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Abstract

Chronic Pseudomonas aeruginosa lung infection is the cause of much morbidity and most 
of the mortality in cystic fibrosis (CF) patients. The high prevalence of P. aeruginosa infec‐
tions in CF is related to the microbe's large genome and mechanisms of adaptation to 
the CF lung environment, the host immune system and antibiotic resistance. Among a 
wide range of P. aeruginosa metabolites involved in infection development in CF, the 
biosurfactant compounds, rhamnolipids (RLs) and exopolysaccharides (EPSs), have 
important roles in the early stages of P. aeruginosa infection in CF. RLs and EPSs are 
involved in bacterial adhesion, biofilm formation, antibiotic resistance, and impairment 
of host immune system pathways, as well as in processes such as biofilm maintenance 
and the mucoid phenotype of P. aeruginosa, which lead to development of chronic infec‐
tion. Due to the proposed roles of RLs and EPSs and the importance of prevention and 
treatment of P. aeruginosa respiratory infections in CF, these compounds are promising 
targets for patient therapy. In the future, impairment of P. aeruginosa quorum sensing 
(QS) pathways and modification of host respiratory mucus epithelial membranes should 
be considered as potential approaches in preventing respiratory infections caused by this 
microbe in CF patients.

Keywords: cystic fibrosis, Pseudomonas aeruginosa, biosurfactant, rhamnolipid, 
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1. Introduction

Cystic fibrosis is a congenital, recessively inherited disorder. The genetic background of CF 
development is >1500 mutations in the cystic fibrosis transmembrane conductance regula‐

tor gene (CFTR) on chromosome 7, which lead to malfunction of the chloride channel in CF 
patients. CF affects a large number of organs and tissues (airways, pancreas, the small intes‐

tine, liver, the reproductive tract and sweat glands), resulting in numerous clinical symptoms 
(viscid mucus, respiratory infections, intestinal malabsorption of fat, diabetes mellitus, meco‐

nium ileus, impaired liver function, male infertility and salt loss) [1].

The malfunction of the chloride channel in CF patients leads to impairment of the non‐

inflammatory defense mechanism of the lower respiratory tract. Therefore, CF patients, 
from early childhood, suffer recurrent and chronic respiratory tract infections caused 
by P. aeruginosa, Burkholderia cepaci, Achromobacter xylosoxidans, Staphylococcus aureus, 
Haemophilus influenzae, Stenotrophomonas maltophilia, nontuberculous Mycobacteria and 

Aspergillus fumigatus. In spite of the host inflammatory response and intensive antibiotic 
therapy, infections persist and lead to respiratory failure requiring lung transplantation 
or death [1].

Chronic P. aeruginosa lung infection is the cause of much of the morbidity and most of the 

mortality in CF patients. Chronic infection is considered as growth of P. aeruginosa from 

multiple respiratory cultures over a 6‐month period [2]. About 80% of adults with CF have 
chronic P. aeruginosa infection [3]. P. aeruginosa is able to survive and persist for several 
decades in the respiratory tract of CF patients, in spite of the defense mechanisms of the host 
and intensive antibiotic therapy. However, the microbe has adaptive mechanisms, which 
explain why it can survive in the hostile CF lung for so long. These include phenotype split‐
ting due to mutations (into nonmucoid or mucoid), their different distributions in respira‐

tory and conductive zones in the lungs and switching to a biofilm mode of growth—mucoid 
phenotype [4–7].

Recent research indicates that chronic P. aeruginosa infections are caused by the ability of 

bacteria to organize themselves into microcolonies regarding to formation of biofilms. In 
this state, the bacteria are incorporated in a self‐produced protective matrix, often with sur‐

rounding inflammatory cells, which is very well protected against antibiotics and the host 
defense [4]. The biosurfactant compounds (RLs and EPSs), due to their structures and physi‐
cochemical properties, as well as their interactions and correlation with other metabolites, 
significantly contribute to colonization, motility and biofilm formation [8–10]. Additionally, 
the mucoid colony morphology of P. aeruginosa is highly correlated with overproduction of 
alginate (a type of EPS) [8]. Therefore, it is important to consider these biosurfactants and 
their biosynthetic pathways as possible targets and approaches for CF therapy in order to 
impair P. aeruginosa mechanisms of pathogenicity. Furthermore, cell‐to‐cell communication 
and QS signaling pathways together with their genetic aspects, closely related to RL and EPS 
biosynthesis, are the most significant targets for new therapy approaches in CF treatment 
[10–13].
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2. P. aeruginosa infection in CF

2.1. P. aeruginosa

Pseudomonas is ubiquitously present worldwide, being an extremely diverse bacterial genus. 
Pseudomonads are frequently closely associated with animals and plants; they are common 
and numerous in a wide range of environmental habitats. Their ability to adapt genetically, 
producing varying physiological advantages as a response to their pervasiveness, is the sub‐

ject of much scientific speculation and study. P. aeruginosa, as all species that belong to the 
genus Pseudomonas, due to its metabolic diversity, has potential for adaptation, survival and 
growth in a wide range of environmental conditions [14, 15].

P. aeruginosa produces an arsenal of secondary metabolites, including EPSs, RLs, enzymes 
(elastase, alkalne protease, exoenzyme S, phospholipase C and hemolysins), pigments and 
toxins (exotoxin A), using these virulence factors for infecting and colonizing a wide range 
of hosts (animals, plats, insect and nematodes) and surfaces [12–24]. The major biosurfactant 
compounds produced by P. aeruginosa, RLs and EPSs, are involved in bacterial adherence, 
biofilm formation and maintenance, which all are necessary for respiratory infection estab‐

lishment, development and progression in CF patients [4, 8, 12, 13, 16].

