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Abstract

The main aim of this research is to utilise the focus of sustainable design to compare the 
material and subsequent environmental impacts of multi‐storey structures situated in 
Australia. The structure types under investigation were characterised by post‐tensioned 
and conventionally reinforced floor and roof flat plate slab systems. The foundation 
designs are undertaken for isolated spread footings on 32 structural model types with 
constant external dimensions which were composed of floor and roof slabs of varying 
concrete strength, span length and construction method, with all footing designs pro‐
viding equivalent structural performance. The results from this study have reinforced 
the evidence that post‐tensioned construction can have significant effects in reducing 
material requirements and provide increased structural and environmental efficiency. 
Through reducing the frame mass, the footing systems were able to be designed using 
significantly less embodied energy when compared to the reinforced concrete structures. 
It is also noted that further investigation in the foundational requirements of these mod‐
els is warranted, with the need to investigate the use of mat foundations for cases where 
isolated spread footings have required more than 50% of the structural plan area and for 
the footings that have required excessively thick sections to resist large shearing actions 
for larger spanned cases at 10 and 13.33 m.

Keywords: embodied energy, sustainable development, sustainable design, global 
warming potential, post‐tensioned structure, reinforced concrete structure, footing

1. Introduction

In recent times sustainable development and design has become an increasingly important 

issue to consider in our built environment [1–3]. The factors driving the adoption of sustain‐

able development and design are numerous but perhaps the most significant is a growing 
concern about anthropogenic global warming caused through carbon emissions. The building 
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and construction industry is a significant contributor to carbon emissions through the con‐

sumption of large quantities of energy. The main aim of this research is to utilise the focus of 

sustainable design to compare the material and subsequent environmental impacts of multi‐

storey structures in Australia.

Globally, greenhouse gas emissions are rising exponentially with most of this rise occurring 

in the last 60 years. Australia is ranked in the top 10 greenhouse gas emitting countries in the 
world with 25 t CO

2‐e
 per capita in 2012 [4]. Australia's greenhouse gas emissions peaked in 

2009. It has since declined, however now is not the time for complacency [1].

The introduction of energy efficiency provisions in the National Construction Code (NCC) [5] 

has attempted to address global warming issues by prescribing the requirements for opera‐

tional energy efficiency. Soon after these changes the Green Building Council of Australia 
introduced the Green Star rating system which defines optional requirements above the NCC 
for energy efficiency and sustainability. Green Star's rise in popularity is a clear indication that 
building owners, developers and occupiers are demanding sustainable and energy‐efficient 
buildings. Aside from addressing sustainability and global warming issues, stakeholders rec‐

ognise the benefits that green buildings offer with lower operational costs being a prominent 
motivator.

The incorporation of the requirements of the NCC [5] and Green Star into buildings inevita‐

bly lowers operational energy consumption during a structures’ life cycle. This has resulted 

in a more significant portion of the life cycle energy being represented by the structure itself 
which is referred to as embodied energy. This is clearly a target area for further reducing 

the energy consumed by a building [3]. Currently, the NCC [6] does not identify embodied 

energy as an area to improve the energy performance of buildings. Furthermore, the promi‐

nent building rating systems place insufficient emphasis on embodied energy considerations.

Due to the lack of emphasis placed on embodied energy outcomes, structural engineers have 

a limited obligation to incorporate measures requiring reduce energy consumption into the 

structural design. Typically design is governed by the requirements of the architect and clas‐

sical building design objectives such as economy, utility, durability and comfort. Engineers 

should strive to not only achieve these requirements but to incorporate sustainability into 

their designs by improving structural efficiency and specification of appropriate materials. 
The building materials industry has recognised the importance of sustainability with exten‐

sive research being conducted in this area. The cement and steel manufacturing industries 

in Australia have adopted the use of alternative fuels and renewable energy sources in an 

attempt to lower greenhouse gas emissions and operational costs. The steel industry has also 
adopted the use of alternative manufacturing methods to preserve natural resources and uti‐

lise waste products. Likewise, the cement manufacturing industry uses waste products as 

partial cement replacements, often from the steel manufacturing industry, to preserve natural 

resources and lower operational costs [7].

