We are IntechOpen, the world's leading publisher of Open Access books Built by scientists, for scientists

6,900

186,000

200M

Downloads

154

Our authors are among the

most cited scientists

12.2%

Contributors from top 500 universities

WEB OF SCIENCE

Selection of our books indexed in the Book Citation Index in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Sub-Manifolds of a Riemannian Manifold

Mehmet Atçeken, Ümit Yıldırım and Süleyman Dirik

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/65948

Abstract

In this chapter, we introduce the theory of sub-manifolds of a Riemannian manifold. The fundamental notations are given. The theory of sub-manifolds of an almost Riemannian product manifold is one of the most interesting topics in differential geometry. According to the behaviour of the tangent bundle of a sub-manifold, with respect to the action of almost Riemannian product structure of the ambient manifolds, we have three typical classes of sub-manifolds such as invariant sub-manifolds, anti-invariant sub-manifolds and semi-invariant sub-manifolds. In addition, slant, semi-slant and pseudo-slant sub-manifolds are introduced by many geometers.

Keywords: Riemannian product manifold, Riemannian product structure, integral manifold, a distribution on a manifold, real product space forms, a slant distribution

1. Introduction

Let $i: M \to \tilde{M}$ be an immersion of an n-dimensional manifold M into an m-dimensional Riemannian manifold (\tilde{M}, \tilde{g}) . Denote by $g = i^* \tilde{g}$ the induced Riemannian metric on M. Thus, i become an isometric immersion and M is also a Riemannian manifold with the Riemannian metric $g(X, Y) = \tilde{g}(X, Y)$ for any vector fields X, Y in M. The Riemannian metric g on g is called the induced metric on g. In local components, $g_{ij} = g_{AB}B_j^BB_i^A$ with $g = g_{ji}dx^jdx^j$ and $g = g_{BA}dU^BdU^A$.

If a vector field ξ_p of \tilde{M} at a point $p \in M$ satisfies

$$\tilde{g}(X_p, \xi_p) = 0 \tag{1}$$

for any vector X_p of M at p, then ξ_p is called a normal vector of M in \tilde{M} at p. A unit normal vector field of M in \tilde{M} is called a normal section on M [3].

By $T^{\perp}M$, we denote the vector bundle of all normal vectors of M in \tilde{M} . Then, the tangent bundle of \tilde{M} is the direct sum of the tangent bundle TM of M and the normal bundle $T^{\perp}M$ of M in \tilde{M} , i.e.,

$$T\tilde{M} = TM \oplus T^{\perp}M. \tag{2}$$

We note that if the sub-manifold M is of codimension one in \tilde{M} and they are both orientiable, we can always choose a normal section ξ on M, i.e.,

$$g(X,\xi) = 0, \ g(\xi,\xi) = 1,$$
 (3)

where *X* is any arbitrary vector field on *M*.

By $\tilde{\nabla}$, denote the Riemannian connection on \tilde{M} and we put

$$\tilde{\nabla}_X Y = \nabla_X Y + h(X, Y) \tag{4}$$

for any vector fields X, Y tangent to M, where $\nabla_X Y$ and h(X,Y) are tangential and the normal components of $\tilde{\nabla}_X Y$, respectively. Formula (4) is called the Gauss formula for the sub-manifold M of a Riemannian manifold (\tilde{M}, \tilde{g}) .

Proposition 1.1. ∇ **is the Riemannian connection of the induced metric** $g = i^* \tilde{g}$ on M and h(X, Y) is a normal vector field over M, which is symmetric and bilinear in X and Y.

Proof: Let α and β be differentiable functions on M. Then, we have

$$\tilde{\nabla}_{\alpha X}(\beta Y) = \alpha \{ X(\beta)Y + \beta \tilde{\nabla}_X Y \}
= \alpha \{ X(\beta)Y + \beta \nabla_X Y + \beta h(X, Y) \}
\nabla_{\alpha X} \beta Y + h(\alpha X, \beta Y) = \alpha \beta \nabla_X Y + \alpha X(\beta)Y + \alpha \beta h(X, Y)$$
(5)

This implies that

$$\nabla_{\alpha X}(\beta Y) = \alpha X(\beta) Y + \alpha \beta \nabla_X Y \tag{6}$$

and

$$h(\alpha X, \beta Y) = \alpha \beta h(X, Y). \tag{7}$$

Eq. (6) shows that ∇ defines an affine connection on M and Eq. (4) shows that h is bilinear in X and Y since additivity is trivial [1].

Since the Riemannian connection $\tilde{\nabla}$ has no torsion, we have

$$0 = \tilde{\nabla}_X Y - \tilde{\nabla}_Y X - [X, Y] = \nabla_X Y + h(X, Y) - \nabla_X Y - h(Y, X) - [X, Y]. \tag{8}$$

By comparing the tangential and normal parts of the last equality, we obtain

$$\nabla_X Y - \nabla_Y X = [X, Y] \tag{9}$$

and

$$h(X,Y) = h(Y,X). \tag{10}$$

These equations show that ∇ has no torsion and h is a symmetric bilinear map. Since the metric \tilde{g} is parallel, we can easily see that

$$(\nabla_{X}g)(Y,Z) = (\tilde{\nabla}_{X}\tilde{g})(Y,Z)$$

$$= \tilde{g}(\tilde{\nabla}_{X}Y,Z) + \tilde{g}(Y,\tilde{\nabla}_{X}Z)$$

$$= \tilde{g}\left(\nabla_{X}Y + h(X,Y),Z\right) + \tilde{g}(Y,\nabla_{X}Z + h(X,Z))$$

$$= \tilde{g}(\nabla_{X}Y,Z) + \tilde{g}(Y,\nabla_{X}Z)$$

$$= g(\nabla_{X}Y,Z) + g(Y,\nabla_{X}Z)$$

$$= (11)$$

for any vector fields X, Y, Z tangent to M, that is, ∇ is also the Riemannian connection of the induced metric g on M.

We recall h the second fundamental form of the sub-manifold M (or immersion i), which is defined by

$$h: \Gamma(TM) \times \Gamma(TM) \to \Gamma(T^{\perp}M).$$
 (12)

If h = 0 identically, then sub-manifold M is said to be totally geodesic, where $\Gamma(T^{\perp}M)$ is the set of the differentiable vector fields on normal bundle of M.

Totally geodesic sub-manifolds are simplest sub-manifolds.

Definition 1.1. Let M be an n-dimensional sub-manifold of an m-dimensional Riemannian manifold (\tilde{M}, \tilde{g}) . By h, we denote the second fundamental form of M in \tilde{M} .

 $H = \frac{1}{n} \operatorname{trace}(h)$ is called the mean curvature vector of M in \tilde{M} . If H = 0, the sub-manifold is called minimal.

