaneous order, robustness and hierarchical structure. Complexity in systems arises from

nonlinear spatio-temporal interactions between their components. These nonlinear interac-

tions lead to the appearance of new dynamical properties (for example, synchronous oscilla-

tions and other structural changes) that cannot be observed by exploring constituent elements

individually.

Complex systems include a special class of systems that have the capacity to adapt to system's

environment. These systems are known as complex adaptive systems. In a complex adaptive

system, parts are linked together in such a way that the entire system as a whole has the

capacity to transform fundamentally the interrelations and interdependences between its

components, the collective behaviour of a system and also the behaviour of individual compo-

nents due to the external forcing. Complex adaptive systems are dynamical systems since they

evolve and change over time. These systems have a number of properties that include the

following [21, 22]: co-evolution, connectivity, sub-optimality, requisite variety and iteration,

edge of chaos and, certainly, emergence and self-organization.

The ECS (S) is understood as a complex, large-scale physical system that consists of the

following five basic and interacting constituent subsystems [23]:
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1. Atmosphere (A), the gaseous and aerosol envelope of the earth that propagates from the

land, water bodies and ice-covered surface outwards to space.

2. Hydrosphere (H), the ocean and other water bodies on the surface of our planet, and

water that is underground and in the atmosphere.

3. Cryosphere (C), the sea ice, freshwater ice, snow cover, glaciers, ice caps and ice sheets

and permafrost.

4. Lithosphere (L), the solid, external part of the earth.

5. Biosphere (B), the part of our planet where life exists, i.e.

S ¼ A ∪H ∪C ∪L ∪B

The ECS components are characterized by a finite set of distributed variables whose values at a

given time determine their state. The most unstable and rapidly oscillating component of the

ECS is the atmosphere.

The ECS is a large-scale and unique physical system that possesses a number of specific

properties (e.g. [24–29]) making the exploration of this system a high complexity problem. In

contradistinction to many problems in physics, the study of the climate system, its change and

variability cannot be implemented by a direct physical experiment due to climate system's

essential features as a large-scale physical system. Laboratory experiments and analytical

approaches have a very limited applicability to climate exploration by virtue of extreme

complexity of the ECS. As a result, in climate studies the computational simulation represents

the primary instrument and as such requires the development of appropriate mathematical

models and numerical algorithms.

The utilization of mathematical models in climate research involves the development of a

specific mathematical theory that allows one to explore the climate system along with its

mathematical models. The contemporary mathematical theory of climate is based on methods

of the qualitative theory of differential equations that enables us to explore the behaviour of

climate system in its phase space [30]. In other words, the dynamical system theory is currently

the theoretical foundation of mathematical climate theory. In this context, the ECS can be

viewed as a complex adaptive dynamical system [21, 22].

The ECS belongs to the class of complex adaptive systems due to the following factors:

1. The ECS is a complex large-scale physical system combining the atmosphere, hydro-

sphere, cryosphere, land and biota together with global biochemical cycles (such as cycles

of CO2, N2O and CH4) and aerosols. Components of the climate system are heterogeneous

thermo-dynamical subsystems characterized by specific variables that determine their

states. Elements of the ECS have strong differences in their structure, dynamics, physics

and chemistry. They cover processes with different temporal and spatial scales, and link

together via numerous physical coupling mechanisms, which can be either weak or

strong. Each subsystem of the ECS can in turn be viewed as being composed of sub-

systems, which are themselves composed of subsystems. For example, the atmosphere

can be divided into several layers based on its vertical temperature distribution. These
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layers are respectively the troposphere, stratosphere, mesosphere and thermosphere. The

atmosphere can also be divided into surface layer, boundary layer and free atmosphere

based on the influence of surface friction.

2. Each component of the ECS is characterized by a specific response time. This fact is very

important to building the ECS’models. The relation of a certain component to some ECS’

model is determined by the ratio between the temporal scale of processes under consider-

ation and its response time. For example, the atmosphere, which has a response time of

about one month in the troposphere, can be considered a sole component of the ECS’

model for processes with temporal scales of days to weeks. In this case, oceans, land

surface and ice cover are considered as the boundary conditions and/or external forcing.

If we study processes which have temporal scales of months to years, the atmosphere and

ocean must be included in the ECS’ model together with sea ice. Thus, computational

models of the ECS are built up from hierarchy of models, forming finally a complex

integrated model.

3. The ECS has a large number of positive and negative feedback mechanisms which control

the behaviour of the ECS. Some examples of these mechanisms are ice-albedo feedback

(positive feedback), water vapour feedback (positive feedback), cloud feedback (both

positive and negative feedbacks), carbon cycle feedback (negative feedback), feedback

due to Arctic methane release (positive feedback) and many others.

4. Physical and dynamical processes in the ECS cover a broad spectrum of temporal and

spatial scales. Time scales are varied from seconds to decades, and spatial spectrum of

dynamical processes covers molecular to planetary scales. Dynamical processes in the

ECS and its components are nonlinear. Subsystems of the ECS interact with one another

nonlinearly producing, under certain conditions, a chaotic behaviour of subsystems and

the overall climate system.

