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Abstract

In this chapter, we introduce the theory of sub-manifolds of a Riemannian manifold. The
fundamental notations are given. The theory of sub-manifolds of an almost Riemannian
product manifold is one of the most interesting topics in differential geometry.
According to the behaviour of the tangent bundle of a sub-manifold, with respect to
the action of almost Riemannian product structure of the ambient manifolds, we have
three typical classes of sub-manifolds such as invariant sub-manifolds, anti-invariant
sub-manifolds and semi-invariant sub-manifolds. In addition, slant, semi-slant and
pseudo-slant sub-manifolds are introduced by many geometers.

Keywords: Riemannian product manifold, Riemannian product structure, integral
manifold, a distribution on a manifold, real product space forms, a slant distribution

1. Introduction

Let i: M — M be an immersion of an n-dimensional manifold M into an m-dimensional

Riemannian manifold (M, §). Denote by ¢ = i*g the induced Riemannian metric on M. Thus, i
become an isometric immersion and M is also a Riemannian manifold with the Riemannian
metric g(X,Y) = g(X,Y) for any vector fields X,Y in M. The Riemannian metric g on M is

called the induced metric on M. In local components, g, =g ABB]BB? with ¢ = gﬁdxfdxf and
g = g dUlau’.
If a vector field &p of M ata point peM satisfies

8(Xp,&p) =0 ey

for any vector X, of M at p, then &, is called a normal vector of M in M at p. A unit normal

vector field of M in M is called a normal section on M [3].

I NT E C H © 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
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By TM, we denote the vector bundle of all normal vectors of M in M. Then, the tangent
bundle of M is the direct sum of the tangent bundle TM of M and the normal bundle TM of
MinM, ie.,

TM = TM@T*M. ()

We note that if the sub-manifold M is of codimension one in M and they are both orientiable,
we can always choose a normal section £ on M, i.e.,

8(X,&) =0, g(&,&) =1, €)

where X is any arbitrary vector field on M.

By V, denote the Riemannian connection on M and we put
VxY = VxY +h(X,Y) 4)

for any vector fields X, Y tangent to M, where VxY and h(X,Y) are tangential and the normal
components of VxY, respectively. Formula (4) is called the Gauss formula for the sub-manifold

M of a Riemannian manifold (M, g).

Proposition 1.1. V is the Riemannian connection of the induced metric ¢ =:"'¢ on M and
h(X,Y) is a normal vector field over M, which is symmetric and bilinear in X and Y.

Proof: Let a and f§ be differentiable functions on M. Then, we have

Vax(BY) = a{X(B)Y + BVxY}
= a{X(B)Y + BVxY + Bh(X,Y)}

VaxBY + h(aX, BY) = apVxY + aX(B)Y + aph(X,Y) (5)
This implies that
Vax(BY) = aX(B)Y + apVxY (©6)
and
h(aX,pY) = aph(X,Y). (7)

Eq. (6) shows that V defines an affine connection on M and Eq. (4) shows that & is bilinear in X
and Y since additivity is trivial [1].

Since the Riemannian connection V has no torsion, we have

0= VxY-VyX-[X,Y] = VxY + h(X,Y)-Vx Y-h(Y,X)-[X, Y]. (8)

By comparing the tangential and normal parts of the last equality, we obtain
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VxY-VyX = [X,Y] 9)
and
h(X,Y) =h(Y,X). (10)

These equations show that V has no torsion and / is a symmetric bilinear map. Since the metric
g is parallel, we can easily see that

(Vxg)(Y.Z) = (Vx3)(Y.Z)
8(VxY,Z) +3(Y,VxZ)

=3 (VXY +h(X,Y), Z) +8(Y,VxZ +h(X,Z))
=3(VxY,Z) +3(Y,VxZ)
= g(VxY.Z) + g(Y,VxZ) (1)

for any vector fields X, Y, Z tangent to M, that is, V is also the Riemannian connection of the
induced metric g on M.