On the other hand, M is called pseudo-umbilical if there exists a function λ on M, such that

$$\tilde{g}(h(X,Y),H) = \lambda g(X,Y) \tag{13}$$

for any vector fields X, Y on M and M is called totally umbilical sub-manifold if

$$h(X,Y) = g(X,Y)H. \tag{14}$$

It is clear that every minimal sub-manifold is pseudo-umbilical with $\lambda=0$. On the other hand, by a direct calculation, we can find $\lambda=\tilde{g}(H,H)$ for a pseudo-umbilical sub-manifold. So, every

totally umbilical sub-manifold is a pseudo-umbilical and a totally umbilical sub-manifold is totally geodesic if and only if it is minimal [2].

Now, let M be a sub-manifold of a Riemannian manifold (\tilde{M}, \tilde{g}) and V be a normal vector field on M. Then, we decompose

$$\tilde{\nabla}_X V = -A_V X + \nabla_X^{\perp} V, \tag{15}$$

where $A_V X$ and $\nabla_X^{\perp} V$ denote the tangential and the normal components of $\nabla_X^{\perp} V$, respectively. We can easily see that $A_V X$ and $\nabla_X^{\perp} V$ are both differentiable vector fields on M and normal bundle of M, respectively. Moreover, Eq. (15) is also called Weingarten formula.

Proposition 1.2. Let M be a sub-manifold of a Riemannian manifold (\tilde{M}, \tilde{g}) . Then

- (a) $A_V X$ is bilinear in vector fields V and X. Hence, $A_V X$ at point $p \in M$ depends only on vector fields V_p and X_p .
- (b) For any normal vector field *V* on *M*, we have

$$g(A_V X, Y) = g(h(X, Y), V).$$
(16)

Proof: Let α and β be any two functions on M. Then, we have

$$\tilde{\nabla}_{\alpha X}(\beta V) = \alpha \tilde{\nabla}_{X}(\beta V)$$

$$= \alpha \{ X(\beta)V + \beta \tilde{\nabla}_{X}V \}$$

$$-A_{\beta V}\alpha X + \nabla^{\perp}_{\alpha X}\beta V = \alpha X(\beta)V - \alpha \beta A_{V}X + \alpha \beta \nabla^{\perp}_{X}V. \tag{17}$$

This implies that

$$A_{\beta V}\alpha X = \alpha \beta A_V X \tag{18}$$

and

$$\nabla^{\perp}_{\alpha X} \beta V = \alpha X(\beta) V + \alpha \beta \nabla^{\perp}_{X} V. \tag{19}$$

Thus, $A_V X$ is bilinear in V and X. Additivity is trivial. On the other hand, since g is a Riemannian metric,

$$X\tilde{g}(Y,V) = 0, (20)$$

for any $X, Y \in \Gamma(TM)$ and $V \in \Gamma(T^{\perp}M)$.

Eq. (12) implies that

$$\tilde{g}(\tilde{\nabla}_X Y, V) + \tilde{g}(Y, \tilde{\nabla}_X V) = 0. \tag{21}$$

By means of Eqs. (4) and (15), we obtain

$$\tilde{g}(h(X,Y),V)-g(A_VX,Y)=0.$$
(22)

The proof is completed [3].

Let M be a sub-manifold of a Riemannian manifold (\tilde{M}, \tilde{g}) , and h and A_V denote the second fundamental form and shape operator of M, respectively.

The covariant derivative of h and A_V is, respectively, defined by

$$(\tilde{\nabla}_X h)(Y, Z) = \nabla_X^{\perp} h(Y, Z) - h(\nabla_X Y, Z) - h(Y, \nabla_X Z)$$
(23)

and

$$(\nabla_X A)_V Y = \nabla_X (A_V Y) - A_{\nabla_V^{\perp} V} Y - A_V \nabla_X Y \tag{24}$$

for any vector fields X, Y tangent to M and any vector field V normal to M. If $\nabla_X h = 0$ for all X, then the second fundamental form of M is said to be parallel, which is equivalent to $\nabla_X A = 0$. By direct calculations, we get the relation

$$g((\nabla_X h)(Y, Z), V) = g((\nabla_X A)_V Y, Z). \tag{25}$$

Example 1.1. We consider the isometric immersion

$$\phi: \mathbb{R}^2 \to \mathbb{R}^4, \tag{26}$$

$$\phi(x_1, x_2) = (x_1, \sqrt{x_1^2 - 1}, x_2, \sqrt{x_2^2 - 1})$$
(27)

we note that $M = \phi(\mathbb{R}^2) \subset \mathbb{R}^4$ is a two-dimensional sub-manifold of \mathbb{R}^4 and the tangent bundle is spanned by the vectors

$$TM = S_p \Big\{ e_1 = \Big(\sqrt{x_1^2 - 1}, x_1, 0, 0 \Big), e_2 = \Big(0, 0, \sqrt{x_2^2 - 1}, x_2 \Big) \Big\}$$
 and the normal vector fields

$$T^{\perp}M = sp\left\{w_1 = \left(-x_1, \sqrt{x_1^2 - 1}, 0, 0\right), w_2 = (0, 0, -x_1, \sqrt{x_2^2 - 1})\right\}.$$
 (28)

By $\tilde{\nabla}$, we denote the Levi-Civita connection of \mathbb{R}^4 , the coefficients of connection, are given by

$$\tilde{\nabla}_{e_1} e_1 = \frac{2x_1 \sqrt{x_1^2 - 1}}{2x_1^2 - 1} e_1 - \frac{1}{2x_1^2 - 1} w_1, \tag{29}$$

$$\tilde{\nabla}_{e_2} e_2 = \frac{2x_2 \sqrt{x_2^2 - 1}}{2x_2^2 - 1} e_2 - \frac{1}{2x_2^2 - 1} w_2 \tag{30}$$

and

$$\nabla_{e_2} e_1 = 0. \tag{31}$$

Thus, we have $h(e_1, e_1) = -\frac{1}{2x_1^2 - 1} w_1$, $h(e_2, e_2) = -\frac{1}{2x_2^2 - 1} w_2$ and $h(e_2, e_1) = 0$. The mean curvature vector of $M = \phi(\mathbb{R}^2)$ is given by

$$H = -\frac{1}{2}(w_1 + w_2). \tag{32}$$

Furthermore, by using Eq. (16), we obtain

$$g(A_{w_1}e_1, e_1) = g(h(e_1, e_1), w_1) = -\frac{1}{2x_1^2 - 1}(x_1^2 + x_1^2 - 1) = -1,$$

$$g(A_{w_1}e_2, e_2) = g(h(e_2, e_2), w_1) = -\frac{1}{2x_2^2 - 1}g(w_1, w_2) = 0,$$

$$g(A_{w_1}e_1, e_2) = 0,$$
(33)

and

$$g(A_{w_2}e_1, e_1) = g(h(e_1, e_1), w_2) = 0,$$

$$g(A_{w_2}e_1, e_2) = 0, g(A_{w_2}e_2, e_2) = 1.$$
(34)