The environmental impacts of the built environment and the need to incorporate sustainable 

design quantifying the environmental impacts of structures are continually evolving areas of 

research. This field would benefit greatly from increased industry collaboration.
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2. Construction building material

The rate of human population growth globally has been exponential, and continued growth is 

seemingly inevitable. Australia's population alone is expected to increase to approximately 35.5 

million before 2060; this growth comes with increasing pressures for infrastructure, housing 

and other related services [8]. This trend is unfortunately not limited to Australia, many other 

developed countries have similar predictions of population growth for the next 50 years, and 

the developing countries are showing trends of much faster population growth rates. These 

trends in growth are driving a demand that has ultimately led to the built environment becom‐

ing the largest single cause of anthropogenic climate change [9]. Construction, operations and 

maintenance of buildings have an estimated accumulation of 50% of all energy usage and as 

such are causing more than 50% of all anthropogenic greenhouse gas (GHG) emissions [10]. 

In Australia, approximately 30 million tonnes of finished building products are produced each 
year, with over 56% of this mass being attributed to concrete and 6% to steel [11] as shown in 

Figure 1.

Research undertaken in Australia also shows that concrete and steel are two of the highest 

contributing materials to global warming impacts at 12 and 29% for concrete and steel, respec‐

tively (Figure 2). This evidence underlines the importance of our management of these key 
building resources. Consequently, reducing the use of these materials in structures will show 

significant reductions in environmental impacts generated from the construction sector.

Once again this trend extends beyond Australia, with figures from other developed regions 
having similar percentages of concrete and steel making up the majority of finished building 
products. The major contributor to carbon pollution and the obvious associated environmental 

impacts in both the United States and Europe can be attributed to construction activities. The 
United States construction industry is responsible for using 40% of the country's total energy use, 

Figure 1. Finished building materials required in 2005, based on mass percentage. Image reproduced from the Australia 

Government [11].
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and 16% of the yearly water supply, additionally the industry consumes on an annual basis over 

40% of the total mined raw stone, sand and gravel material and 25% of the logged raw timber [1].

Countries participating in the Organisation for Economic Cooperative Development (OECD) 
demonstrated that 25–40% of the final energy consumption can be attributed to the building 
sector [14]. Having this knowledge enables a more complete understanding of the benefits 
and impacts that a sustainable construction (SC) approach will provide globally. As discussed 
the growing population, increasing demand for the built environment and its resources will 

continue to increase, therefore any improvements using more efficient approaches or tech‐

nologies benefiting sustainability outcomes will be advantageous to the industry. When 
considering the magnitude of the global issues, even a small level of improved design effi‐

ciency could lead to significant reduction in negative environmental impacts. According to 
Hasegawa [14], by increasing the importance of improved efficiency in the structural design 
of buildings, two‐thirds of the primary factors contributing to the poor environmental perfor‐

mance of building will be reduced, resulting in the minimisation of construction and demoli‐

tion waste and in the reduction of CO
2
 emissions.

3. Review of existing research

3.1. Post‐tensioned and reinforced concrete suspended slab investigation

The use of post‐tensioning systems on building construction is able to significantly reduce the 
concrete volume and steel mass required for a structure, resulting in substantial reductions in 

the structure's total weight [2]. As indicated in Figures 3 and 4, a reduction in concrete volume 

ranged between 5 and 23% as well as a reduction in steel mass ranging between 23 and 44% 

Figure 2. Global warming influence from construction materials in Australia [12, 13].
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is obtainable using post‐tensioning methods as opposed to conventional reinforcing. The out‐

comes of the investigation indicated that not only are the post‐tensioned office buildings more 
efficient in material usage, but more importantly in terms of an environmental impact assess‐

ment (EIA) through energy consumption and global warming potential.

Figure 3. The required embodied energy values of various office structure types [2].

Figure 4. Variation in building weight by span length and concrete strength [2].
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It was identified that the effectiveness of post‐tensioning is greatest for spans exceeding 10 m, 
with the highest reduction in environmental impacts achieved being 41%. However, a mini‐
mum reduction in embodied energy (EE) and the global warming potential (GWP) of 28% 
was achieved for all structure types investigated [2].

Assessment of structural weight of slabs investigated was also undertaken. Results indicate 

structural weight savings for PT in comparison to RC construction. For the slab completing 
the required design task, achieving the least EE consumptions, average weight reductions 

between 22.3 and 34.7% were observed for PT buildings.

The disproportionate contribution of steel to EE of a structure compared to its contribution to 

structural weight was also investigated. Overall, the structure's weight accounted for between 

40.8 and 59.6% of EE in previous study. These outcomes highlight the importance of steel 

usage optimisation for beneficial EE outcomes in concrete structural systems. Reduced struc‐

tural frame weight can result in additional benefits to other structural components, including 
foundations, walls and columns that contribute to the structure's overall EE. Therefore, the 

overall reduction in EE of the entire structure through the use of PT and its overall effective‐

ness may be equal to or higher than those presented here. These additional considerations 

were outside the scope of this research but will be the focus of future investigations [2].