We recall i the second fundamental form of the sub-manifold M (or immersion i), which is
defined by

h:T(TM)xT(TM) — I(T*M). (12)
If h = 0 identically, then sub-manifold M is said to be totally geodesic, where I'(T*M) is the set
of the differentiable vector fields on normal bundle of M.
Totally geodesic sub-manifolds are simplest sub-manifolds.

Definition 1.1. Let M be an n-dimensional sub-manifold of an m-dimensional Riemannian

manifold (]\7[, Q). By h, we denote the second fundamental form of M in M.

H = ltrace(h) is called the mean curvature vector of M in M. If H = 0, the sub-manifold is

called minimal.

On the other hand, M is called pseudo-umbilical if there exists a function A on M, such that
g(h(Y),H) = Ag(X.Y) (13)
for any vector fields X, Y on M and M is called totally umbilical sub-manifold if
h(X,Y) =g(X,Y)H. (14)

It is clear that every minimal sub-manifold is pseudo-umbilical with A = 0. On the other hand,
by a direct calculation, we can find A = g(H, H) for a pseudo-umbilical sub-manifold. So, every
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totally umbilical sub-manifold is a pseudo-umbilical and a totally umbilical sub-manifold is
totally geodesic if and only if it is minimal [2].

Now, let M be a sub-manifold of a Riemannian manifold (]\71, g) and V be a normal vector field
on M, X be a vector field on M. Then, we decompose

VxV =-AyX + VxV, (15)

where AyX and V5V denote the tangential and the normal components of ViV, respectively.
We can easily see that AyX and ViV are both differentiable vector fields on M and normal
bundle of M, respectively. Moreover, Eq. (15) is also called Weingarten formula.

Proposition 1.2. Let M be a sub-manifold of a Riemannian manifold (M, ). Then

(a) Ay X is bilinear in vector fields V' and X. Hence, Ay X at point peM depends only on vector
fields V, and X,,.

(b) For any normal vector field V on M, we have
SLAVX.Y) = g(h(X, ), V). (16)

Proof: Let a and f be any two functions on M. Then, we have

Vax(BV) = aVx(BV)

= a{X(B)V + pVxV}
—AgvaX + VBV = aX(B)V-apAvX + apVxV. (17)
This implies that
AgvaX = apAyX (18)
and
Vi BV = aX(B)V + apViV. (19)

Thus, Ay X is bilinear in V and X. Additivity is trivial. On the other hand, since gis a Riemann-
ian metric,

X3(Y,V) =0, (20)

for any X, YE['(TM) and Vel (T*M).
Eq. (12) implies that

g(VxY, V) +3(Y,VxV) =0. (21)

By means of Egs. (4) and (15), we obtain
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g (h(x, Y), V) —¢(AyX,Y) = 0. (22)

The proof is completed [3].

Let M be a sub-manifold of a Riemannian manifold (M, §), and & and Ay denote the second
fundamental form and shape operator of M, respectively.

The covariant derivative of  and Ay is, respectively, defined by
(Vxh)(Y,Z) = Vxh(Y, Z)-h(VxY, Z)-h(Y,VxZ) (23)
and
(VxA)yY = Vx(AvY)-Ayiy Y-Ay VxY (24)

for any vector fields X, Y tangent to M and any vector field V normal to M. If Vxh = 0 for all X,
then the second fundamental form of M is said to be parallel, which is equivalent to VxA = 0.
By direct calculations, we get the relation

g((VXh)(Y, Z),v) - g((VXA)VY, z). (25)
Example 1.1. We consider the isometric immersion

¢:R? — R4, (26)

P(x1,%2) = (x1,1/x3-1,x2,1/x5-1) (27)

we note that M = ¢(R*)CR* is a two-dimensional sub-manifold of R* and the tangent bundle
is spanned by the vectors

T™ = Sp{el = <\/E, x1,0,0>,ez = (0,0, \/J@, x2>} and the normal vector fields
T M = sp{w1 = (—x1, @,0,0),wz = (0,0,—x1, @) } (28)

By V, we denote the Levi-Civita connection of R*, the coefficients of connection, are given by