Thus, we have

$$A_{w_1} = \begin{pmatrix} -1 & 0 \\ 0 & 0 \end{pmatrix} \text{ and } A_{w_2} = \begin{pmatrix} 0 & 0 \\ 0 & -1 \end{pmatrix}. \tag{35}$$

Now, let M be a sub-manifold of a Riemannian manifold (\tilde{M},g) , \tilde{R} and R be the Riemannian curvature tensors of \tilde{M} and M, respectively. From then the Gauss and Weingarten formulas, we have

$$\tilde{R}(X,Y)Z = \tilde{\nabla}_{X}\tilde{\nabla}_{Y}Z - \tilde{\nabla}_{Y}\tilde{\nabla}_{X}Z - \tilde{\nabla}_{[X,Y]}Z$$

$$= \tilde{\nabla}_{X}\Big(\nabla_{Y}Z + h(Y,Z)\Big) - \tilde{\nabla}_{Y}\Big(\nabla_{X}Z + h(X,Z)\Big) - \nabla_{[X,Y]}Z - h([X,Y],Z)$$

$$= \tilde{\nabla}_{X}\nabla_{Y}Z + \tilde{\nabla}_{X}h(Y,Z) - \tilde{\nabla}_{Y}\nabla_{X}Z - \tilde{\nabla}_{Y}h(X,Z) - \nabla_{[X,Y]}Z - h(\nabla_{X}Y,Z) + h(\nabla_{Y}X,Z)$$

$$= \nabla_{X}\nabla_{Y}Z - \nabla_{Y}\nabla_{X}Z + h(X,\nabla_{Y}Z) - h(\nabla_{X}Z,Y) + \nabla_{X}^{\perp}h(Y,Z)$$

$$-A_{h(Y,Z)}X - \nabla_{Y}^{\perp}h(X,Z) + A_{h(X,Z)}Y - \nabla_{[X,Y]}Z - h(\nabla_{X}Y,Z) + h(\nabla_{Y}X,Z)$$

$$= \nabla_{X}\nabla_{Y}Z - \nabla_{Y}\nabla_{X}Z - \nabla_{[X,Y]}Z + \nabla_{X}^{\perp}h(Y,Z) - h(\nabla_{X}Y,Z)$$

$$-h(Y,\nabla_{X}Z) - \nabla_{Y}^{\perp}h(X,Z) + h(\nabla_{Y}X,Z) + h(\nabla_{Y}Z,X)$$

$$+A_{h(X,Z)}Y - A_{h(Y,Z)}X$$

$$= R(X,Y)Z + (\nabla_{X}h)(Y,Z) - (\nabla_{Y}h)(X,Z) + A_{h(X,Z)}Y - A_{h(Y,Z)}X$$
(36)

from which

$$\tilde{R}(X,Y)Z = R(X,Y)Z + A_{h(X,Z)}Y - A_{h(Y,Z)}X + (\nabla_X h)(Y,Z) - (\nabla_Y h)(X,Z), \tag{37}$$

for any vector fields X, Y and Z tangent to M. For any vector field W tangent to M, Eq. (37) gives the Gauss equation

$$g(\tilde{R}(X,Y)Z,W) = g(R(X,Y)Z,W) + g(h(Y,W),h(X,Z)) - g(h(Y,Z),h(X,W)).$$
(38)

On the other hand, the normal component of Eq. (37) is called equation of Codazzi, which is given by

$$\left(\tilde{R}(X,Y)Z\right)^{\perp} = (\nabla_X h)(Y,Z) - (\nabla_Y h)(X,Z). \tag{39}$$

If the Codazzi equation vanishes identically, then sub-manifold M is said to be curvature-invariant sub-manifold [4].

In particular, if \tilde{M} is of constant curvature, $\tilde{R}(X,Y)Z$ is tangent to M, that is, sub-manifold is curvature-invariant. Whereas, in Kenmotsu space forms, and Sasakian space forms, this not true.

Next, we will define the curvature tensor R^{\perp} of the normal bundle of the sub-manifold M by

$$R^{\perp}(X,Y)V = \nabla_X^{\perp} \nabla_Y^{\perp} V - \nabla_Y^{\perp} \nabla_X^{\perp} V - \nabla_{[X,Y]}^{\perp} V \tag{40}$$

for any vector fields X, Y tangent to sub-manifold M, and any vector field V normal to M. From the Gauss and Weingarten formulas, we have

$$\tilde{R}(X,Y)V = \tilde{\nabla}_{X}\tilde{\nabla}_{Y}V - \tilde{\nabla}_{Y}\tilde{\nabla}_{X}V - \tilde{\nabla}_{[X,Y]}V$$

$$= \tilde{\nabla}_{X}(-A_{V}Y + \nabla_{Y}^{\perp}V) - \tilde{\nabla}_{Y}(-A_{V}X + \nabla_{X}^{\perp}V) + A_{V}[X,Y] - \nabla_{[X,Y]}^{\perp}V$$

$$= -\tilde{\nabla}_{X}A_{V}Y + \tilde{\nabla}_{Y}A_{V}X + \tilde{\nabla}_{X}\nabla_{Y}^{\perp}V - \tilde{\nabla}_{Y}\nabla_{X}^{\perp}V + A_{V}[X,Y] - \nabla_{[X,Y]}^{\perp}V$$

$$= -\nabla_{X}A_{V}Y - h(X,A_{V}Y) + \nabla_{Y}A_{V}X + h(Y,A_{V}X)$$

$$+ \nabla_{X}^{\perp}\nabla_{Y}^{\perp}V - \nabla_{Y}^{\perp}\nabla_{X}^{\perp}V - A_{\nabla_{Y}^{\perp}V}X + A_{\nabla_{X}^{\perp}V}Y + A_{V}[X,Y] - \nabla_{[X,Y]}^{\perp}V$$

$$= \nabla_{X}^{\perp}\nabla_{Y}^{\perp}V - \nabla_{Y}^{\perp}\nabla_{X}^{\perp}V - \nabla_{[X,Y]}^{\perp}V - A_{\nabla_{Y}^{\perp}V}X + A_{\nabla_{X}^{\perp}V}Y + A_{V}[X,Y]$$

$$-\nabla_{X}A_{V}Y + \nabla_{Y}A_{V}X - h(X,A_{V}Y) + h(Y,A_{V}X)$$

$$= R^{\perp}(X,Y)V + h(A_{V}X,Y) - h(X,A_{V}Y) - (\nabla_{X}A_{V}Y + (\nabla_{Y}A_{V}X). \tag{41}$$

For any normal vector *U* to *M*, we obtain

$$g(\tilde{R}(X,Y)V,U) = g(R^{\perp}(X,Y)V,U) + g(h(A_{V}X,Y),U) - g(h(X,A_{V}Y),U)$$

$$= g(R^{\perp}(X,Y)V,U) + g(A_{U}Y,A_{V}X) - g(A_{V}Y,A_{U}X)$$

$$= g(R^{\perp}(X,Y)V,U) + g(A_{V}A_{U}Y,X) - g(A_{U}A_{V}Y,X)$$

$$(42)$$

Since $[A_U, A_V] = A_U A_V - A_V A_U$, Eq. (42) implies

$$g(\tilde{R}(X,Y)V,U) = g(R^{\perp}(X,Y)V,U) + g([A_U,A_V]Y,X). \tag{43}$$

Eq. (43) is also called the Ricci equation.