4. Environmental impact assessment (EIA) of footings

The main objectives of this study is to utilise the focus of sustainable design to compare the 

material and subsequent environmental impacts of footings for multi‐storey structures situ‐

ated in the South Eastern region of Queensland, Australia. The structure types under inves‐

tigation were characterised by post‐tensioned (PT) and conventionally reinforced (RC) floor 
and roof flat plate slab systems. The foundations footing designs were undertaken utilising 
isolated spread footings for the 32 structural model types. All the types had constant external 

dimensions which were composed of varying concrete strength, span length and construction 

method, with all footings designs providing equivalent structural performance. Following 

this, an environmental impact assessment (EIA) was undertaken, accounting for the embod‐

ied energy requirements for each varying structure type.

4.1. Methodology

The intention of this study is to utilise the process of structural design, to compare environmen‐

tal impacts of mid‐rise office structures in the South East Queensland region when PT and RC 
construction methods have been implemented. The results of this study shall further validate 

previous findings by Miller et al. [2], which have shown improvement of the environmental 

efficiency of office buildings where PT suspended floor and roof slabs have been used. Using 
embodied energy as an appropriate quantification tool for environmental performance, an 
evaluation of the structures foundation system shall be concluded. Specifically, the use of PT 
and RC raft footings for their respective PT and RC suspended floor system superstructures.

Previous research has been conducted that has investigated the potential reduction of environ‐

mental impacts. Previous research has investigated the potential reduction of the environmental 
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impacts of concrete framed buildings. In particular, detailed comparisons were performed of 

variations in environmental performance between PT and RC buildings [1, 2]. Authors under‐

took an investigation into the effects of varying span lengths between columns and also increased 
concrete characteristic strength parameters, resulting in 32 structural variations (i.e. 16 post‐ten‐

sioned and 16 reinforced concrete structural models each composed of 4 variations in span length 

and concrete strength). The current study is intended to carry on from the previous work con‐

ducted in this field and apply the methods of assessment to the foundations of the structures to 
investigate associated manifold benefits.

This study shall utilise the same identical model characteristics for the design of a raft foot‐

ing option. Three case studies shall be investigated: Case A consists of an RC raft with an RC 

structure; Case B, an RC raft with a PT structure; and Case C, a PT raft with a PT structure. In 
total, 48 model variations of concrete building systems were considered.

Ultimately, this study will help identify the material savings that can be gained in the founda‐

tion system of a multi‐storey structure and what outcomes can be achieved in terms of struc‐

tural design efficiency in concrete buildings.

In order to achieve this, a multi‐stage research methodology was formulated. This methodol‐

ogy was categorised into two major components, structural design and environmental analy‐

sis. The structural design involved several distinct components including: (1) design definition: 
including the formulation for the design of the specific building to be analysed along with the 
identification of assumptions necessary to undertake the analysis; (2) manual calculations in 
accordance with the Australian Standard [15] to provide a detailed design of the structural ele‐

ment varied, that was used for inputs into the two‐dimensional computer analysis program, 

RAPT; (3) the structural designs were finalised using the results obtained from the computer 
analysis and these were verified using comparison with hand calculations to ensure accuracy 
and suitability of the design; and (4) the structural requirements for each element were sub‐

sequently detailed allowing a bill of quantities (BOQ) to be generated and an environmental 
performance assessment undertaken. The methodology has been summarised in Figure 5.

Utilising the allowable bearing capacity and applied working loads (1.0G + 1.0Q) initial size 
estimates (length and width) were determined in accordance with the allowable bearing 
capacity and checked with the inclusion of the self‐weight of the footing.

An initial trial depth was utilised to check for the effects of two‐way punching shear, an inad‐

equate design sections resulted in an increase in the footings thickness. Once all the critical 

design cases were satisfied, detailing of the steel reinforcement was conducted to check for 
development length at critical sections and minimum reinforcing specifications as specified 
by the Australian Standard.

4.2. Environmental impact analysis

Reducing the material requirements of a structure and its elements is only one of a wide range 

of measures that have the capacity to effectively reduce the environmental impacts of the 
construction industry. In order to keep this project in line with previous research, the same 

unit measures of embodied energy have been applied to the current study. For the footings 

constructed of 40 MPa concrete, the correlation of embodied energy is as follows: for every 
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cubic metre of concrete cast for the footings, 5670 MJ of energy is required [2]. For the embod‐

ied energy value of steel, 85.46 MJ is required per kg of installed reinforcement. These unit 
measures have then been applied to the material requirements, as determined from the bill of 

quantities, in order to determine environmental impacts of each footing system.