~ 2x14/x2-1 1

Ve = - : 29
SR T T 9)
Ve,e _ x%_le— ! w (30)
T T A
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and
ngel =0. (31)
Thus, we have h(er,e;) = —ﬁwl, h(er,e) = —ﬁwz and h(ey,e;) = 0. The mean curvature
1 2
vector of M = ¢(R?) is given by
1
H:—E(wl +ZU2). (32)

Furthermore, by using Eq. (16), we obtain

1
g(Awlel,el) == g(h(€1,€1),wl) = _sz—_l (x% + x%_l) — _1’
1

1 33
§(Awe2,02) = g(h(ez, e), wl) = —2x2—_1g(w1,w2) =0, (33)
2

(A, e1,62) =0,

and

Q(Aw,e1,€1) = g(h(el,eo,wz) =0, (34)
S(Aw,e1,62) =0,8(Aw,e2,02) = 1.

Thus, we have
-1 0 0 0
Ay, = ( 0 0) and Ay, = (O _1). (35)

Now, let M be a sub-manifold of a Riemannian manifold (]\71 ,9), R and R be the Riemannian

curvature tensors of M and M, respectively. From then the Gauss and Weingarten formulas, we
have
R(X,Y)Z = VxVyZ-VyVxZ-Vx v Z
= Vx(VvZ + 1(Y, 2)) =Yy (VxZ + h(X, 2) )~V Z-h([X, Y], 2)
= VxVyZ + Vxh(Y,Z)-VyVxZ-Vyh(X,Z)-Vx.vyZ-h(VxY, Z) + h(VyX, Z)
= VxVyZ-VyVxZ + h(X,VyZ)-h(VxZ,Y) + Vxh(Y,Z)
~Any, ) X-Vyh(X, Z) + Apx,2)Y-Vx, vjZ-h(Vx Y, Z) + h(VyX, Z)
= VxVyZ-VyVxZ-Vix Z + Vxh(Y, Z)-h(VxY,Z)
~h(Y,VxZ)-Vyh(X,Z) + h(VyX, Z) + h(VyZ,X)
+Aux,2) Y= Any,2) X
=R(X,Y)Z+ (Vxh)(Y,Z)-(Vyh)(X,Z) + Ah(X,Z) Y—Ah(y’z)X (36)
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from which

R(X,Y)Z = R(X,Y)Z + Anx.2) Y-Any,.2)X + (Vxh)(Y, Z)-(Vyh)(X, Z), (37)

for any vector fields X,Y and Z tangent to M. For any vector field W tangent to M, Eq. (37)
gives the Gauss equation

g(R(x, Y)Z, w) L g(R(X, Y)Z, w) n g(h(Y, W), h(X, Z))—g(h(y, 7)., h(X, W)). (38)

On the other hand, the normal component of Eq. (37) is called equation of Codazzi, which is
given by

(R (X, 1/)2)L = (Vxh)(Y, Z)~(Vyh)(X, Z). (39)

If the Codazzi equation vanishes identically, then sub-manifold M is said to be curvature-
invariant sub-manifold [4].

In particular, if M is of constant curvature, R(X, Y)Z is tangent to M, that is, sub-manifold is
curvature-invariant. Whereas, in Kenmotsu space forms, and Sasakian space forms, this not
true.

Next, we will define the curvature tensor R* of the normal bundle of the sub-manifold M by

RY(X,Y)V = VxVyV-VyVxV-Vi |V (40)

for any vector fields X, Y tangent to sub-manifold M, and any vector field V normal to M. From
the Gauss and Weingarten formulas, we have

R(X,Y)V = VxVyV-VyVxV-Vx |V
= Vx(-AvY + VyV)-Vy(-AyX + VxV) + Ay[X, Y]-Vix |V
= -VxAvY + VyAvX + VxVyV-Vy ViV + Ay [X, Y-V |V
= -VxAvY-h(X,AvY) + VyAyX + h(Y, Ay X)
+VVyV-VyVyV=Agiy X + Agiy Y + Av[X, Y]-Vix )V
= VxVyV=VyVV=-Viz yV-Apiy X + Agsy Y + Av[X, Y]
~VxAyY + VyAyX-h(X,AvY) + h(Y, AyX)
= RY (X, )V + h(AvX, Y)-h(X,AvY)-(VxA), Y + (VyA), X. (41)