2.2. Pathogenesis of P. aeruginosa infection in CF

Despite constant exposure to a wide range of microorganisms, CF patients are predisposed 
to infection by only specific groups of microorganisms [8]. The proximal event in develop‐

ment of CF is mutation of the CFTR gene (see Introduction), but still, it remains unclear how 
this primary step causes particular infections in CF patients. However, numerous proposed 
mechanisms are related to CFTR gene mutation, defective CFTR channels and infection devel‐
opment [8]: (1) reduced ion transport; (2) modified salt content in the airway surface liquid; 
(3) increased levels of acylated glycolipids on the surface of CF airway epithelial cells; (4) 
defective CFTR exposed on airway epithelial cell membranes become receptors; (5) low levels 
of antimicrobial compounds (inducible nitric oxide synthase and nitric oxide); and (6) intrin‐

sic hyperinflammation of airways (Table 1) [25–36].

The first step in infection of CF airways by P. aeruginosa is microbe acquisition [8]. Due to the 
abundance of P. aeruginosa in many natural environments, most individuals acquire P. aeru‐

ginosa through casual contact with natural bacterial sources, while some individuals acquire 
P. aeruginosa directly or indirectly from other CF patients. Transmission data and genotype/
phenotype properties of clinical and environmental P. aeruginosa isolates indicate that char‐

acterizing the ecology of P. aeruginosa originating from natural environments would lead to a 
better understanding CF epidemiology [8].

Initially, infection of P. aeruginosa in CF is usually the result of an alternating series of acquisitions 
of different isolates and in the first stage of infection, most of the isolates are nonmucoid and 
highly antibiotic sensitive [8, 37–39]. Eventually, one or two isolates establish themselves and, 
due to their genetic, phenotypic and physiological changes, develop chronic infection [13, 16, 40].
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2.2.1. P. aeruginosa quorum sensing systems and biofilm

One of the most important factors which facilitate P. aeruginosa to colonize and persist in acute 
and chronic lung infection in CF patients is the ability of this microbe to grow as a biofilm, 
assembly of which is regulated by a QS system [13, 30, 40].

QS is the mechanism by which bacteria engage in cell‐to‐cell communication using dif‐
fusible molecules based on a critical cell density [41]. QS molecules manage and regulate 
diverse physiological processes, some of which are interrelated. In P. aeruginosa, expres‐

sion, production and/or secretion of many virulence factors, such as EPSs, RLs, enzymes, 
pigments production, biofilm formation and antibiotic resistance, are controlled by QS [10, 
13, 42]. P. aeruginosa possesses two interrelated QS systems, the las and rhl systems. The las 

system comprises the transcriptional regulatory protein, LasR and its cognate autoinducer, 
N‐(3‐oxododecanoyl) homoserine lactone (3O‐C12‐HSL). The rhl system comprises the RhlR 
transcription regulator protein (also known as R‐protein) and N‐butyryl homoserine lactone 
(C

4
‐HSL), its cognate autoinducer [13]. Additionally, these two systems are not indepen‐

dent but are interlinked in a hierarchical manner (the las system directs the rhl system). 
They are linked by a third signal molecule, 2‐heptyl‐3‐hydroxy‐4‐quinolone, known as the 
Pseudomonas quinolone signal (PQS). PQS is produced under the control of the pqs system, 
which is considered as the third distinct QS system [11, 42]. Interestingly, transcriptome 
analyses have revealed that between 6 and 10% of the P. aeruginosa genome is regulated by 

the las and/or rhl systems [13].

Biofilms are matrix‐enclosed microbial accretions that adhere to biological or nonbiological 
surfaces [43]. P. aeruginosa biofilms are related to development of different acute and chronic 
infections, not only in CF patients [16, 44, 45]. Formation of P. aeruginosa biofilm occurs in 
stages: bacterial attachment and irreversible adhesion to surface, microcolony development, 
biofilm maturation and dispersion of bacterial cells from the biofilm [46]. Heterogeneous 
microenvironments due to oxygen and nutrient diffusion limitations occur in biofilms and 

Mechanism Effect

Decreased ion transport, which results from defective CFTR 
channels enhances fluid absorption in the airways

Lowered airways surface liquid and impaired ciliary 
transport of the mucous layer, which results in defects 
in microbial clearance

Altered salt content in the airway surface liquid Inactivation of immune system defenses pathways; 
defected neutrophils activity

Increased levels of acylated glycolipids on the surface of CF 
airway epithelial cells due to defective CFTR molecules

Modified glycolipids are receptors for P. aeruginosa 

adherence

Binding of P. aeruginosa to defective CFTR molecule exposed 
on airway epithelial cells membranes

Internalisation of P. aeruginosa

Lowered level of antimicrobial compounds Propensity of individuals to lung infection

Istrinical hyperinflammation of airways Damage of host cells and disruption of effective microbe 
clearance

Table 1. Proposed mechanisms of P. aeruginosa in development of respiratory infection in CF airways.

Progress in Understanding Cystic Fibrosis130



they lead to physiological and phenotype diversity [47, 48]. Suggested mechanisms of P. 

aeruginosa biofilm formation involve QS signaling, which coordinates and protects biofilm 
assembly and maintenance [44, 49–52]. The las I, which encodes the biosynthetic pathway for 
3O‐C12‐HSL, is critical for biofilm maturation [50]. Heterogeneity of the bacterial population 
in biofilm is an important characteristic of P. aeruginosa pathogenicity and contributes to the 
microbe's resistance to antimicrobial therapy. In laboratory conditions, P. aeruginosa can form 

two types of biofilm, “flat” and “structured”, and alginate‐producing isolates (the mucoid 

phenotype) form complex structured type of biofilm which is resistant to tobramycin [53]. 
Additionally, the QS system is involved in regulation of several genes such as rhlA, rpoS, sad 

A and genes in the denitrification pathways. These genes are important for all stages of bio‐

film development, maintenance, or dispersion: (1) biosynthesis of the biofilm matrix (EPSs, 
extracellular DNA); (2) biosynthesis of RLs; and (3) other metabolic pathways (not discussed 
here) [13, 42].

2.2.2. Adaptation mechanisms of P. aeruginosa in CF lungs

The CF lungs are an unfriendly and varied environment for invading bacteria due to the pres‐

ence of stressors such as osmotic stress of viscous mucus, oxidative and nitrosative stresses 
of the host responses, sublethal concentrations of antibiotics and other microbes presence. 
Regarding to the environment of CF lungs, it is a great challenge of P. aeruginosa populations 
to overcome these stressors and persist [54].