5. The ECS and its components inherently have emergent properties. Examples of atmo-

spheric emergent phenomena include but are not limited to clouds, large-scale eddies

(cyclones and anticyclones) and small-scale vortices such as tornados. Examples of climate

emergent phenomena are the El Niño–Southern Oscillation, which is a quasi-periodical

irregular variation in the ocean surface temperature over the Pacific in tropics that

strongly influences global climate, ocean circulation patterns and glacial-interglacial

cycles. Natural emergent phenomena appear spontaneously under certain favourable

conditions.

6. The ECS is a thermodynamically open and non-isolated system because it exchanges

energy with its surroundings. However, the ECS is a closed system with respect to the

exchange of matter with its surroundings. The energy that drives the ECS is mainly solar

energy. The ECS is affected by changes in external driving forces, which imply natural

causes such as solar activity variations and volcanic activities, as well as man-made

changes in chemical composition of the atmosphere. However, the impact of the ECS on

the outer space is insignificant. Currently, changes in climate are mostly affected by

variations in the atmospheric composition of particles and gases. In the Arctic, the role of
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changes in albedo (reflection coefficient) is also tangible. The most influential gas compo-

nent to affect the climate is CO2, which comprises about 70% points of the global warming

potential.

7. The components of the ECS are also non-isolated systems. They act as cascading systems

and interact with each other in various ways including through the transfer of momen-

tum, sensible and latent heat, gases and particles. All together they compose the climate

system, which is a unique large-scale natural system.

8. Dynamical processes in the ECS fluctuate due to both internal factors (natural oscillations)

and external forcing (forced oscillations). Natural fluctuations are caused by internal

instability (for example, hydrodynamic instability such as barotropic and baroclinic) with

respect to stochastic perturbations. Human impacts, both intentional and unintentional,

belong to the category of external forcing.

Undoubtedly, there are other specific properties of the ECS that should be taken into account

while studying climate as a complex adaptive system and building models of the ECS.

To simulate the ECS, we should assign some mathematical object that is an abstract represen-

tation of the real climate system taking into account its essential features mentioned above.

This object is known as a perfect model of the ECS. It is usually assumed that a perfect model is

deterministic semi-dynamical system that is dissipative, ergodic and possesses a global attrac-

tor. It is also assumed that any trajectory generated by the model is unstable [30].

Formally, an abstract climate system model represents a set of multi-dimensional nonlinear

differential equations in partial derivatives, which generates finite dimensional deterministic

semi-dynamical system of the form [24, 30]

dx=dt ¼ Fðx, p, f Þ, x ∈ R
n, xjt¼0 ¼ x0, t ≥ 0, (1)

where x is the state vector, the components of which characterize the state of a system at a

given time t, x0 is a given initial state of a system, n is the dimension of dynamical system,

p ∈ R
p is the vector of model parameters and f is the external forcing. The solution to climate

model equations (1) cannot be found analytically and one needs to employ available numerical

methods. For that reason, in order to obtain numerical solution, the original set of partial

differential equations is replaced with discrete spatio-temporal approximations using any

appropriate technique (e.g. finite-difference method, Galerkin approach, etc.). Thus, in weather

and climate simulation we mainly deal with discrete dynamical systems.

Suppose that the set of n real variables x1, x2,…, xn defines the current state of discrete-time

dynamical system representing the ECS. A certain particular state x ¼ ðx1, x2,…, xnÞ corre-

sponds to a point in an n-dimensional space Q ⊆ R
n, known as the system phase space. Let

tm ∈ Zþ ðm ¼ 0; 1; 2;…Þ be the discrete time, and let f ¼ ðf 1, f 2,…, f nÞ be a smooth vector-

valued function defined in the domain Q ⊆ R
n. This function describes the evolution of the

system state from one moment to another. Then, a deterministic discrete-time semi-dynamical

system that approximates the continuous time dynamical system (1) can be specified by the

following equation:
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xðtmþ1Þ ¼ f
�

xðtmÞ
�

, xðt0Þ ¼ x0, m ¼ 0; 1; 2;…, : (2)

It is obvious that a family of operators forms a semi-group:

f sþp ¼ f s∘ f p, f 0 ¼ I,∀s, p∈Zþ, (3)

where I is the identity operator. Therefore, the system state xðtmÞ at time tm can be explicitly

expressed via the initial condition x0:

xðtmÞ ¼ fmðx0Þ, (4)

where fm denotes an m-folding application of f to x0. The sequence fxðtmÞg
∞

m¼0 is a trajectory of

system (2) in its phase space, which is uniquely defined by the initial values of state variables

x0.

For reference, let us reproduce a couple of definitions [30].

Definition 1. The solution xðtÞ to system (1) is Lyapunov stable if ∀ε > 0, ∃δðεÞ > 0 such that

‖x0−x
�
0‖ < δðεÞ ) ‖xðtÞ−x�ðtÞ‖ < ε, ∀t ≥ 0, (5)

where x�ðtÞ is the solution to the system

dx�=dt ¼ Fðx�, p, f Þ, x�jt¼0 ¼ x�0:: (6)

Definition 2. The solution xðtÞ to system (1) is stable with respect to the continuous perturbation

δF if ∀ε > 0; ∃δðεÞ > 0 such that

‖δF‖ < δðεÞ ) ‖xðtÞ−x�ðtÞ‖ < ε, ∀t ≥ 0, (7)

where xðtÞ is the solution to the following perturbed equation:

dx�=dt ¼ Fðx�, p, f Þ þ δF, x�jt¼0 ¼ x�0: (8)

These definitions are important when considering both kinds of predictability.