If $R^{\perp} = 0$, then the normal connection of M is said to be flat [2].

When $(\tilde{R}(X,Y)V)^{\perp} = 0$, the normal connection of the sub-manifold M is flat if and only if the second fundamental form M is commutative, i.e. $[A_U,A_V]=0$ for all U,V. If the ambient space \tilde{M} is real space form, then $(\tilde{R}(X,Y)V)^{\perp}=0$ and hence the normal connection of M is flat if and only if the second fundamental form is commutative. If $\tilde{R}(X,Y)Z$ tangent to M, then equation of codazzi Eq. (37) reduces to

$$(\nabla_X h)(Y, Z) = (\nabla_Y h)(X, Z) \tag{44}$$

which is equivalent to

$$(\nabla_X A)_V Y = (\nabla_Y A)_V X. \tag{45}$$

On the other hand, if the ambient space \tilde{M} is a space of constant curvature c, then we have

$$\tilde{R}(X,Y)Z = c\{g(Y,Z)X - g(X,Z)Y\}$$
(46)

for any vector fields X, Y and Z on \tilde{M} .

Since $\tilde{R}(X, Y)Z$ is tangent to M, the equation of Gauss and the equation of Ricci reduce to

$$g(R(X,Y)Z,W) = c\{g(Y,Z)g(X,W)-g(X,Z)g(Y,W)\}$$
$$+g(h(Y,Z),h(X,W))-g(h(Y,W),h(X,Z))$$
(47)

and

$$g(R^{\perp}(X,Y)V,U) = g([A_U,A_V]X,Y), \tag{48}$$

respectively.

Proposition 1.3. A totally umbilical sub-manifold M in a real space form \tilde{M} of constant curvature c is also of constant curvature.

Proof: Since M is a totally umbilical sub-manifold of \tilde{M} of constant curvature c, by using Eqs. (14) and (46), we have

$$g(R(X,Y)Z,W) = c\{g(Y,Z)g(X,W)-g(X,Z)g(Y,W)\}$$

$$+g(H,H)\{g(Y,Z)g(X,W)-g(X,Z)g(Y,W)\}$$

$$= \{c+g(H,H)\}\{g(Y,Z)g(X,W)-g(X,Z)g(Y,W)\}.$$
(49)

This shows that the sub-manifold M is of constant curvature $c + \|H^2\|$ for n > 2. If n = 2, $\|H\| = \text{constant follows from the equation of Codazzi [3].}$

This proves the proposition.

On the other hand, for any orthonormal basis $\{e_a\}$ of normal space, we have

$$g(Y,Z)g(X,W)-g(X,Z)g(Y,W) = \sum_{a} \left[g(h(Y,Z),e_{a})g(h(X,W),e_{a}) -g(h(X,Z),e_{a})g(h(Y,W),e_{a}) \right]$$

$$= \sum_{a} g(A_{e_{a}}Y,Z)g(A_{e_{a}}X,W)-g(A_{e_{a}}X,Z)g(A_{e_{a}}Y,W)$$
(50)

Thus, Eq. (45) can be rewritten as

$$g(R(X,Y)Z,W) = c\{g(Y,Z)g(X,W) - g(X,Z)g(Y,W)\}$$

$$+ \sum_{a} [g(A_{e_a}Y,Z)g(A_{e_a}X,W) - g(A_{e_a}X,Z)g(A_{e_a}Y,W)]$$
(51)

By using A_{e_n} , we can construct a similar equation to Eq. (47) for Eq. (23).

Now, let S- be the Ricci tensor of M. Then, Eq. (47) gives us

$$S(X,Y) = c\{ng(X,Y) - g(e_i,X)g(e_i,Y)\}$$

$$+ \sum_{e_a} [g(A_{e_a}e_i, e_i)g(A_{e_a}X, Y) - g(A_{e_a}X, e_i)g(A_{e_a}e_i, Y)]$$

$$= c(n-1)g(X,Y) + \sum_{e_a} [Tr(A_{e_a})g(A_{e_a}X, Y) - g(A_{e_a}X, A_{e_a}Y)],$$
(53)

where $\{e_1, e_2, ..., e_n\}$ are orthonormal basis of M.

Therefore, the scalar curvature *r* of sub-manifold *M* is given by

$$r = cn(n-1)\sum_{e_a} Tr^2(A_{e_a}) - \sum_{e_a} Tr(A_{e_a})^2$$
(54)

 $\sum_{e_a} Tr(A_{e_a})^2$ is the square of the length of the second fundamental form of M, which is denoted by $|A_{e_a}|^2$. Thus, we also have

$$\|h^2\| = \sum_{i,j=1}^n g\Big(h(e_i, e_j), h(e_i, e_j)\Big) = \|A^2\|.$$
(55)

2. Distribution on a manifold

An m-dimensional distribution on a manifold \tilde{M} is a mapping \mathcal{D} defined on \tilde{M} , which assignes to each point p of \tilde{M} an m-dimensional linear subspace \mathcal{D}_p of $T_{\tilde{M}}(p)$. A vector field X on \tilde{M} belongs to \mathcal{D} if we have $X_p \in \mathcal{D}_p$ for each $p \in \tilde{M}$. When this happens, we write $X \in \Gamma(\mathcal{D})$. The distribution \mathcal{D} is said to be differentiable if for any $p \in \tilde{M}$, there exist m-differentiable linearly independent vector fields $X_i \in \Gamma(\mathcal{D})$ in a neighbordhood of p.

The distribution \mathcal{D} is said to be involutive if for all vector fields $X, Y \in \Gamma(\mathcal{D})$ we have $[X, Y] \in \Gamma(\mathcal{D})$. A sub-manifold M of \tilde{M} is said to be an integral manifold of \mathcal{D} if for every point $p \in M$, \mathcal{D}_p coincides with the tangent space to M at p. If there exists no integral manifold of \mathcal{D} which contains M, then M is called a maximal integral manifold or a leaf of \mathcal{D} . The distribution \mathcal{D} is said to be integrable if for every $p \in \tilde{M}$, there exists an integral manifold of \mathcal{D} containing p [2].