It is believed that mechanisms that allow P. aeruginosa to cause persistent chronic infection are 
related to its remarkable potential for adaptation to environmental changes [8, 15]. P. aerugi‐

nosa adaptations in CF patients’ lungs are dynamic and generate subpopulations of bacteria 
with differing phenotypes [8]. It is thought that primary infection is related to the large P. 

aeruginosa genome, while development of persistent infection is dependent on spontaneous 
mutations [55, 56]. Mutations are multiple due to different factors such as the presence of 
hypermutable strains, development of biofilm and downregulation of antioxidant enzymes 
[57–59]. Environmental conditions in CF airways then further favor specific P. aeruginosa phe‐

notypes. This set of adaptations finally leads to development of the subpopulations of bacteria 
(mentioned above) within the same respiratory tract, which are relatively similar, but which 
carry unique groups of genes [56, 60, 61]. Some commonly and intensively studied P. aerugi‐

nosa adaptation mechanisms present during respiratory infections in CF involve: transition to 
mucoid phenotype, antibiotic resistance, alterations in lipopolysacharride (LPS), loss of type 
III secretion and motility, auxotrophy, small‐colony variants, defects in the QS system and 
hypermutability [8, 54].

3. Biosurfactants of P. aeruginosa—rhamnolipids and exopolysaccharides

Biosurfactants are a group of amphiphilic compounds, comprise a hydrophobic and a hydro‐

philic moiety and are produced by a range of microorganisms [9, 62]. Pseudomonas spp. are 
the most common producers of biosurfactants [63], with P. aeruginosa being the preeminent 
RL and EPS biosurfactant‐producing species [9, 63]. Up to date, a variety of biosurfactants 
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have been studied, but RLs (glycolipid biosurfactants) and EPSs (polymeric biosurfactants) 
are currently attracting the most attention, as they are relevant in medicine, environmental 
protection, food and the pharmaceutical industry [15, 24, 64–66].

3.1. P. aeruginosa rhamnolipids

Rhamnolipids comprise one or two L‐rhamnose units and one or two units of 3‐hydroxy fatty 
acid. Variations in lipid components contribute to the biodiversity of RLs [9, 67]. Due to their 
chemical composition, RLs are classified into four homologue groups (Figure 1): RL1—mono‐
rhamno‐di‐lipidic, RL2—mono‐rhamno‐mono‐lipidic, RL3—di‐rhamno‐di‐lipidic and RL4–
di‐rhamno‐mono‐lipidic structures. RL1 and RL3 are usually classified as principal—common 
RLs, while RL2 and RL4 are classed as atypical–uncommon RLs [68]. The development of 
sensitive, high throughput analytical techniques, such as soft ionization mass spectrometry, 
has led to the further discovery of a wide diversity of RL congeners and homologues (about 
60) produced in different concentrations by various Pseudomonas spp. and other bacteria [9].

3.1.1. Diversity of rhamnolipid structures

RL biosurfactants are always produced as mixtures of different RL congeners, as observed 
with various P. aeruginosa isolates [15, 69–74]. The complexity of the RL mixtures produced 
depends on various factors such as bacterial isolate origin, type of carbon substrate, culture 
conditions and isolation procedure and age of the culture and of course, the P. aeruginosa iso‐

late itself [15, 23, 63, 72, 75–80]. Despite the number of such factors reported, some particular 
RL congeners are predominant in all P. aeruginosa producer isolates. These are classified as 
the major RL structures (Rha‐C10‐C8, Rha‐C10‐C10, Rha‐C10‐C12, Rha‐C10‐C12:1, Rha‐Rha‐C10‐C8, 
Rha‐Rha‐C10‐C10, Rha‐Rha‐C10‐C12 and Rha‐C10‐C12:1) [23, 72, 81–84]. Other RLs, produced only 
sometimes or in low abundance, are the minor RL structures [23, 72, 81–84]. Both the major 
and the minor RL congeners contribute to the complete profile of RLs. In all studies of RL 
mixtures produced by various P. aeruginosa isolates, mono‐rhamnolipid Rha–C10–C10 and di‐

rhamnolipid Rha–Rha–C10–C10 were the predominant congeners, in spite of the varying com‐

positions produced [23, 72, 81–84].

The presence of different functional groups in RL molecules (the hydrophobic, lipid part and 
the hydrophilic and carbohydrate part) gives RLs important physicochemical properties. 
Due to their amphipathic structure, RLs behave as wetting agents, surface active compounds, 
emulsifiers and detergents. These RL functional groups are, therefore, utilized in enhancing 
and facilitating bacterial movement, adhesion and contact with surfaces, as well as substrate 
uptake, or solubilization.

3.1.2. Rhamnolipid biosynthesis and quorum sensing

Biosynthesis of RLs requires three rhamnosyltransferases. The fatty acid dimer moiety in 
RLs and free 3‐(3‐hydroxyalkanoyloxy) alkanoic acid (HAA) are both synthesized by the 
rhamnosyltransferase RhlA. Next, dTDP‐L‐rhamnose is transferred to HAA by the rham‐

nosyltransferase RhlB, or to a previously generated mono‐RL by the rhamnosyltransferase 
RhlC [85]. HAA precursors are derived from the FASII cycle (bacterial fatty acid synthesis 
system), while activated L‐rhamnose is derived from the glucose moiety of deoxythymidine 
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di‐phospho (dTDP)‐L‐rhamnose through several reactions catalyzed by four enzymes that, 
in P. aeruginosa, belong to single operon, rmlBDA [11]. dTDP‐L‐rhamnose has an important 
role in the regulation of RL biosynthesis, as it is an allosteric regulator for RmlA (which 
catalyzes transfer of a thymidylmonophosphate nucleotide to glucose‐1‐phosphate and is 
a sensor enzyme in this metabolic pathway). Also, this molecule is a precursor for other L‐
rhamnose containing molecules (LPSs and EPSs). dTDP‐L‐rhamnose affects the production 
of mono‐RL through coexpression of the operons rmlBDAC and rhlAB, which are responsible 
for expression of rhamnosyltransferases RhaA and RhaB [86, 87]. However, in P. aeruginosa, 

the QS system has an essential role in regulation of the rhlAB operon and, therefore, in RL 
biosynthesis.