The key point for further consideration is the assumption that climate system model described

by the set of nonlinear partial differential equations (1) is ‘perfect'. We suppose that system (1)

is nonlinear dissipative semi-dynamical system (t ≥ 0) that has an absorbing set in the phase

space and its solution exists and is unique for any t ≥ 0. Next, we assume that the system (1)

possesses a global attractor of finite dimension that is a certain set in the system's phase space

towards which a system tends to evolve for a wide variety of initial conditions of the system.

Global attractor is characterized by the attraction property and invariance [30]. So, the dynam-

ics of system (1) can be formally divided into to two phases: (1) movement towards the

attractor and (2) motion on the attractor. When studying the climate system stability and

predictability we assume that the system trajectory is on the attractor and its dynamics are

chaotic. We also assume that system (1) possesses the property of ergodicity. Thus, statistical
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characteristics of the climate system (e.g. the first x ¼ 〈x〉 and second varðxÞ ¼ 〈x2〉−x2

moments) can be calculated by averaging along a certain trajectory.

Structurally, any climate system model represents a set of interacting and interdependent

models of lower level (i.e. atmospheric model, model of the ocean, etc.). The number of

these lower level models is determined by the objectives of a problem under consider-

ation. For example, to study the large-scale climate variability the model can include the

following major components: tropical, mid-latitude and polar troposphere, stratosphere,

ocean, land ice, ocean and sea ice, surface and boundary layers, hydrological cycle, clouds

(e.g. convective and stratiform), precipitation, aerosols, CO2 and CH4 cycles, solar radia-

tion, terrestrial emission, etc. Other subsystems of the ECS (e.g. vegetation, land surface

and biota) can be considered as the boundary conditions and external forcing. In numer-

ical weather prediction problem, some atmospheric model (either global, regional or local)

is the main component of the forecasting system, while ocean, sea ice, land surface are

used only to impose boundary conditions. Note that models of general circulation of the

atmosphere and the ocean represent main computational instruments for simulating the

ECS.

3. Climate model governing equations

The main energy source of the ECS is the Sun. Spatial inhomogeneity and temporal changes of

the heat energy that the earth's surface receives from the Sun are the main cause of motions in

the atmosphere and ocean. Equations that govern the atmospheric and oceanic circulation

represent the mathematical expressions of fundamental laws of physics: conservation of

momentum, conservation of mass, conservation of water and conservation of energy (the first

law of thermodynamics). Some diagnostic relationships between variables are also used (i.e.

the equation of state). Almost every model uses a slightly different set of equations tailored to a

specific problem. However, all climate models include the following basic equations: two

equations for horizontal motions (or equation for the vorticity and divergence), equation for

the vertical velocity (or hydrostatic equation), continuity equation, as well as thermodynamic

and moisture equations. Equations of motion are derived from the law of conservation of

momentum applicable to a rotating system. These equations describe all types and scales of

atmospheric motions that are important for the formation of weather and climate (i.e. large-

scale Rossby waves, planetary waves and gravity waves). Conservation of mass is mathemat-

ically expressed in the form of continuity equation, equation for conservation of moisture and

equations for conservation of other substances taken into account in a particular climate

model.

The set of equations that describes the general circulation of the atmosphere can be

written in the spherical co-ordinate system (λ,ϕ) defined by longitude λ and latitude ϕ,

with normalized pressure as a vertical coordinate σ ¼ p=ps, where p is pressure and ps is

the surface pressure [1, 31]. The set of the model equations includes two momentum

equations:
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∂u

∂t
¼ ηv −

1

acosϕ

∂

∂λ
ðΦþ KÞ −

RTv

acosϕ

∂ln ps
∂λ

− _σ
∂u

∂σ
¼ FuV þ FuH , (9)

∂v

∂t
¼ −ηu −

1

a

∂

∂ϕ
ðΦþ KÞ −

RTv

a

∂ln ps
∂ϕ

− _σ
∂v

∂σ
¼ FvV þ FvH , (10)

where u and v are zonal and meridional velocities, a is the earth's average radius, σ ¼ dσ=dt is

the vertical velocity in the σ co-ordinate system, Φ is geopotential, T is temperature, R is the

gas constant for dry air, K ¼ ðu2 þ v2Þ=2 is the kinetic energy, η ¼ ςþ f is the absolute vorticity,

f is the Coriolis parameter and ς is the relative vorticity that is given by

ς ¼
1

acosϕ

∂v

∂λ
−

∂

∂ϕ
ðucos ϕÞ

� �

: (11)