Let $\tilde{\nabla}$ and distribution be a linear connection on \tilde{M} , respectively. The distribution \mathcal{D} is said to be parallel with respect to \tilde{M} , if we have

$$\tilde{\nabla}_X Y \in \Gamma(\mathcal{D}) \text{ for all } X \in \Gamma(T\tilde{M}) \text{ and } Y \in \Gamma(\mathcal{D})$$
 (56)

Now, let (\tilde{M}, \tilde{g}) be Riemannian manifold and \mathcal{D} be a distribution on \tilde{M} . We suppose \tilde{M} is endowed with two complementary distribution \mathcal{D} and \mathcal{D}^{\perp} , i.e., we have $T\tilde{M} = \mathcal{D} \oplus \mathcal{D}^{\perp}$. Denoted by P and Q the projections of $T\tilde{M}$ to \mathcal{D} and \mathcal{D}^{\perp} , respectively.

Theorem 2.1. All the linear connections with respect to which both distributions \mathcal{D} and \mathcal{D}^{\perp} are parallel, are given by

$$\nabla_{X}Y = P\nabla_{X}'PY + Q\nabla_{X}'QY + PS(X, PY) + QS(X, QY)$$
(57)

for any $X, Y \in \Gamma(T\tilde{M})$, where ∇' and S are, respectively, an arbitrary linear connection and arbitrary tensor field of type (1,2) on \tilde{M} .

Proof: Suppose ∇' is an arbitrary linear connection on \tilde{M} . Then, any linear connection ∇ on \tilde{M} is given by

$$\nabla_X Y = \nabla_X' Y + S(X, Y) \tag{58}$$

for any $X, Y \in \Gamma(T\tilde{M})$. We can put

$$X = PX + QX \tag{59}$$

for any $X \in \Gamma(T\tilde{M})$. Then, we have

$$\nabla_{X}Y = \nabla_{X}(PY + QY) = \nabla_{X}PY + \nabla_{X}QY = \nabla'_{X}PY + S(X, PY)$$

$$+\nabla'_{X}QY + S(X, QY) = P\nabla'_{X}PY + Q\nabla'_{X}PY + PS(X, PY) + QS(X, PY)$$

$$+P\nabla'_{X}QY + Q\nabla'_{X}QY + PS(X, QY) + QS(X, QY)$$
(60)

for any $X, Y \in \Gamma(T\tilde{M})$.

The distributions \mathcal{D} and \mathcal{D} are both parallel with respect to ∇ if and only if we have

$$\phi(\nabla_X PY) = 0 \text{ and } P(\nabla_X QY) = 0. \tag{61}$$

From Eqs. (58) and (61), it follows that \mathcal{D} and \mathcal{D}^{\perp} are parallel with respect to ∇ if and only if

$$Q\nabla'_{X}PY + QS(X, PY) = 0 \text{ and } P\nabla'_{X}QY + PS(X, QY) = 0.$$
(62)

Thus, Eqs. (58) and (62) give us Eq. (57).

Next, by means of the projections P and Q, we define a tensor field F of type (1,1) on \tilde{M} by

$$FX = PX - QX \tag{63}$$

for any $X \in \Gamma(T\tilde{M})$. By a direct calculation, it follows that $F^2 = I$. Thus, we say that F defines an almost product structure on \tilde{M} . The covariant derivative of F is defined by

$$(\nabla_X F)Y = \nabla_X FY - F\nabla_X Y \tag{64}$$

for all $X, Y \in \Gamma(T\tilde{M})$. We say that the almost product structure F is parallel with respect to the connection ∇ , if we have $\nabla_X F = 0$. In this case, F is called the Riemannian product structure [2].

Theorem 2.2. Let (\tilde{M}, \tilde{g}) be a Riemannian manifold and \mathcal{D} , \mathcal{D}^{\perp} be orthogonal distributions on \tilde{M} such that $T\tilde{M} = \mathcal{D} \oplus \mathcal{D}^{\perp}$. Both distributions \mathcal{D} and \mathcal{D}^{\perp} are parallel with respect to ∇ if and only if F is a Riemannian product structure.

Proof: For any $X, Y \in \Gamma(T\tilde{M})$, we can write

$$\tilde{\nabla}_{Y}PX = \tilde{\nabla}_{PY}PX + \tilde{\nabla}_{QY}PX \tag{65}$$

and

$$\tilde{\nabla}_{Y}X = \tilde{\nabla}_{PY}PX + \tilde{\nabla}_{PY}QX + \tilde{\nabla}_{OY}PX + \tilde{\nabla}_{OY}QX, \tag{66}$$

from which

$$g(\tilde{\nabla}_{QY}PX, QZ) = QYg(PX, QZ) - g(\nabla_{QY}QZ, PX) = 0 - g(\tilde{\nabla}_{QY}QZ, PX) = 0, \tag{67}$$

that is, $\nabla_{QY}PX \in \Gamma(\mathcal{D})$ and so $P\tilde{\nabla}_{QY}PX = \tilde{\nabla}_{QY}PX$,

$$Q\tilde{\nabla}_{QY}PX = 0. ag{68}$$

In the same way, we obtain

$$g(\tilde{\nabla}_{PY}QX, PZ) = PYg(QX, PZ) - g(QX, \tilde{\nabla}_{PY}PZ) = 0, \tag{69}$$

which implies that

$$P\tilde{\nabla}_{PY}QX = 0 \text{ and } Q\tilde{\nabla}_{PY}QX = \tilde{\nabla}_{PY}QX. \tag{70}$$

From Eqs. (66), (68) and (70), it follows that

$$P\tilde{\nabla}_{Y}X = \tilde{\nabla}_{PY}PX + \tilde{\nabla}_{OY}PX. \tag{71}$$

By using Eqs. (64) and (71), we obtain

$$(\tilde{\nabla}_{Y}P)X = \tilde{\nabla}_{Y}PX - P\tilde{\nabla}_{Y}X = \tilde{\nabla}_{PY}PX + \tilde{\nabla}_{QY}PX - \tilde{\nabla}_{PY}PX - \tilde{\nabla}_{QY}PX = 0.$$
 (72)

In the same way, we can find $\tilde{\nabla}Q = 0$. Thus, we obtain

$$\tilde{\nabla}F = \tilde{\nabla}(P - Q) = 0. \tag{73}$$

This proves our assertion [2].