In Section 2.2.1, we stated that P. aeruginosa QS has two interrelated systems, las and rhl, 
which are linked by the PQS molecule and that their relationship influences the biosynthesis 

Figure 1. Structure of rhamnolipid congeners: RL1 (mono‐rhamno‐di‐lipidic), RL2 (mono‐rhamno‐mono‐lipidic), RL3 
(di‐rhamno‐di‐lipidic) and RL4 (di‐rhamno‐di‐lipidic).

Structure‐Function Relationships of Rhamnolipid and Exopolysacharide...
http://dx.doi.org/10.5772/66687

133



of various metabolites. Production of RLs is governed by three QS molecules: Pseudomonas 

autoinducer 1 (PAI‐1, also known as 3O‐C12‐HSL), Pseudomonas autoinducer 2 (PAI‐2, also 
known as C

4
‐HSL) and PQS. In P. aeruginosa, the las operon consists of two transcriptional 

activator proteins, LasR and LasI, which direct the synthesis of PAI‐1. The production of RLs 
is regulated by the rhl system. The synthesis of RLs takes place under the coordinated guid‐

ance of the rhlAB genes. The rhl system consists of the transcriptional activator proteins, RhlR 
and RhlI, which regulate the synthesis of PAI‐2. The transcriptional activator RhlR activates 
the transcription of rhlAB operon and gene rhlC (encoding RhlC) [10, 11].

The rhlAB operon is clustered on P. aeruginosa DNA together with rhlR and rhlI, which together 
direct the synthesis of all proteins required for RL production (the rhamnosyltransferases and 
the transcriptional activators, RhlR and RhlI) [10]. RL synthesis is upregulated and promoted 
at transcriptional level, related to the QS system, by the Vfr (global virulence regulation) and 
the pqs systems through activation of RhlR expression and rhlRI operon, respectively [11]. 
RasL (repressor of las system) and AlgR (biofilm formation) downregulate RL synthesis by 
repression of LasI and rhlAB/rhlI, respectively [11]. For instance, increasing bacterial cell den‐

sity induces the las system, resulting in an increased concentration of PAI‐1 that binds to 
the transcriptional activator site LasR and forms the LasR–PAI‐1 complex. The LasR–PAI‐1 
complex induces genes controlled by the rhl system, including the regulator gene rasL, rhlR 

and pqsH, required for PQS production. PQS acts as a link between the las and rhl systems. 
The activity of these signals depends on their ability to dissolve in and freely diffuse through 
aqueous solution [10]. PQS induces the rhlI gene, which directs the production of PAI‐2 that 
binds to and activates RhlR (RhlR–PAI‐2 complex). The RhlR–PAI‐2 complex induces genes 
for RL production, which are controlled by the rhl QS system (operons rhlAB, rhlC, rhlI, rhlR 

and rhlG). The RLs produced enhance the solubility of PQS in aqueous solutions and promote 
cell‐to‐cell communication. This is important because of the role PQS plays in the P. aerugi‐

nosa stress response, in conditions related to the CF lung environment (oxidative stress and 
antimicrobial agents) [88].

In conclusion, in the complex QS network, there is a hierarchy between las and rhl systems 

in RLs biosynthesis. Furthermore, RL biosynthesis is regulated at the transcriptional level 
according to nutritional and environmental conditions, as well as at the posttranscriptional 
level [11, 42]. However, most of the regulatory mechanisms are not completely understood 
[11, 42].

3.2. P. aeruginosa exopolysaccharides

Pseudomonads have the potential to produce various types of EPSs such as alginate, levan, 
marginalan and cellulose, as well as different heteropolysaccharides and protein polysaccha‐

rides complexes [89]. Nearly all Pseudomonas isolates, including P. aeruginosa, Pseudomonas 

putida and Pseudomonas fluorescens can produce alginate as the main acidic EPS [90–92]. 
Alginate is composed of β‐1,4‐D‐mannuronic and L‐guluronic acids linked via β‐1,4‐gly‐

cosidic bonds [93]. Alginates are also produced by Azotobacter isolates and some genera of 

brown and red algae. In comparison to algal alginates, bacterial alginates are O‐acetylated 
at some of the C‐2 and C‐3 carbons of the mannuronic acid residues and acetylation occurs 
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 during transport through the periplasm. A high degree of O‐acetylation increases the viscos‐
ity and flexibility of alginate, as well as its ability to bind water [94].

3.2.1. Diversity of exopolysaccharide structures

P. aeruginosa has the genetic ability to produce at least three polysaccharides: alginate, Psl 
(polysaccharide synthesis locus) and Pel (pellicle formation locus). Alginate and Psl have dif‐
ferent chemical structures (Figure 2a) although they have similar biosynthetic mechanisms 
[89]. In comparison to alginate, a highly O‐acetylated linear polymer of 1,4‐linked mannu‐
ronic acid (M) and guluronic acid (G), Psl is a helicoid polysaccharide composed of a repeat‐
ing pentamer containing D‐mannose, L‐rhamnose and D‐glucose (Figure 2b). The structure 
of Pel is not completely characterized and it is supposed that it differs from alginate and Psl 

Figure 2. Structures of extracellular polysaccharides produced by P. aeruginosa: (a) alginate and (b) exopolysaccharide Psl.
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[95]. Pel is proposed to be a glucose‐rich polysaccharide, different to cellulose [96]. Each EPS 
has distinct physiological properties, affecting the cells and the biofilm matrix. While alginate 
is secreted into the surrounding medium without covalently linking to the cell surface, Psl 
has helical distribution around the cell surface with a key role in cell‐to‐cell and cell‐to‐sur‐

face interactions during biofilm formation. Pel forms a connecting matrix allowing it a struc‐

tured assembly at the air‐liquid interface connecting the cells. This matrix could also contain 
O‐antigen‐LPS and cyclic glucans [95]. The diversity of EPSs produced by bacterial biofilm 
subpopulations is one of the proposed P. aeruginosa survival strategies for adaptation to envi‐
ronmental changes, as related to the conditions in CF lungs.