For any normal vector U to M, we obtain
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g(R (X, Y)V, u) g(Ri(X, Y)V, u) + g(h(AVX, Y), u)—g(h(x,AVY), u)

(Ri(x, Y)V, u)

g + g(AuY, Avx)—g(Avy,AuX)
g(Ri (X,Y)V, u) + o(AvALY, X)-g(AyAy Y, X) (42)

Since [Ay, Av] = AuAv-AvAy, Eq. (42) implies

g(R(x, Y)V, u) - g(Ri(X, Y)V, u) + 2([Au, Av]Y, X). (43)

Eq. (43) is also called the Ricci equation.

If R* = 0, then the normal connection of M is said to be flat [2].

- 1
When (R (X, Y)V) = 0, the normal connection of the sub-manifold M is flat if and only if the

second fundamental form M is commutative, i.e. [Ay;, Ay| = 0 for all U, V. If the ambient space
. - 1
M is real space form, then (R (X, Y)V) = 0 and hence the normal connection of M is flat if and

only if the second fundamental form is commutative. If R(X, Y)Z tangent to M, then equation
of codazzi Eq. (37) reduces to

(Vxh)(Y,Z) = (Vyh)(X,Z) (44)
which is equivalent to

(VxA), Y = (VyA), X. (45)

On the other hand, if the ambient space M is a space of constant curvature c, then we have

R(X,Y)Z =c{g(Y,2)X-g(X,Z2)Y} (46)

for any vector fields X, Y and Z on M.

Since R(X, Y)Z is tangent to M, the equation of Gauss and the equation of Ricci reduce to
g(RXZW) = cfa(¥, Z)g(X, W)-g(X, Z)g(Y. W)}
+8(h(Y,2),h(X, W) ) =g (h(Y, W), h(X, Z)) (47)
and

g(R{ XYV, U) = g([Au, AVIX, Y), (48)

respectively.
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Proposition 1.3. A totally umbilical sub-manifold M in a real space form M of constant
curvature c is also of constant curvature.

Proof: Since M is a totally umbilical sub-manifold of M of constant curvature ¢, by using
Egs. (14) and (46), we have

$(ROXY)Z,W) = cfg(Y, Z)g(X, W)-g(X, Z)g(Y, W)}
+8(H, H){g(Y, Z)g(X, W)—=g(X, Z)g(Y, W)}
= {e+ g(H, H)Hg(Y, 2)g(X, W)~g(X, 2)g(Y,W)}.  (49)

This shows that the sub-manifold M is of constant curvature ¢ + |H?ll for n > 2. If n =2,
IHI = constant follows from the equation of Codazzi [3].

This proves the proposition.

On the other hand, for any orthonormal basis {e,} of normal space, we have

$(Y. 2)8(X, W)=g(X. 2)3(Y. W) = X g (h(Y. 2).e0 ) g (h(X. W).e.)

jg(h(X, Z),e0) (WY W),
= Za:g(Aen Y, Z)g(Ae, X, W)-g(A,, X, Z)g(As, Y, W) (50)

Thus, Eq. (45) can be rewritten as

3(RXNZ W) = clg(¥, Z)2(X, W)-g(X, Z)g(Y, W)}

+2°18(Aq, Y, Z)g(Ae, X, W)-g(Ae, X, Z)3(As, Y, W)] (51)

By using A,,, we can construct a similar equation to Eq. (47) for Eq. (23).

Now, let S- be the Ricci tensor of M. Then, Eq. (47) gives us
S(X,Y) = cf{ng(X,Y)-g(ei, X)g(ei, Y) } (52)
+Z [8(Ac,eirei)g(Ae, X, Y)-8(A, X, €1)g (A i, Y)]

= c(n-1)g(X,Y) + ) [Tr(Aq,)8(Ae, X, Y)-g(As, X, A, Y)), (53)

€

where {eq, e, ...,e,} are orthonormal basis of M.