Theorem 2.3. Both distributions \mathcal{D} and \mathcal{D}^{\perp} are parallel with respect to Levi-Civita connection ∇ if and only if they are integrable and their leaves are totally geodesic in \tilde{M} .

Proof: Let us assume both distributions \mathcal{D} and \mathcal{D}^{\perp} are parallel. Since ∇ is a torsion free linear connection, we have

$$[X, Y] = \nabla_X Y - \nabla_Y X \in \Gamma(\mathcal{D}), \text{ for any } X, Y \in \Gamma(\mathcal{D})$$
(74)

and

$$[U, V] = \nabla_{U} V - \nabla_{V} U \in \Gamma(\mathcal{D}^{\perp}), \text{ for any } U, V \in \Gamma(\mathcal{D}^{\perp})$$
(75)

Thus, \mathcal{D} and \mathcal{D}^{\perp} are integrable distributions. Now, let M be a leaf of \mathcal{D} and denote by h the second fundamental form of the immersion of M in \tilde{M} . Then by the Gauss formula, we have

$$\nabla_X Y = \nabla_X' Y + h(X, Y) \tag{76}$$

for any $X, Y \in \Gamma(\mathcal{D})$, where ∇' denote the Levi-Civita connection on M. Since \mathcal{D} is parallel from Eq. (76) we conclude h = 0, that is, M is totally in \tilde{M} . In the same way, it follows that each leaf of \mathcal{D}^{\perp} is totally geodesic in \tilde{M} .

Conversely, suppose \mathcal{D} and \mathcal{D}^{\perp} be integrable and their leaves are totally geodesic in \tilde{M} . Then by using Eq. (4), we have

$$\nabla_X Y \in \Gamma(\mathcal{D}) \text{ for any } X, Y \in \Gamma(\mathcal{D})$$
 (77)

and

$$\nabla_U V \in \Gamma(\mathcal{D}^{\perp}) \text{ for any } U, V \in \Gamma(\mathcal{D}^{\perp}).$$
 (78)

Since *g* is a Riemannian metric tensor, we obtain

$$g(\nabla_U Y, V) = -g(Y, \nabla_U V) = 0 \tag{79}$$

and

$$g(\nabla_X V, Y) = -g(V, \nabla_X Y) = 0 \tag{80}$$

for any $X, Y \in \Gamma(\mathcal{D})$ and $U, V \in \Gamma(\mathcal{D}^{\perp})$. Thus, both distributions \mathcal{D} and \mathcal{D}^{\perp} are parallel on \tilde{M} .

3. Locally decomposable Riemannian manifolds

Let (\tilde{M}, \tilde{g}) be n-dimensional Riemannian manifold and F be a tensor (1,1)-type on \tilde{M} such that $F^2 = I$, $F \neq \mp I$.

If the Riemannian metric tensor \tilde{g} satisfying

$$\tilde{g}(X,Y) = \tilde{g}(FX,FY)$$
 (81)

for any $X, Y \in \Gamma(T\tilde{M})$ then \tilde{M} is called almost Riemannian product manifold and F is said to be almost Riemannian product structure. If F is parallel, that is, $(\tilde{\nabla}_X F)Y = 0$, then \tilde{M} is said to be locally decomposable Riemannian manifold.

Now, let \tilde{M} be an almost Riemannian product manifold. We put

$$P = \frac{1}{2}(I+F), \ Q = \frac{1}{2}(I-F). \tag{82}$$

Then, we have

$$P + Q = I$$
, $P^2 = P$, $Q^2 = Q$, $PQ = QP = 0$ and $F = P - Q$. (83)

Thus, P and Q define two complementary distributions P and Q globally. Since $F^2 = I$, we easily see that the eigenvalues of F are 1 and -1. An eigenvector corresponding to the eigenvalue 1 is in P and an eigenvector corresponding to -1 is in Q. If F has eigenvalue 1 of multiplicity P and eigenvalue -1 of multiplicity P, then the dimension of P is P and that of P is P and that of P is P and P of dimension P and P and P of dimension P and P and P and P and P and P and P are P and P and P are P and P and P are P are P and P are P and P are P and P are P are P and P are P and P are P are P and P are P and P are P are P and P are P are P and P are P and P are P are P and P are P are P are P and P are P are P and P are P and P are P are P are P and P are P are P and P are P

Let $(\tilde{M}, \tilde{g}, F)$ be a locally decomposable Riemannian manifold and we denote the integral manifolds of the distributions P and Q by M^p and M^q , respectively. Then we can write $\tilde{M} = M^p X M^q$, (p, q > 2). Also, we denote the components of the Riemannian curvature R of \tilde{M} by R_{dcba} , $1 \le a, b, c, d \le n = p + q$.

Now, we suppose that the two components are both of constant curvature λ and μ . Then, we have

$$R_{dcba} = \lambda \{ g_{da}g_{cb} - g_{ca}g_{db} \} \tag{84}$$

and

$$R_{zyxw} = \mu \{ g_{zw} g_{ux} - g_{yw} g_{zx} \}. \tag{85}$$

Then, the above equations may also be written in the form

$$R_{kjih} = \frac{1}{4} (\lambda + \mu) \{ (g_{kh}g_{ji} - g_{jh}g_{ki}) + (F_{kh}F_{ji} - F_{jh}F_{ki}) \}$$

$$+ \frac{1}{4} (\lambda - \mu) \{ (F_{kh}g_{ji} - F_{jh}g_{ki}) + (g_{kh}F_{ji} - g_{jh}F_{ki}) \}.$$
(86)

Conversely, suppose that the curvature tensor of a locally decomposable Riemannian manifold has the form

$$R_{kjih} = a\{(g_{kh}g_{ji} - g_{jh}g_{ki}) + (F_{kh}F_{ji} - F_{jh}F_{ki})\} + b\{(F_{kh}g_{ji} - F_{jh}g_{ki}) + (g_{kh}F_{ji} - g_{jh}F_{ki})\}.$$
(87)

Then, we have

$$R_{cdba} = 2(a+b)\{g_{da}g_{cb} - g_{ca}g_{db}\}$$
(88)

and

$$R_{zyxw} = 2(a-b)\{g_{zyy}g_{yy} - g_{yyy}g_{zx}\}.$$
 (89)

Let \tilde{M} be an m-dimensional almost Riemannian product manifold with the Riemannian structure (F, \tilde{g}) and M be an n-dimensional sub-manifold of \tilde{M} . For any vector field X tangent to M, we put

$$FX = fX + wX, (90)$$

where fX and wX denote the tangential and normal components of FX, with respect to M, respectively. In the same way, for $V \in \Gamma(T^{\perp}M)$, we also put

$$FV = BV + CV, (91)$$

where BV and CV denote the tangential and normal components of FV, respectively.