3.2.2. Exopolysaccharide biosynthesis and quorum sensing

EPS biosynthesis requires sugar‐nucleotide precursors and for alginate production, this is 
GDP‐mannuronate. The enzymes required for GDP‐mannuronate production include: (1) the 
bifunctional enzyme, AlgA which exhibits phosphomannose isomerase (PMI) and GDP‐man‐

nose pyrophosphorylase (GMP) activity; (2) AlgC, a phosphomannomutase; and (3) AlgD, 
which is a GDP mannose dehydrogenase [97–99]. AlgD catalyzes the first step in alginate 
biosynthesis, which is responsible for the mucoid phenotype often observed in clinical P. 

aeruginosa from chronically infected CF patients [13].

Alginate is first synthesized as a linear homopolymer of D‐mannuronic acid residues. The 
polymer is then modified in the periplasm through selective O‐acetylation by the concerted 
action of AlgI, AlgJ and AlgF and epimerized by AlgG [100, 101]. Alginate has a reasonably 
random structure (Figure 2a). This differentiates alginate from Psl and numerous E. coli 

capsule polysaccharides, the structures of which are more regular, with repeating subunits 
(Figure 2b). The randomness of alginate's structure occurs because during polymerization, 
AlgG converts D‐mannuronic acid residues to L‐guluronic acid and critically, either the C‐2 
and/or C‐3 carbons can have acetylated hydroxyl functional groups, which become available 
for linking the residues.

AlgC appears to be crucial for general EPS biosynthesis, not just alginate, as it is also required 
for precursor synthesis of Psl, as well as LPSs and RLs [102, 103]. The LasR from the las system 

might, to some extent, regulate expression of algC and algD, confirming the correlation of QS 
systems with EPS production [13].

4. Physiological role of P. aeruginosa biosurfactants in CF infection

4.1. Physiological role of rhamnolipids and exopolysaccharides

Among proposed functions of RL biosurfactants, related to their physicochemical properties 
(surface activity, wetting ability, detergency and other amphipathic‐related properties), are 
promotion of the uptake and biodegradation of poorly soluble substrates, immune modula‐

tors and virulence factors [9, 15]. Additionally, these molecules are involved in the process 
of swarming, as surface wetting agents and chemotaxis stimuli and in P. aeruginosa biofilm 
structuring, maturation (the formation of water channels in mature biofilms) and dispersion 
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[10]. Probably because they do not present the profile of typical or traditional virulence fac‐

tors, RLs are sometimes not considered significant members of the virulence arsenal of P. 

aeruginosa [9]. However, published data strongly demonstrate their importance as virulence 
determinants and their significant role in infection establishment and persistence [8, 9].

Physicochemical properties of EPSs, such as surface activity, viscosity, flexibility of molecule, 
as well as its ability to bind water, protect the microbe from dehydration in the unique CF 
microenvironment following the switch from nonmucoid to mucoid phenotype [94]. In this 
regard, the P. aeruginosa mucoid phenotype is the most studied adaptation in patients with 
CF and it is directly proportional to overproduction of EPSs, which is widely considered 
to be a marker for the transition to chronic infection [8, 54]. Alginates are well studied as 
compounds associated with biofilm formation and invasion of pathogenic microorganisms. 
The alginate‐containing matrix of mucoid P. aeruginosa is thought to allow the formation of 

protected microcolonies and provide increased resistance to opsonization, phagocytosis and 
destruction by antibiotics [104]. Alginates also have a protective role in P. aeruginosa infec‐

tion because they scavenge free radicals released by activated macrophages in vitro, prevent 
phagocytic clearance and protect the microorganism from the host defense system [13].

4.2. Rhamnolipids and exopolysaccharides in P. aeruginosa biofilm formation

Swarming motility is the rapid and coordinated movement of a bacterial population across a 
surface, which often results in characteristic flowery, dendritic colony shapes on agar plates 
[105]. This type of colony movement is related to the production of an extracellular slime 
layer, mainly composed of EPSs and surface active compounds, which is a pivotal feature of 
swarming cells, acting as a wetting agent that reduces the surface tension [106]. Several stud‐

ies suggest that P. aeruginosa expresses swarming motility and that it requires flagella and 
the production of wetting agents (RLs and its lipidic precursors HAAs) [85, 107–109]. Also, 
HAAs and di‐RLs actually modulate the swarming process, as di‐RLs and HAAs behave as 
self‐produced chemotactic attractants with opposite activity, while mono‐RLs seem to be act 
solely as wetting agents [107, 109]. Additionally, swarming motility is clearly related to bio‐

film formation [105].

The importance of swarming motility for biofilm formation indicates that RLs are involved in 
the process of biofilm formation. Indeed, it was shown that RLs enhance adhesion of plank‐

tonic cells in the early stages of biofilm development, when an initial microcolony is formed 
(Figure 3). Proposed mechanisms for RL effects on cell adhesion include regulation of cell‐
surface hydrophobicity and modification of adhesive interactions, especially when nutri‐
tional conditions are changed [85, 110–112]. Also, RLs are involved in later differentiation of 
the biofilm structure, the detachment and dispersion of P. aeruginosa cells, where RLs behave 
as mediators which disturb cell‐to‐cell and cell‐to‐substratum interactions and maintenance 

of open channels inside the biofilm [111, 113]. Furthermore, regulation of RL production by 
P. aeruginosa is regulated not only in temporal terms, but also in quantifiable terms, because 
overproduction of RLs disrupts biofilm structure or impedes biofilm formation [113].