The virtual temperature Tv is represented as

Tv ¼ T 1þ
Rv

R
−1

� �

q

� �

, (12)

where T is the temperature, q is the specific humidity and Rv is the gas constant for water

vapour. The terms FuV and FvV describe the vertical friction and terms FuH and FvH the

horizontal diffusion. Generally, however, the momentum equations are transformed into the

equations for the absolute vorticity η and the divergence D using new independent variable

μ ¼ sinϕ:

∂η

∂t
¼

1

að1−μ2Þ

∂

∂λ
ðNv þ cosϕFvVÞ−

1

a

∂

∂μ
ðNu þ cosϕFuVÞ þ FηH , (13)

∂D

∂t
¼

1

að1−μ2Þ

∂

∂λ
ðNu þ cosϕFuVÞ þ

1

a

∂

∇μ
ðNv þ cosϕFvVÞ þ FDH

−∇
2ðΦþ K þ RT0ln psÞ,

(14)

where the horizontal divergence is given by

D ¼
1

acosϕ

∂u

∂λ
þ

∂

∂ϕ
ðvcosϕÞ

� �

: (15)

The spherical horizontal Laplacian can be written as

∇
2 ¼

1

a2ð1−μ2Þ

∂2

∂λ2
þ

1

a2
∂

∂μ
ð1−μ2Þ

∂

∂μ

� �

: (16)

To provide the computational effectiveness of numerical integration scheme, the virtual tem-

perature is partitioned into two parts, one of which T0 is a function of the vertical coordinate

only, i.e. Tvðλ,μ, σ, tÞ ¼ T0ðσÞ þ T0
vðλ,μ, σ, tÞ. Then, the nonlinear dynamical terms Nu and Nv

can be represented in the following form:
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Nu ¼ ηV−RT
0

v

1

a

∂ln ps
∂λ

− _σ
∂U

∂σ
, (17)

Nv ¼ −ηU − RT
0

v

ð1−μ2Þ

a

∂ln ps
∂μ

− _σ
∂V

∂σ
, (18)

where U ¼ ucosϕ and V ¼ vcosϕ.

The thermodynamic equation, which represents the mathematical expression of the first law of

thermodynamic, is written for a perturbation in temperature T0 calculated with respect to the

mean T0ðσÞ mentioned above:

∂T
0

∂t
¼ −

1

að1−μ2Þ

∂

∂λ
ðUT

0

Þ −
1

a

∂

∂μ
ðVT

0

Þ þ T
0

D − _σ
∂T

0

∂σ
þ
RTv

c�p

ω

p

þQþ FTV þ FTH−
1

c�p
½uðFuV þ FuHÞ þ vðFvV þ FvHÞ�,

(19)

where Q is the diabatic heating rate, ω is the pressure vertical velocity and c�p is given by

c�p ¼ cp 1þ
cv
cp
−1

� �� �

: (20)

Here, cp is the specific heat of dry air at a constant pressure and cv is the specific heat of water

vapour at a constant pressure.

The equation for specific humidity is used to describe the hydrologic cycle in the atmosphere:

∂q

∂t
¼ −

1

að1−μ2Þ

∂

∂λ
ðUqÞ −

1

a

∂

∂μ
ðVqÞ þ qD − _σ

∂q

∂σ
þ Sþ FqV þ FqH , (21)

where the term S describes the source/sink processes for water vapour, and FqV and FqH are the

vertical and horizontal water vapour diffusion.

Let us consider now the continuity equation that represents the conservation of mass law:

∂lnps
∂t

¼ −
U

að1−μ2Þ

∂ln ps
∂λ

−
V

a

∂ln ps
∂μ

− D −
∂ _σ

∂σ
: (22)

Integrating this equation from the top (σ ¼ 0) to the bottom (σ ¼ 1), with the vertical boundary

conditions _σ ¼ 0 at σ ¼ 1 and σ ¼ 0, one can obtain the equation for surface pressure prediction:

∂lnps
∂t

¼

ð

1

0

Dþ
U

að1−μ2Þ

∂ln ps
∂λ

þ
V

a

∂ln ps
∂μ

� �

dσ: (23)

Combining the continuity equation and the equation for the surface pressure, one can derive

the diagnostic equation for the vertical velocity _σ:
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_σ ¼ σ

ð

1

0

Dþ
U

að1−μ2Þ

∂ln ps
∂λ

þ
V

a

∂ln ps
∂μ

� �

dσ −

ð

σ

0

Dþ
U

að1−μ2Þ

∂ln ps
∂λ

þ
V

a

∂ln ps
∂μ

� �

dσ: (24)

Two diagnostic equations, the hydrostatic equation and the equation of state, are also compo-

nents of a set of equations that are used to simulate the atmospheric general circulation. The

hydrostatic equation is

∂Φ=∂ln σ ¼ −RTv: (25)

In the integral form, this equation can be written as

Φ ¼ Φs−

ð

σ

1

RTvdln σ, (26)

where Φs is the geopotential at the earth's surface. The equation of state is written as

p ¼ ρRTv, (27)

where ρ is the air density.

Boundary conditions in the longitudinal direction are periodic, and the solution to the atmo-

spheric model equations is bounded at the north and south poles. Vertical boundary condi-

tions represent the vanishing of vertical velocity both at the bottom and at the top of the

atmosphere: _σ ¼ 0 at σ ¼ 1 and σ ¼ 0.