Then, we have

$$f^2 + Bw = I, Cw + wf = 0 (92)$$

and

$$fB + BC = 0, wB + C^2 = I.$$
 (93)

On the other hand, we can easily see that

$$g(X, fY) = g(fX, Y) \tag{94}$$

and

$$g(X,Y) = g(fX,fY) + g(wX,wY)$$
(95)

for any $X, Y \in \Gamma(TM)$ [6].

If wX = 0 for all $X \in \Gamma(TM)$, then M is said to be invariant sub-manifold in \tilde{M} , i.e., $F(T_M(p)) \subset T_M(p)$ for each $p \in M$. In this case, $f^2 = I$ and g(fX, fY) = g(X, Y). Thus, (f, g) defines an almost product Riemannian on M.

Conversely, (f,g) is an almost product Riemannian structure on M, the w=0 and hence M is an invariant sub-manifold in \tilde{M} .

Consequently, we can give the following theorem [7].

Theorem 3.1. Let M be a sub-manifold of an almost Riemannian product manifold \tilde{M} with almost Riemannian product structure (F, \tilde{g}) . The induced structure (f, g) on M is an almost Riemannian product structure if and only if M is an invariant sub-manifold of \tilde{M} .

Definition 3.1. Let M be a sub-manifold of an almost Riemannian product \tilde{M} with almost product Riemannian structure (F, \tilde{g}) . For each non-zero vector $X_p \in T_M(p)$ at $p \in M$, we denote the slant angle between FX_p and $T_M(p)$ by $\theta(p)$. Then M said to be slant sub-manifold if the angle $\theta(p)$ is constant, i.e., it is independent of the choice of $p \in M$ and $X_p \in T_M(p)$ [5].

Thus, invariant and anti-invariant immersions are slant immersions with slant angle $\theta = 0$ and $\theta = \frac{\pi}{2}$, respectively. A proper slant immersion is neither invariant nor anti-invariant.

Theorem 3.2. Let M be a sub-manifold of an almost Riemannian product manifold \tilde{M} with almost product Riemannian structure (F, \tilde{g}) . M is a slant sub-manifold if and only if there exists a constant $\lambda \in (0, 1)$, such tha

$$f^2 = \lambda I. (96)$$

Furthermore, if the slant angle is θ , then it satisfies $\lambda = \cos^2 \theta$ [9].

Definition 3.2. Let M be a sub-manifold of an almost Riemannian product manifold \tilde{M} with almost Riemannian product structure (F, \tilde{g}) . M is said to be semi-slant sub-manifold if there exist distributions \mathcal{D}^{θ} and \mathcal{D}^{T} on M such that

- (i) TM has the orthogonal direct decomposition $TM = \mathcal{D} \oplus \mathcal{D}^T$.
- (ii) The distribution \mathcal{D}^{θ} is a slant distribution with slant angle θ .
- (iii) The distribution \mathcal{D}^T is an invariant distribution, .e., $F(\mathcal{D}_T) \subseteq \mathcal{D}^T$.

In a semi-slant sub-manifold, if $\theta = \frac{\pi}{2}$, then semi-slant sub-manifold is called semi-invariant sub-manifold [8].

Example 3.1. Now, let us consider an immersed sub-manifold M in \mathbb{R}^7 given by the equations

$$x_1^2 + x_2^2 = x_5^2 + x_6^2, x_3 + x_4 = 0. (97)$$

By direct calculations, it is easy to check that the tangent bundle of *M* is spanned by the vectors

$$z_{1} = \cos\theta \frac{\partial}{\partial x_{1}} + \sin\theta \frac{\partial}{\partial x_{2}} + \cos\beta \frac{\partial}{\partial x_{5}} + \sin\beta \frac{\partial}{\partial x_{6}}$$

$$z_{2} = -u\sin\theta \frac{\partial}{\partial x_{1}} + u\cos\theta \frac{\partial}{\partial x_{2}}, z_{3} = \frac{\partial}{\partial x_{3}} - \frac{\partial}{\partial x_{4}},$$

$$z_{4} = -u\sin\beta \frac{\partial}{\partial x_{5}} + u\cos\beta \frac{\partial}{\partial x_{6}}, z_{5} = \frac{\partial}{\partial x_{7}},$$
(98)

where θ , β and u denote arbitrary parameters.

For the coordinate system of $\mathbb{R}^7 = \{(x_1, x_2, x_3, x_4, x_5, x_6, x_7) | x_i \in \mathbb{R}, 1 \le i \le 7\}$, we define the almost product Riemannian structure F as follows:

$$F\left(\frac{\partial}{\partial x_i}\right) = \frac{\partial}{\partial x_i}, F\left(\frac{\partial}{\partial x_j}\right) = \frac{\partial}{\partial x_j}, 1 \le i \le 3 \text{ and } 4 \le j \le 7.$$
 (99)

Since Fz_1 and Fz_3 are orthogonal to M and Fz_2,Fz_4,Fz_5 are tangent to M, we can choose a $\mathcal{D} = S_p\{z_2,z_4,z_5\}$ and $\mathcal{D}^{\perp} = S_p\{z_1,z_3\}$. Thus, M is a 5-dimensional semi-invariant sub-manifold of \mathbb{R}^7 with usual almost Riemannian product structure (F, <, >).

Example 3.2. Let M be sub-manifold of \mathbb{R}^8 by given

$$(u+v, u-v, u\cos\alpha, u\sin\alpha, u+v, u-v, u\cos\beta, u\sin\beta)$$
 (100)

where u, v and β are the arbitrary parameters. By direct calculations, we can easily see that the tangent bundle of M is spanned by

$$e_{1} = \frac{\partial}{\partial x_{1}} + \frac{\partial}{\partial x_{2}} + \cos\alpha \frac{\partial}{\partial x_{3}} + \sin\alpha \frac{\partial}{\partial x_{4}} + \frac{\partial}{\partial x_{5}} - \frac{\partial}{\partial x_{6}} + \cos\beta \frac{\partial}{\partial x_{7}} + \sin\beta \frac{\partial}{\partial x_{8}}$$

$$e_{2} = \frac{\partial}{\partial x_{1}} - \frac{\partial}{\partial x_{2}} + \frac{\partial}{\partial x_{5}} + \frac{\partial}{\partial x_{6}}, e_{3} = -u\sin\frac{\partial}{\partial x_{3}} + u\cos\alpha \frac{\partial}{\partial x_{4}},$$

$$e_{4} = -u\sin\beta \frac{\partial}{\partial x_{7}} + u\cos\beta \frac{\partial}{\partial x_{8}}.$$

$$(101)$$

For the almost Riemannian product structure F of $\mathbb{R}^8 = \mathbb{R}^4 \times \mathbb{R}^4$, F(TM) is spanned by vectors

$$Fe_{1} = \frac{\partial}{\partial x_{1}} + \frac{\partial}{\partial x_{2}} + \cos\alpha \frac{\partial}{\partial x_{3}} + \sin\alpha \frac{\partial}{\partial x_{4}} - \frac{\partial}{\partial x_{5}} + \frac{\partial}{\partial x_{6}} - \cos\beta \frac{\partial}{\partial x_{7}} - \sin\beta \frac{\partial}{\partial x_{8}},$$

$$Fe_{2} = \frac{\partial}{\partial x_{1}} - \frac{\partial}{\partial x_{2}} - \frac{\partial}{\partial x_{5}} - \frac{\partial}{\partial x_{6}}, \quad Fe_{3} = e_{3} \text{ and } Fe_{4} = -e_{4}.$$
(102)