EPSs also play an important role in biofilm formation and invasion of pathogenic micro‐

organisms. During biofilm maturation, P. aeruginosa begin to excrete EPSs, such that the 
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 bacteria in the mature biofilm are encased in a matrix of EPSs that they have produced [114]. 
Overproduction of alginate is the main indicator of P. aeruginosa converting to the mucoid 
phenotype and is responsible for the notable microbial resistance to antibiotics as well as 
defense from the host immune system of CF patients (Figure 3). The mucoid phenotype of   
P. aeruginosa produces a great amount of alginate as a result of several genes, including algD, 

which encodes GDP‐mannose dehydrogenase, responsible for synthesis of alginate precur‐

sor [8, 94]. The alginate‐containing matrix of the mucoid phenotype allows the formation of 
protected microcolonies and provides increased resistance to opsonization, phagocytosis and 
antibiotics, resulting in persistent infection and a worsening prognosis for CF patients [104].

In the context of immune system pathways, polymorphonuclear leukocytes (PMNs) are con‐

sidered as the central line of defense in innate immunity and they are produced as a predomi‐
nant response to infection, especially in CF lungs [115]. When PMNs phagocytose bacteria, 
the host cells produce highly reactive oxygen species, which kill P. aeruginosa or induce muta‐

tions in the microbial mucA gene. However, the alginate produced by mucoid phenotype P. 

aeruginosa is also an oxygen radical scavenger, helping to protect this pathogen against host 
inflammatory defense mechanisms [116]. Airway epithelial cells play a crucial role during 
establishment of respiratory infection because P. aeruginosa attaches to and enters respiratory 
epithelia, producing an immune response in the lung by activating lymphocytes at the site of 
infection [117].

Surfactant protein A (SP‐A) is involved in prevention of alginate‐induced P. aeruginosa inva‐

sion of lung epithelial cells. SP‐A plays a part in the innate immunity in the lung, with a 

Figure 3. Proposed roles, relations and effects of P. aeruginosa biosurfactants RLs and EXPs in development and 
persistence of chronic respiratory infection in CF patients.
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direct role in bacteria opsonization and killing, as well as impairment of bacterial membrane 
permeabilization [117]. Alginate is surface exposed and levels of SP‐A could be crucial in 
modulating the interaction of P. aeruginosa with the epithelial barrier.

4.3. Effect of P. aeruginosa rhamnolipids and exopolysaccharides

Respiratory mucosa protects host airways from microbial infection. P. aeruginosa and other 

microbial species capable of causing lung infections have developed mechanisms to overcome 
this barrier, such as alteration of the apical membrane of epithelial cells or alteration and 
disruption of tight junctions (TJ) [118]. Proposed mechanisms involve alterations of respira‐

tory epithelial ion transport, inhibition of transcellular ion transport and interference with the 
normal tracheal ciliary function. Bacterial adherence to the basolateral domain of epithelial 
cells and internalization are suggested as a potential mechanism of P. aeruginosa pathogenic‐

ity (Figure 3). The physiological pathways of these processes are not still completely clarified, 
but reports indicate involvement of virulence factors, production of which is controlled by the 
type III secretion (cytotoxic proteins) and the las and rhl QS (RLs, elastase) systems [119, 120].

RLs concentration of up to 8 μg/ml was found in the sputum of CF patients infected by P. 

aeruginosa [120], while secretions from a lung removed contained 65 μg/ml RLs [121]. These 
concentrations of RLs are likely adequate for promotion of P. aeruginosa epithelial cell infiltra‐

tion. Furthermore, this indicates link between elevated levels of RLs and worsening of patient 
clinical status.

RLs produce damage to the bronchial epithelium and inhibit ciliary function [122–124]. 
Damage to the bronchial epithelia is related to impairment of the protective layer of lung 
surfactant in CF patients. Phospholipase C and RLs produced by P. aeruginosa can act syner‐

gistically to break down lipids and lecithin from lung surfactant [12]. It is believed that RLs, 
due to their detergency, solubilize the phospholipids in lung surfactant, making them more 
accessible to cleavage by phospholipase C [12].

The effects of P. aeruginosa RLs on the respiratory epithelia function were studied in several 
animal models [122]. RLs caused ciliostasis and cell membrane damage to rabbit tissue were 
a secretagogue in cats and inhibited epithelial ion transport in sheep tissue. Additionally, the 
authors investigated the effect of RLs on mucociliary transport in the anesthetized guinea pig 
and guinea pig and human respiratory epithelia in vitro [122]. Reduction of tracheal mucus 
velocity (TMV) in vivo occurred depending on the applied RL concentration (10 μg of RLs 
caused cessation of TMV without recovery; 5 μg of RLs reduced TMV by 22.6% over a period of 
2 h and 2.5 μg of RLs caused no overall change in TMV). RLs (10 μg) did not disrupt the ultra‐

structure of guinea pig tracheal epithelium. RL (250 μg/ml) stopped ciliary beating of guinea 
pig tracheal. Treatment with RL concentration of 100 μg/ml caused immediate slowing of the 
cilliar beat frequency (CBF) of human nasal brushings, as well as CBF of human nasal turbinate 
organ culture. Mono‐ and di‐RL had equivalent effects [122]. In addition, RLs stimulate the 
release of mucus glycoconjugates from feline trachea or human bronchial mucosa [125, 126].

In vitro reconstructed respiratory epithelium was exposed to several P. aeruginosa isolates with 

alterations in genotype: wild type, CF isolates and strains with altered QS system expression 
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[118]. The authors found that only RL‐producing P. aeruginosa (those that expressed the rhl QS 
system) was able to infiltrate the epithelia by modulating the permeability of the tissue. The 
early stages of infection did not correlate with type III secretion and elastase activity [118], 
in contrast to previous reports [127, 128]. The effect of exogenously applied purified RLs on 
the epithelial barrier was also studied [118]. The authors used JBR 515, which is commercial 
mixture of 50% w/v Rha‐C10‐C10 and 50% w/m Rha‐Rha‐C10‐C10. RLs produced by bacteria in 

situ or purified. The applied RLs caused loss of epithelial cell polarity by: incorporation in 
first, the apical and later, the basolateral epithelial membranes (due to chemical structure); 
cilia loss; ezrin displacement; and alterations of TJ. The final result was a decrease of tran‐

sepithelial resistance and higher permeability of respiratory epithelia, without affecting cell 
viability [118]. After disruption of TJ, paracellular invasion by some P. aeruginosa, involving 
RL deficient strains, was observed, but they were not internalized [118]. This was in contrast 
to previous reports [129, 130], perhaps due to the in vitro conditions used in the studies as 

difference. Altogether, the importance of RL biosurfactant and the QS system in P. aeruginosa 

invasion of respiratory epithelium is acknowledged, but the exact mechanisms of cell polarity 
and structure alterations remain unclear.