Equations used in the ocean model are written in the Boussinesq hydrostatic approximation

with a rigid lid in the spherical coordinate system, with depth z as a vertical coordinate defined

as negative downwards from z ¼ 0, which denotes the ocean surface [1, 31]. The set of model

equations include the following:

1. The horizontal equations of motion:

∂u

∂t
þ LðuÞ− f þ

u

a
tanϕ

� �

vþ
1

aρocosϕ

∂p

∂λ
¼ kV

∂2u

∂z2
þ Fu, (28)

∂v

∂t
þ LðvÞ þ f þ

u

a
tanϕ

� �

uþ
1

aρo

∂p

∂ϕ
¼ kV

∂2v

∂z2
þ Fv, (29)

where kV is the vertical eddy viscosity coefficient, ρ0 is the density of sea water and the

advection operator, LðαÞ, is given by

LðαÞ ¼
1

acosϕ

∂uα

∂λ
þ
∂vα cos ϕ

∂ϕ

� �

þ
∂w α

∂z
: (30)

The horizontal viscosity terms, Fu and Fv, are defined as
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Fu ¼ kH ∇
2uþ

ð1−tan2ϕÞu

a2
−

2sinϕ

a2cos2 ϕ

∂v

∂λ

� �

, (31)

Fv ¼ kH ∇
2vþ

ð1−tan2ϕÞv

a2
þ

2sinϕ

a2cos2 ϕ

∂u

∂λ

� �

, (32)

where kH is the horizontal eddy viscosity coefficient. The given form of the diffusion

terms, Fu and Fv, is required for conserving angular momentum property.

2. The hydrostatic equation:

∂p=∂z ¼ −gρ: (33)

3. The thermodynamic equation:

∂T

∂t
þ LðTÞ ¼ κV

∂2T

∂z2
þ κH∇

2T, (34)

where κV and κH are, respectively, the vertical and horizontal eddy diffusivity coefficients.

4. The equation for the mass continuity of salinity:

∂S

∂t
þ LðSÞ ¼ κV

∂2S

∂z2
þ κH∇

2S: (35)

5. The equation of continuity:

∂w

∂z
¼ −

1

acosϕ

∂u

∂λ
−

1

acosϕ

∂v cosϕ

∂ϕ
: (36)

6. The equation of state:

ρ ¼ ρðT, S:pÞ: (37)

Due to their extreme complexity, weather and climate models can be implemented on com-

puters only using numerical techniques. Since models are based on partial differential equa-

tions, it is necessary, first, to ensure that the problem under consideration is well posed, i.e. it

has a unique solution that depends on the boundary and initial conditions. Thus, both the

initial and boundary conditions must be properly specified. Next, weather and climate math-

ematical models should be transformed into numerical models that can be implemented on

computers. The most widely used technique for solving differential equations of weather and

climate models is the finite-difference method according to which the derivatives in the partial

differential equations are approximated on a certain temporal-spatial grid. Thus, instead of

continuous functions, which describe the state of climate system and its components, we deal

with discrete functions defined only for specific times separated by the time step Δt and
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specific space locations separated by spatial (horizontal Δs and vertical Δh) steps. As a result,

instead of partial differential equation we obtain finite-difference equations (numerical model).

It is very important that numerical schemes used for the discretization of model differential

equations must satisfy several fundamental requirements: finite-difference equations must be

consistent with model differential equations, the solution of finite-difference equations must

converge to the solution of differential equations and numerical schemes must be computa-

tionally stable. In practice, finite difference is not the only method used to solve weather and

climate problems. The most popular among other methods are the family of Galerkin tech-

niques, spectral, finite-volume and finite element approaches.

In contemporary climate models, due to their discrete spatial and temporal structure, a

large number of physical processes and cycles cannot be clearly represented and formu-

lated by model equations. Climate models are theoretically incapable of simulating pro-

cesses on spatial scales of the order of magnitude that is twice the model grid length [32].

Such thermo-dynamical, physical and chemical processes and cycles are parameterized, i.

e. expressed parametrically using simplified description. Study of the climate system by

computer simulation requires extensive computational resources. As a result, the predict-

ability problem is usually studied either on the basis of low-order models, which possess

the main properties of the climate system (nonlinearity, chaos, dissipative, etc.), or on

the basis of complex climate models using the ensemble approach or the Monte Carlo

method.

4. Predictability of climate system

4.1. Predictability of the first kind

The first kind predictability of climate processes (predictability of climate processes with

respect to the initial conditions) will be considered under the assumption that the climate

system (1) evolves on its attractor. Since system (1) is a nonlinear dissipative dynamical system,

its attractor, known as a strange attractor, has an extremely complex fractal structure and can

be characterized by such parameters as dimension, characteristic Lyapunov exponents, invari-

ant measure and asymptotically steady solution and others. If some trajectory of system (1) is

enclosed in a bounded phase volume (attractor), then the system's dynamics demonstrate

deterministic chaos: the behaviour of simulated system resembles a stochastic process despite

the fact that the system is described by deterministic laws and its evolution is governed by

deterministic differential equations. So, all orbits of a system that start close enough will

diverge from one another, however, will never depart from the attractor. The rate of separation

of infinitesimally close orbits is characterized by positive Lyapunov exponents. The number of

directions along which the orbit is unstable is equal to the number of positive Lyapunov

exponents nλ (note that nλ < n, where n is a system's dimension). Thus, trajectories of climate

dynamical systems are Lyapunov unstable.