Since Fe_1 and Fe_2 are orthogonal to M and Fe_3 and Fe_4 are tangent to M, we can choose $\mathcal{D}^T = Sp\{e_3, e_4\}$ and $\mathcal{D}^\perp = Sp\{e_1, e_2\}$. Thus, M is a four-dimensional semi-invariant sub-manifold of $\mathbb{R}^8 = \mathbb{R}^4 x \mathbb{R}^4$ with usual Riemannian product structure F.

Definition 3.3. Let M be a sub-manifold of an almost Riemannian product manifold \tilde{M} with almost Riemannian product structure (F, \tilde{g}) . M is said to be pseudo-slant sub-manifold if there exist distributions \mathcal{D}_{θ} and \mathcal{D}_{\perp} on M such that

- **i.** The tangent bundle $TM = \mathcal{D}_{\theta} \oplus \mathcal{D}^{\perp}$.
- ii. The distribution \mathcal{D}_{θ} is a slant distribution with slant angle θ .
- **iii.** The distribution \mathcal{D}^{\perp} is an anti-invariant distribution, i.e., $F(\mathcal{D}^{\perp}) \subseteq T^{\perp}M$.

As a special case, if $\theta = 0$ and $\theta = \frac{\pi}{2}$, then pseudo-slant sub-manifold becomes semi-invariant and anti-invariant sub-manifolds, respectively.

Example 3.3. Let *M* be a sub-manifold of \mathbb{R}^6 by the given equation

$$(\sqrt{3}u, v, v\sin\theta, v\cos\theta, s\cos t, -s\cos t) \tag{103}$$

where u, v, s and t arbitrary parameters and θ is a constant.

We can check that the tangent bundle of *M* is spanned by the tangent vectors

$$e_{1} = \sqrt{3} \frac{\partial}{\partial x_{1}}, e_{2} = \frac{\partial}{\partial y_{1}} + \sin\theta \frac{\partial}{\partial x_{2}} + \cos\theta \frac{\partial}{\partial y_{2}},$$

$$e_{3} = \cos t \frac{\partial}{\partial x_{3}} - \cos t \frac{\partial}{\partial y_{3}}, e_{4} = -\sin t \frac{\partial}{\partial x_{3}} + \sin t \frac{\partial}{\partial y_{3}}.$$

$$(104)$$

For the almost product Riemannian structure F of \mathbb{R}^6 whose coordinate systems $(x_1,y_1,x_2,y_2,x_3,y_3)$ choosing

$$F\left(\frac{\partial}{\partial x_i}\right) = \frac{\partial}{\partial y_i}, 1 \le i \le 3,$$

$$F\left(\frac{\partial}{\partial y_j}\right) = \frac{\partial}{\partial x_j}, 1 \le j \le 3,$$
(105)

Then, we have

$$Fe_{1} = \sqrt{3} \frac{\partial}{\partial y_{1}}, Fe_{2} = -\frac{\partial}{\partial x_{1}} + \sin\theta \frac{\partial}{\partial y_{2}} - \cos\theta \frac{\partial}{\partial x_{2}}$$

$$Fe_{3} = \cos t \frac{\partial}{\partial y_{3}} + \cos t \frac{\partial}{\partial x_{3}}, Fe_{4} = -\sin t \frac{\partial}{\partial y_{3}} - \sin t \frac{\partial}{\partial x_{3}}.$$
(106)

Thus, $\mathcal{D}_{\theta} = S_p\{e_1, e_2\}$ is a slant distribution with slant angle $\alpha = \frac{\pi}{4}$. Since Fe_3 and Fe_4 are orthogonal to M, $\mathcal{D}^{\perp} = S_p\{e_3, e_4\}$ is an anti-invariant distribution, that is, M is a 4-dimensional proper pseudo-slant sub-manifold of \mathbb{R}^6 with its almost Riemannian product structure (F, <, >).

Author details

Mehmet Atçeken¹*, Ümit Yıldırım¹ and Süleyman Dirik²

- *Address all correspondence to: mehmet.atceken382@gmail.com
- 1 Department of Mathematics, Faculty of Arts and Sciences, Gaziosmanpasa University, Tokat, Turkey
- 2 Department of Statistic, Faculty of Arts and Sciences, Amasya University, Amasya, Turkey

References

- [1] Katsuei Kenmotsu, editor. Differential Geometry of Submaifolds. Berlin: Springe-Verlag; 1984. 134 p.
- [2] Aurel Bejancu. Geometry of CR-Submanifolds. Dordrecht: D. Reidel Publishing Company; 1986. 172 p. DOI: QA649.B44
- [3] Bang-Yen Chen. Geometry of Submanifolds. New York: Marcel Dekker, Inc.; 1973. 298 p.
- [4] Kentaro Yano and Masahiro Kon. Structurs on Manifolds. Singapore: World Scientific Publishing Co. Pte. Ltd.; 1984. 508 p. DOI: QA649.Y327
- [5] Meraj Ali Khan. Geometry of Bi-slant submanifolds "Some geometric aspects on submanifolds Theory". Saarbrücken, Germany: Lambert Academic Publishing; 2006. 112 p.

- [6] Mehmet Atçeken. Warped product semi-invariant submanifolds in almost paracontact Riemannian manifolds. Mathematical Problems in Engineering. 2009;2009:621625. DOI: doi:10.1155/2009/621625
- [7] Tyuzi Adati. Submanifolds of an almost product Riemannian manifold. Kodai Mathematical Journal. 1981;4(2):327–343.
- [8] Mehmet Atçeken. A condition for warped product semi-invariant submanifolds to be Riemannian product semi-invariant Sub-manifoldsub-manifolds in locally Riemannian product manifolds. Turkish Journal of Mathematics. 2008;33:349–362.
- [9] Mehmet Atçeken. Slant submanifolds of a Riemannian product manifold. Acta Mathematica Scientia. 2010;**30**(1):215–224. DOI: doi:10.1016/S0252-9602(10)60039-2

IntechOpen

IntechOpen