The effect of RLs on immune system pathways with direct impairment and modulation of 
immune cell activity is well known [9] (Figure 3). RLs are reported to have hemolytic activity 
on various erythrocyte species; induce direct neutrophil chemotactic activity [130]; enhance 
the oxidative burst response of monocytes; stimulate and release inflammatory mediators 
from mast cells and platelets; induce lysis of PMNs; stimulate both chemotaxis and chemo‐

kinesis of PMNs (depending on concentration); and enhance production of several interleu‐

kins produced by granulocyte‐macrophage and nasal epithelial cells (at noncytoxic levels) 
[131–135]. Furthermore, RLs, especially di‐RLs, are cytolytic for human monocyte‐derived 
macrophages and at lower concentrations, they inhibit the phagocytic response of macro‐

phages [136].

The response of P. aeruginosa mutants (PAO1 and QS, rhlA and pqsA deficient) to the presence 
of PMNs was studied [115]. Previously reported data showed that in vitro, PMNs performed 
their immune function and eliminated QS‐deficient P. aeruginosa biofilms, although they 
were incapable of eliminating QS‐proficient biofilms [51]. Additionally, purified RLs induced 
necrosis in PMNs [134]. In biofilm, P. aeruginosa (PAO1 wild type) produced increased levels 
of various virulence factors in response to PMNs, while P. aeruginosa rhlA mutant was elimi‐

nated by PMNs [115]. Additionally, 2000‐fold higher levels of RLs from P. aeruginosa PAO1 
occurred in biofilm than in surrounding fluid, indicating that RL molecules were grouped 
around biofilm [115]. Similarly, a P. aeruginosa rhlA mutant was cleared more quickly than the 
wild strain from two in vivo mouse models of lung infection [137]. Also, microscopic analysis 
showed that there were no intact PMNs in close contact with outer layers of biofilm. This cor‐

related with microscopic investigations of P. aeruginosa infected ex vivo tissues samples from 
CF lungs, where PMNs were located peripherally [115]. The RLs isolated in this study were a 
mixture of mono‐ and di‐RL congeners (Rha‐C10‐C10, Rha‐C10‐C12, Rha‐C10‐C12Δ and respective 
di‐RL derivates) [137]. Van et al. [137] proposed that RLs have a role as a protective mecha‐

nism in biofilm resistance to phagocytosis and supported a “launch a shield'’ model, where 
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RLs surround the biofilm and on contact destroy PMNs. This study [137], in correlation with 
previous reports about QS regulation of bacterial response to PMNs [50, 134] showed that P. 

aeruginosa pqsA mutant was unable to respond to exposure to PMNs by increasing RL produc‐

tion and that there was impairment of the QS hierarchy. These studies show that RLs prob‐

ably contribute to the inflammatory‐related tissue damage observed in lungs of CF patients, 
which involves complex and tight regulation by the QS system. RL production, though, is not 
continued because it affects all host cells, not only immune cells and high levels of RL may 
create conditions (due to inflammation and host tissue damage) which are not favorable for 
P. aeruginosa persistence [137]. This study supports a model by which cross‐kingdom‐based 
communication contributes significantly to immunomodulation and evasion and which is 
one reason studying the infective properties of P. aeruginosa is so fascinating.

Modification of membrane LPSs in P. aeruginosa is also an important mechanism in the devel‐
opment of chronic infection in CF patients [138–140]. Membrane LPSs in P. aeruginosa are 

composed of three parts: highly acylated lipid A; a central core oligosaccharide bound to 
lipid A and O‐antigen; and a variable polysaccharide composed of repeated units located out 
from the core [138, 140]. It is not surprising that the structure of LPSs is modified in P. aerugi‐

nosa isolated from CF patients because of their direct interface position with the pulmonary 
environment [8]. Compared to normal lipid A, that from CF patients contains more hexa‐ 
and hepta‐acylated moieties as well as added aminoarabinose, a cationic amino sugar resi‐
due which is responsible for resistance to antimicrobials [140]. Acylation levels of lipid A are 
responsible for LPS recognition by the host and induction of the proinflammatory response, 
so their modification causes P. aeruginosa to be less visible to the host immune system [141]. 
Also, in CF isolates, O‐antigen is lost, due to mutations in genes responsible for O‐antigen 
production. This loss can facilitate chronic persistence in respiratory tracts of CF patients 
[138–140]. Modification of LPS can directly correlate with overproduction of alginate, which 
is typical for the mucoid phenotype. Alginate might interact via the carboxylic groups in poly‐
guluronic acid units with modified membrane LPSs in P. aeruginosa, across cationic amino 
sugar aminoarabinose residues. This likely enhances polymerization and facilitates release of 
EPSs from the membrane. Thus, study of factors that influence increased production of EPSs 
and RLs, as well as the structure‐function relationships of these compounds would likely be 
of great importance for improved therapy of CF patients [8].

Figure 3 summarizes the proposed roles, relationships and effects of the biosurfactant RLs 
and EPSs produced by P. aeruginosa in the development of chronic respiratory CF infection.

5. Rhamnolipids and exopolysaccharides as targets—current and future 

perspectives

The importance of biofilm formation and maintenance for the establishment and persistence 
of P. aeruginosa chronic respiratory infection in CF has been discussed in Section 2.2.1. The 
complex regulation of biofilm development includes the QS network, swarming motility 
and production of extracellular metabolites and involves significant roles for RLs and EPSs. 
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Therefore, a logical approach in preventing and treating chronic P. aeruginosa infection in 

CF patients is focused on antibiofilm strategies. Antibiofilm strategies can take two differ‐

ing approaches, one common, related to antibiotic therapy and the other novel, related to 
interruption of QS (Table 2). Furthermore, vaccination is proposed as a modern approach 
to prevent P. aeruginosa infection in CF, where virulence factors, such as alginate, have been 
used as the antigen. However, most vaccines are still in the clinical research phase and have 
not reached the market [142].