To consider the initial growth rates of errors in the initial conditions let us linearize Eq. (1)

around some trajectory to obtain the equation in variations:
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dx
0

=dt ¼ Mtx
0
0, (38)

where Mt ¼ ∂F=∂x is the tangent propagator along the trajectory between the initial state x00
and the forecast state x0 at a certain time t (actuallyMt is a Jacobian matrix). Obviously, one can

obtain

‖x
0

ðtÞ‖2 ¼ ðMtx
0
0,Mtx

0
0Þ ¼ ðM�

tMtx
0
0, x

0
0Þ, (39)

where (·,·) is the inner product in Rn and M� is the transpose of M. Since the operator M�
tMt is

self-adjoint, then for any t one can consider the following eigenvalue problem:

M�
tMtψi ¼ σiψi, (40)

where σi is the ith eigenvalue of the matrix M�
tMt and ψi is the corresponding eigenvector.

Representing x00 in the form of series as x00 ¼ ∑
i

αiψi, one can get ‖x
0
ðtÞ‖2 ¼ ∑

i

σiαi
2. So, the

forecast error on temporal interval ½0; t� depends on errors in the initial distribution of eigenvec-

tors ψi and singular values of the tangent linear propagator Mt. Since system (1) is ergodic,

we can also calculate the Lyapunov exponents λi in accordance with the multiplicative theorem

[33]:

λi ¼ lim
t!∞

1

t
ln σiðM

�
tMtÞ, i ¼ 1;…, n: (41)

The Lyapunov exponents define the exponential growth (decay) of linear independent compo-

nents of x’ at x
0
! 0. The knowledge of the Lyapunov exponent spectrum of a dynamical

system allows one to estimate the attractor fractal dimension, the rate of Kolmogorov-Sinai

entropy production and the characteristic e-folding time. Knowledge of these parameters is

very important for the stability and predictability analysis of dynamical systems. The fractal

dimension of attractors of dissipative dynamical systems can be determined by applying the

Kaplan-Yorke conjecture [34]:

DKY ¼ J þ ∑
J

i¼1
λi=jλiþ1j, (42)

where J is the maximum integer such that the sum of the J largest exponents is still non-

negative, i.e. ∑J
i¼1λi > 0. The sum of all positive Lyapunov exponents, according to theorem

[35], gives an estimate of the Kolmogorov-Sinai entropy, i.e. the value showing mean diver-

gence of the trajectories on attractors. The arrangement of the Lyapunov exponents in (42) is as

follows: λ1 ≥ λ2 ≥ … ≥ λnd . The multiplicative inverse (reciprocal) of the largest Lyapunov

exponent is referred to as the characteristic e-folding time.

Let δ0 be the initial perturbation of x0 used to integrate equation (8). Since the system is

Lyapunov unstable, after some sufficiently large temporal interval of integration the distance
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between two hyper-points in the phase space reaches the value of δt. Let δt be the accepted

error tolerance, then the predictability time of a system can be roughly estimated as

Tp≈λ
−1
maxlnðδt=δ0Þ, (43)

where λmax is the leading Lyapunov exponent. The error doubling time can be calculated as

t ¼ ln2=λmax. However, Lyapunov exponents are very useful instrument to estimate the pre-

dictability of low-order dynamical systems [36].

Climate data observations are subject to measurement errors. The simplest way to represent

the resulting uncertainty is to define the probability density function (PDF) ρðx, t0Þ or, gener-

ally, the set of a finite measure μ0 on which the initial state x0 is concentrated. The time

evolution of a system leads to a divergence and mixing of points of this set. Since the initial

state x0 is concentrated on a set having the measure μ0, then after some period of time the

measure will become μt. Let μ be the invariant ergodic measure. Suppose the convergence

theorem μ ! μ does exist. Hence, at a certain time t ! tε the measure μt falls into the ε-

neighbourhood of μ. Consequently, the initial data information characterized by μ0 will be

completely lost. So, one can say that the time tε defines the potential predictability of a system

under consideration [16]. Thus, a focal point of the predictability problem is to prove the

existence of ergodic measure and the existence of convergence theorem. This problem, how-

ever, is extremely difficult to solve because the structure of the invariant measure generated on

the system attractor is sophisticated and non-smooth. To avoid this problem, the stochastic

regularization can be applied [37]. So, in lieu of system (1), the following stochastic dynamical

system will be considered [16]:

dx=dt ¼ FðxÞ þ ηðtÞ, (44)

where η is a Gaussian stochastic process: 〈ηiðtÞηjðt
0
Þ〉 ¼ 2dijδðt−t

0
Þ, dij ≥ 0. This procedure is

correct since our knowledge about the model parameters is always limited, thus real climate

models have random errors, which are represented by the term η. Under the assumption that

dij ¼ d, one can write the Fokker-Plank equation with respect to PDF ρðx, tÞ, which describes

the evolution of ρ [30]:

∂ρ=∂tþ div
�

FðxÞρ
�

¼ dΔρ,ρ ≥ 0;

ð

ρdx ¼ 1: (45)

Let ρ be a stationary solution to Eq. (45), i.e. div
�

FðxÞρ
�

¼ dΔρ. If x belongs to the compact

manifold without boundary, then ρ is asymptotically stable [37]. The existence of a station-

ary solution (i.e. attractor) at infinity has been proved for finite-dimensional dynamical

systems [38].