In order to enable future widespread application of the presented research outcomes, it is 

intended that the environmental impacts be measured, be in the form of a relative estimation, 

EE. The results provided show an indicative comparison of the environmental impacts with 

the reduction in structural frame mass, associated with utilising PT slabs over RC slab frame 
elements. More importantly, the carry‐on effects transmitted to the foundation of the structure 
allow for more lightweight footing systems to be utilised. These outcomes are presented in 

Figures 6–11 and distinguish the individual contribution associated with concrete, steel and 

overall EE as well as the percentage reduction gained from utilising a favourable PT system.

4.3. Assumption

To undertake the design and analysis of each footing, the following assumptions were applied 

throughout the study:

• The soil conditions, i.e. soil bearing capacity and other associated characteristics are con‐

sidered uniform throughout the site;

• Groundwater conditions are negligible and have no effect in terms of generating hydro‐

static pressures on the base of the footing system;

Figure 5. Methodology for structural design and environmental analysis.
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• Overturning moment conditions generated from horizontal loading such as wind loads are 
negligible on the design actions of the footing system and will not be considered;

• Property boundaries pose no restriction upon the footing dimensions;

• The weight of overburden soil pressure can be neglected as it is assumed this has been 

accounted for in the allowable soil bearing capacity, based on geotechnical advice; and

• Shear reinforcement (stirrups) will not be utilised to resist one‐ or two‐way shearing actions 
as in practice it is not considered economical to do so.

Figure 6. Comparison of concrete strength and span length with the steel mass required in each raft footing.

Figure 7. Comparison of concrete strength and span length with concrete volume in each raft footing.

Incorporating Sustainable Development Principles into Building Design
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Figure 8. Overall trend comparison of embodied energy contributed by steel.

Figure 9. Overall trend comparison of embodied energy contributed by concrete.
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Figure 10. Overall comparison of embodied energy trend.

Figure 11. Percentage reduction of overall embodied energy between Cases C to B and C to A.

Incorporating Sustainable Development Principles into Building Design
http://dx.doi.org/10.5772/66825

13



5. Results and discussion

As mentioned, the comparison of EE for each raft footing has been classified based on three cases 
based on the reinforcement/construction method utilised for the floor slabs and raft footing.

Case A: post‐tension raft with post‐tensioned structure

Considers a full PT system of floor slabs and raft footing solution. This case shall focus on 
examining the full effects of implementing a PT system for a foundation, specifically the ben‐

efits of utilising a PT raft.

Case B: reinforced concrete raft with post‐tensioned structure

Focuses on a hybrid system of PT floor slabs and a RC raft footing system. This case shall 
specifically evaluate the efficiencies of reducing the structural frame mass by utilising PT in 
the floor slab system.

Case C: reinforced concrete raft with reinforced concrete structure

Focuses on a fully conventional system of both RC slabs and raft footing options. This case 

shall be the baseline for comparison of the efficiencies of PT alternatives, Cases A and B.

5.1. Effects of increased concrete strength and span distance

One of the main purposes of this study was to investigate the controlling effects of utilising 
increased concrete strengths for the suspended slabs of a structure, as well as increasing the 

span length. Figures 6 and 7 present the results for both of these cases for the resultant quanti‐

ties of steel and concrete individually.

5.2. Steel and concrete contribution to EE

The outcomes from the environmental impact assessment have been presented in Figures 8–

11. The contribution to EE from steel is depicted in Figure 8. An increased span length shows 

a direct correlation to higher levels of EE. Case C continues to have the highest rates of EE, 

followed by Case B. Case A however appears to have a significantly lower EE level compared 
to both Case B and Case C. As the concrete strength increases no obvious change in trend 
appears for the EE levels in identical span lengths in any of the cases.

Figure 9 depicts the EE contributed by concrete with similar trends to Figure 8, with a direct 

correlation between span length and increasing embodied energy. Case C continues to have the 

highest rates of EE in all levels of span length, and Case B shows a significant reduction for the 
13.33 m span length. For example, in 32 MPa concrete strength, Case B shows a 27% EE reduction 
compared to Case C. Case A continually shows the lowest EE levels in all span lengths. There is 

a noticeable decline in EE overall (in all cases and span lengths) as concrete strength increases.

Figure 10 shows the overall comparison of EE, which combines the outcomes from both 

Figures 8 and 9. This indicates that increased span length shows a direct correlation to higher 

levels of embodied energy. Also highlighting that Case C continues to have the highest rates 

of EE in all span lengths, followed by B and then A. Figure 10 also shows a slight decline in 

EE overall (in all cases and span lengths) as concrete strength increases.