Traditional antibiotic therapy is related to the early colonization period, the only possible 
phase when P. aeruginosa can be eradicated from CF airways [143, 144]. The effectiveness of 
antibiotics later is significantly reduced due to microbe adaptation mechanisms (membrane 
changes, efflux system changes, production of various virulence factors and EPS‐containing 
extracellular matrix, mutation and modification of enzymes) [16] (Table 2). Furthermore, 
tobramycin (an aminoglycoside) is the most common antibiotic for P. aeruginosa therapy 

Agents Type Strategy Resistance References

Ticarcillin, 
Piperacillin
Cefrazidime, 
Cefepime
Imipenem, 
Meropenem
Aztreonam

β‐Lactams Impairment of biofilm 
structure and QS  

inhibitors

Antibiotic cleavage by β‐

lactamase enzymes,  
antibiotic expulsion by 
encoded efflux mechanisms 
and reduced drug uptake 
due to loss of outer 

membrane porin proteins

[16, 155 ]

Ciprofloxacin Fluoroquinolones QS inhibitors Mutations by DNA gyrase 
and topoisomerase IV 
enzymes and efflux  
systems

[155, 156] 

Tobramycin, 
Gentamicin,  
Amikacin

Aminoglycosides Impairment of biofilm 
structure

Aminoglycoside‐modifying 
enzymes AMEs and rRNA 
methylases as well as efflux 
mechanisms

[16, 155, 157]

Patulin, penicillin  
acid, cis‐2  
decanoic acid

Bacterial metabolites Impairment of biofilm 
structure and QS inhibitors

No resistance [16, 158]

Solenopisin A Fire ant venom Impairment of biofilm 
structure and QS inhibitors

No resistance [16, 154]

Salicylic acid and  
4‐nitro‐pyridine 
oxide (4‐NPO)

Synthetic compounds Impairment of biofilm 
structure and QS inhibitors

No resistance [16, 152, 154]

Garlic extract Natural mixture Impairment of biofilm 
structure and QS inhibitors

No resistance [16, 152, 159]

Halogenated 
furanones from 

algae D. pulchra, 
Furanone C‐30

Synthetic or modifies 
natural derived 
furanones

QS‐inhibitor and P. 

aeruginosa elimination in 

combination with  

antibiotics

No resistance [16, 160]

Table 2. Antibiofilm approaches in therapy of P. auruginosa infection of CF patients.

Progress in Understanding Cystic Fibrosis142



choice in CF lungs [145]. This is in spite of the fact that alginates produced by the microbe 
decrease, the movement of aminoglycosides, cationic antimicrobial peptides and quaternary 
ammonium compounds through P. aeruginosa biofilms [27, 146] (Table 2). To overcome obsta‐

cles related to antibiotic resistance and increase the antimicrobial effects, an inhaled version 
of tobramycin, as well as liposomal‐encased current antibiotics are available. These antibiotic 
formulations have improved delivery times and provide higher drug concentrations at the 
site of infection. Additionally, the importance of biofilm formation as having a crucial role in 
the antibiotic resistance of P. aeruginosa (as well as other CF pathogens) is now being recog‐

nized. Recent research trends include analysis of biofilm formation in terms of P. aeruginosa 

antibiotic resistance/susceptibility and the potential for antibiotics as efficient therapy agents 
for biofilm impairment [147–150].

A more novel antibiofilm strategy, QS interruption, is a promising approach for treating CF 
respiratory infections. In this strategy, the QS system is targeted, due to its regulation of the 
biosynthesis of RLs and EPSs [151–153]. The QS impairment approach involves identifica‐

tion of molecules which can interrupt QS pathways. Generally, these compounds have one 
of following mechanisms of activity: blocking production of QS signal molecules, degrada‐

tion of QS signal molecules or prevention of microbe recognition and response to QS stimuli 
[16]. Various natural compounds inhibited QS or directly impaired biofilm (Table 2) (e.g., 
garlic extract, metabolites from Penicillium spp., salicylic acid, the P. aeruginosa metabolite 

cis‐2‐decanoic acid). Furanones are QS blockers and the furanone produced by Delisea pulchra 

and synthetic furanones, enhanced P. aeruginosa elimination in combination with antibiotic 

therapy [16]. Furanone C‐30 repressed 77% of P. aeruginosa genes induced by exposure to 
PMNs [50]. The great advantage of using QS inhibitors in CF therapy is that they are not 
expected to induce bacterial resistance, because their activity is not closely related to bacterial 
growth [154].

In the context of the physiological roles of RLs and EPSs discussed in Section 4, these com‐

pounds are also promising targets for future strategies in CF therapy related to specific modu‐

lation of respiratory mucus [118].

6. Conclusion

RLs and EPSs, biosurfactant molecules, play significant roles in bacterial acquisition, biofilm 
development and establishment of chronic P. aeruginosa infections in CF patients. Specifically, 
RLs and EPSs are, due to their amphipathic structures and physicochemical properties, 
involved in processes of respiratory mucus alteration, modulation of immune system defense 
pathways, biofilm development and maintenance and the P. aeruginosa mucoid phenotype. 
These compounds are responsible for antibiotic resistance and survival and general persis‐

tence of P. aeruginosa in the specific, dynamic environmental conditions in CF patients’ lungs. 
Consequently, RLs and EPSs are the direct or indirect cause of bad outcomes and high mor‐

tality rates among these patients. Currently, therapy generally based on application of anti‐
biotics fails to prevent and treat chronic P. aeruginosa infection. Therefore, RLs and EPSs are 
interesting novel targets for dealing with respiratory infection in CF patients. In addition, the 
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P. aeruginosa QS system is an important aspect of CF lung infection, as it regulates synthesis 
of the biosurfactants and other virulence factors, as well as biofilm formation. Future perspec‐

tives to prevent and treat P. aeruginosa respiratory infections in CF certainly should involve 
impairment of QS pathways. Finally, further study of potential approaches to modify host 
respiratory mucus epithelial membranes is required.
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