Suppose that the initial condition x0 is specified then the condition ρjt¼0 ¼ δðx−x0Þ is also

specified and enable us to solve Eq. (45). The numerical integration of Eq. (45) transforms the

PDF ρðx, tÞ, which asymptotically evolves to the stationary solution ρ: ρ ! ρ at t ! tε. Thus, at
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sufficiently large time tε predictability is finally lost. There is a question: how can we estimate

the time tε? Let us consider the following one-variable stochastic dynamical equation [16].

dx=dt ¼ −γxþ η, (46)

xj
t¼0 ¼ x0, 〈ηðtÞηðt

0Þ〉 ¼ 2η2δðt−t0Þ, 〈η〉 ¼ 0, (47)

where x0 is the known initial condition and η is the Gaussian δ-correlated process. If we

average Eq. (46) we obtain

d〈x〉=dt ¼ −γ〈x〉, 〈x〉j
t¼0 ¼ x0, (48)

thus 〈x〉 ¼ x0e
−γt. For the newly introduced variable θðtÞ ¼ 〈x2〉, we can obtain the following

equation:

dθ=dt ¼ −2γθþ 2〈η � x〉: (49)

Since xðtÞ ¼ x0e
−γt þ

ð

t

0

e
γðt−τÞ ηðτÞdτ, then

dθ=dt ¼ −2γθþ 4η2: (50)

The solution to this equation is

θðtÞ ¼ 2η2

γ
ð1−e−2γtÞ: (51)

Equation for the PDF ρ has the following form:

∂ρ=∂t ¼ ∂ðρxγÞ=∂xþ η2∂2ρ=∂x2: (52)

The stationary solution to Eq. (52) can be found if we suppose that the left-hand side is equal to

zero. Then, we have ρ ¼
�

1=
ffiffiffiffiffiffi

πθ
p �

e−x
2=θ, where θ ¼ 2η2=γ. We assume that the solution to

Eq. (48) is of the form

ρðtÞ ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffi

πθðtÞ
p e

−

�

x−〈xðtÞ〉
�2

=θðtÞ
: (53)

By substituting (53) into (52) one can be convinced that if θðtÞ and 〈xðtÞ〉 satisfy Eq. (48) and

Eq. (50), respectively, then Eq. (53) is the solution to the Fokker-Planck equation (52). As a

result, any initial data that is normally distributed will be attracted to the steady solution of

Eq. (52), which is also normally distributed. The dissipation parameter γ determines the rate at

which PDF ρ approaches ρ. The auto-correlation function for the stationary stochastic process

(46) can be written as
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CðτÞ ¼ 2η2

γ
e−γτ ≡ θe−γt: (54)

Thus, the potential predictability of system (46) can be characterized by the auto-correla-

tion function of the process xðtÞ and, therefore, the convergence of ρðtÞ to ρ can be

explored based only on function CðτÞ with time lag τ. This conclusion is valid for the set

of multi-dimensional differential equations [16]. In this case, however, the covariance

matrix is used instead of the auto-correlation function. It is very important that for climate

models the convergence of the covariance matrix CðtÞ to the covariance matrix of station-

ary process C is defined only by climatological values of climate model variables. As a

result, potential predictability is also determined by climatological data.

Generally, the potential predictability can be defined as the convergence time of initial

distribution to the equilibrium one. To quantify the rate of convergence of one-dimen-

sional distributions to the equilibrium ones, the concept of entropy can be used. If the

information entropy S ¼
ð

ρln ρdα is taken as a measure of predictability, then for the

Gaussian distribution ρ ¼ ð1=
ffiffiffiffiffiffiffiffiffiffiffi

2πσ2
p

Þe−ðα−αÞ2=ð2σ2Þ information entropy can be expressed as

S ¼ lnσ2 þ C. It can be shown that the variance and, therefore, the entropy are directly

dependent on the Lyapunov exponents [39]. To study the predictability of climate system,

the relative entropy Sr ¼
ð

ρlnðρ=ρÞdα, where ρ is an equilibrium PDF, is a more suitable

measure [40]. Relative entropy is invariant with respect to nonlinear transformations of α

and ρ ! ρ at t ! ∞.

4.2. Predictability of the second kind

Predictability of the second kind relates to the predictability of changes in climate system

caused by infinitesimal perturbations in the parameters that describe the external forcing.