Energy Efficient Buildings14



Figure 11 shows the percentage of reduction in overall EE between Cases A, B and C. The 
obvious trend is that the EE reduction percentage is significantly larger between C and A, 
than it is between C and B. For example, with a concrete strength of 50 MPa and a span length 
of 6.67 m, C to A has a 31% higher reduction in EE than the corresponding C to B comparison. 
The greatest savings for C to A can continually be seen in the smaller span lengths, with sav‐

ings decreasing as the span length increases.

A clear trend was observed in Figure 9, comparing reductions from Cases C to B and from C to 
A. For C to B, as span length increases, the overall reduction percentage increases; however, this 
is opposite to the reduction trend in C to A, which decreases in EE reduction as span increases. 

The explanation for this is that Case A utilises a PT raft solution and that at smaller spans the 
use of PT contributes to a significant reduction in concrete volume and ultimately a higher 
EE reduction percentage; however, as span increases and the amount of columns decreases, 

the effectiveness of PT to add additional support to punching shear is reduced. The reasoning 
behind this is that, only a finite quantity of tendons can contribute to the resistance of two‐way 
shear around the critical shear perimeter, this is due to the impracticality of fitting tendons so 
close to one another. Therefore, it is more favourable to have a larger number of columns to dis‐

tribute the tendons between in order to increase punching shear resistance under each column.

Overall, this study has focused on quantifying the material saving and the associated EE 

through the utilisation of PT, it can be seen for Cases A and B, where PT has been utilised, that 
significant savings can be achieved. This was observed through both a hybrid PT option or a 
combined raft and floor slab system. The savings typically range between 7 and 40% at 6.67 m 
spans and 65 MPa concrete strength.

When considering the most efficient structure type in terms of EE and materials savings, it 
can be clearly recognised that a full PT raft and floor slab combination with 6.67 m span is the 
most effective.

6. Conclusion

As global population growth continues to increase into the future at an ever increasing rate, 

the impacts and draining effect on natural resources and the environment will continue. This 
work presents a strong discussion, which shows that a level of inefficiency currently exists in 
structural engineering design and environmental performance and that this should be recti‐

fied. As engineers, we can begin by bringing concepts of sustainable design into everyday 
practice. This investigation has delivered a comprehensive overview of the current state of 

knowledge in relation to the concrete design and construction industry, with the possible 

benefits achievable by improving its efficiency.

It was highlighted that structural engineers and other engineers alike, play a restricted role 

in the integration of sustainable alternatives to any given project, as they are at the mercy of 

the client and architects’ demands. This shows that greater focus needs to be placed on the 

integration of sustainable design solutions into structural designs through aiming to improve 

the structural effectiveness of a building. This is achieved through improved efficiency of a 
structural system while offering adequate structural performance.
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It has been shown in this investigation that through reducing material requirements in the frame 

of a structure, subsequent flow‐on effects can be achieved in the foundation system when raft 
footings are utilised. Through reducing the mass of the frame, a direct correlation can be seen 

in the reduction of the applied loads needing to be supported by the underlying foundational 

system. For this investigation, the use of raft footings has been effectively designed and detailed 
for the 48 office structure configurations considered. These configurations were separated into 
three distinct cases. Case A consisted of an RC raft with an RC structure, Case B, an RC raft with 
a PT structure and Case C, a PT raft with a PT structure, all together totalling 48 model variations.

Clear findings have been presented showing significant material efficiencies achievable in the 
Case A footing system characterised by a PT raft/frame combination, followed by a Case B, a 
hybrid RC raft/PT frame option. Overall, the PT footing system outperformed the RC footing 
systems in all cases in terms of material reductions of steel and concrete and the EIA crite‐

ria for embodied energy. For the PT raft coupled with a PT slab system a significant saving 
ranging between 27 and 40% was achieved. This was predicted due to a distinct variation in 

column loadings generated by variations in slab element types and characteristics and due to 

the advantages offered from the contribution of pre‐stressing methods. In terms of the effects 
of increased concrete strength and span length, results suggested that for material require‐

ments, the PT raft/PT frame option outperformed all other cases and was more effective at 
taking advantage of the higher strength concrete. Overall, however, as the span increased, the 

overall requirements of the footing increased linearly; also, as the concrete strength increased, 

the material and EE requirements decreased linearly, with the highest saving found in the PT 
raft/PT slab option. When comparing the results for embodied energy to previous studies, it 
showed that spread footings for shorter spans resulted in less embodied energy than the PT 
raft solution. This however was shown to be negated, due to the considerations of constructa‐

bility when spread footings acquire greater than 50% of the structural area.
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