Climate prediction does not involve forecasting weather conditions at either a certain

geographical region or globally. On the contrary, climate prediction aims to forecast

statistics of the climate system averaged over sufficiently long period of time. So, we are

interested in how external perturbations affect certain aspects of climate statistic, such as

the first x (mean) and/or second σ2x (variance) moments. One of the most important

problems in the exploration of predictability of the second kind is to distinguish the

response signal of the climate system to perturbed external forcing from the noise in the

model output results. The signal-to-noise ratio can be used to make the conclusion with

respect to the usefulness of the obtained climate system response. Thus, the predictability

of the second kind is mathematically reduced to finding the response function of the

climate system model [39].

Consider the following finite-dimensional dynamical system that is controlled by some exter-

nal forcing f (e.g. the concentration of carbon dioxide in the atmosphere):
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dx=dt ¼ FðxÞ þ f , xjt¼0 ¼ x0, (55)

Suppose that system (55) possesses the attractor A and let μ be its invariant measure. The

behaviour of this system will be explored on the attractor A. Since system (55) a priori possesses

the property of ergodicity, its statistical characteristics are calculated by averaging along a

single, sufficiently long, random trajectory. Thus, the average state 〈x〉 and variance 〈σ2x〉 of

system (55) are defined, respectively, as

〈x〉 ¼ lim
T!∞

1

T

ðT

0

xðtÞdt ¼

ð

A

xdμ, 〈σ2x〉 ¼

ð

A

ðx−〈x〉Þ2dμ: (56)

Let system (55) be perturbed by an infinitesimal disturbance in the external forcing δf such that

δf ≪ f :

dx�=dt ¼ Fðx�Þ þ f þ δf : (57)

For this system 〈x�〉 ¼

ð

A

x�dμ� and 〈σ2x〉 ¼

ð

A

ðx�−〈x�〉Þ2dμ�. Let us introduce the new variable

x
0
ðtÞ ¼ xðtÞ−x�ðtÞ. Assuming that ‖x

0
‖ is rather small then, combining (55) and (56), one can

obtain the following linear equation for variable x
0
:

dx
0

=dt ¼ JðxÞx
0

þ δf : (58)

where JðxÞ ¼ ∂F=∂x is the Jacobian. Let δf be a staircase function that is activated at t ¼ 0 then

the solution to Eq. (58) can be written in terms of the Green's function:

x
0

ðtÞ ¼

ðt

0

Gðt, t
0

Þδf ðt
0

Þdt
0

: (59)

The operator R ¼

ðt

0

Gðt, t0Þdt0 is a sought-for response function (operator). If at t ¼ 0 the distri-

bution of initial states is identical for both unperturbed (55) and perturbed (57) systems, then

one can calculate the average response operator:

〈R〉 ¼

ðt

0

〈Gðt, t
0

Þ〉dt0 ¼

ðt

0

Gðt−t0Þdðt−t0Þ: (60)

By averaging both sides of Eq. (59), one can get the following linear equation to calculate the

system's response to the external forcing:
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〈x
0

〉 ¼ 〈R〉δf : (61)

Suppose that system (55) is regular, i.e. for this system the quadratic conservation law is valid

and system itself satisfies the Liouville equation for incompressibility in the phase space.

Assume also that the system is in equilibrium. Taking into consideration the fluctuation

dissipation theorem [41], the average impulse response operator of the regular system in

equilibrium is expressed via system's statistics:

〈Gðt, t
0

Þ〉 ¼ Gðt−t0Þ ¼ Cðt − t
0

ÞC−1ð0Þ, (62)

where Cðt−t0Þ ¼ 〈xðtÞxΤðt
0
Þ〉 is the system's auto-correlation matrix with time lag τ ¼ t−t0. Now

we can combine (60) and (62) to get the following well-known formula [42]:

〈x
0

〉 ¼

ð∞

0

CðtÞC−1ð0Þdt � δf : (63)

Thus, the mean response of climate system to external forcing is determined by observations of

unperturbed climate oscillation.

5. Concluding remarks

The prediction of climate change caused by natural processes and human-induced drivers is

one of the most critical scientific issues facing the mankind in the 21st century. Computer-

simulated climate models represent a very powerful and, perhaps, the only research instru-

ment for studying climate and its dynamics. One of the key components of climate models,

namely the model of the atmospheric general circulation, currently also serves as a primary

tool for the numerical weather prediction all around the globe. However, the climate (atmo-

spheric) system's trajectory calculated via numerical integration of multi-dimensional partial

differential equations that describe the climate (atmospheric) system evolution is unstable with

respect to both perturbations (errors) in the initial conditions and infinitesimal external forcing

expressed by some model parameters and/or boundary conditions. This instability limits the

time horizon of the validity of the climate (weather) forecast and leads to predictability

problem.

In this chapter, the climate system is considered as a complex adaptive dynamical system

that possesses a number of specific properties such as, for example, dissipativity,

nonlinearity and chaoticity. From this perspective, the climate predictability problem is best

discussed and analysed by formally examine two kinds of predictability. The first kind of

predictability refers to the initial value problem (estimating the impact of perturbations in

the initial conditions on the forecast skill), while the second kind of predictability relates to

the boundary value problem (estimating the impact of external forcing on the system's

behaviour).
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