Therefore, the scalar curvature r of sub-manifold M is given by

55
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r=cn(n=1)).Tr*(Ay,)-) Tr(A,, ) (54)

ZTT(A@)Z is the square of the length of the second fundamental form of M, which is denoted

by |A., %. Thus, we also have

n

I2n = g(h(ei,e]'),h(ei,ej)) = 1421, (55)

ij=1
2. Distribution on a manifold

An m-dimensional distribution on a manifold M is a mapping D defined on M, which assignes

to each point p of M an m-dimensional linear subspace D, of TM (p). A vector field X on M

belongs to D if we have X,€D, for each peM. When this happens, we write XeI'(D). The

distribution D is said to be differentiable if for any peM, there exist m-differentiable linearly
independent vector fields X;€I'(D) in a neighbordhood of p.

The distribution D is said to be involutive if for all vector fields X,Yel'(D) we have
(X, Y]el'(D). A sub-manifold M of M is said to be an integral manifold of D if for every point
peM, D, coincides with the tangent space to M at p. If there exists no integral manifold of D
which contains M, then M is called a maximal integral manifold or a leaf of D. The distribu-

tion D is said to be integrable if for every peM, there exists an integral manifold of D
containing p [2].

Let V and distribution be a linear connection on M, respectively. The distribution D is said to

be parallel with respect to M, if we have

VxYeI' (D) for all XeI'(TM) and YeI'(D) (56)

Now, let (M, §) be Riemannian manifold and D be a distribution on M. We suppose M is
endowed with two complementary distribution D and D, i.e., we have TM = D&D".
Denoted by P and Q the projections of TM to D and D™, respectively.

Theorem 2.1. All the linear connections with respect to which both distributions D and Dt are
parallel, are given by

VxY = PV4PY + QVyQY + PS(X,PY) + QS(X,QY) (57)
for any X, Y€l (TM), where V' and S are, respectively, an arbitrary linear connection and
arbitrary tensor field of type (1,2) on M.

Proof: Suppose V' is an arbitrary linear connection on M. Then, any linear connection V on M
is given by
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VxY = VyY + 5(X,Y) (58)

for any X, YEI'(TM). We can put

X = PX + QX (59)

for any XeI'(TM). Then, we have

VxY = Vx(PY + QY) = VxPY + VxQY = V4 PY + S(X, PY)
+VQY + 5(X,QY) = PVyPY + QVyPY + PS(X, PY) 4+ QS(X, PY)
+PV4QY + QV4QY + PS(X,QY) + QS(X,QY) (60)

for any X, YEI'(TM).
The distributions D and D are both parallel with respect to V if and only if we have
¢(VxPY) = 0andP(VxQY) = 0. (61)

From Egs. (58) and (61), it follows that D and D" are parallel with respect to V if and only if

QVyPY + QS(X,PY) = 0 and PV;QY + PS(X,QY) = 0. (62)

Thus, Egs. (58) and (62) give us Eq. (57).
Next, by means of the projections P and Q, we define a tensor field F of type (1,1) on M by
FX = PX-QX (63)

for any XeI'(TM). By a direct calculation, it follows that F? = I. Thus, we say that F defines an
almost product structure on M. The covariant derivative of F is defined by

(VxF)Y = VxFY-FVxY (64)
for all X, YEl'(TM). We say that the almost product structure F is parallel with respect to the
connection V, if we have VxF = 0. In this case, F is called the Riemannian product structure [2].

Theorem 2.2. Let (M, ) be a Riemannian manifold and D, D* be orthogonal distributions on

M such that TM = D@D*. Both distributions D and D* are parallel with respect to V if and
only if F is a Riemannian product structure.

Proof: For any X, YEI'(TM), we can write

VyPX = VpyPX + VqyPX (65)

and
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VyX = VpyPX + VpyQX + V oy PX + Voy QX, (66)

from which
8(VorPX,QZ) = QY8(PX,QZ)-8(VorQZ, PX) = 0-g(V ovQZ, PX) = 0, (67)

that is, VoyPX€el'(D) and so PV gy PX = V oy PX,

QVyPX =0. (68)
In the same way, we obtain
8(VpyQX,PZ) = PYg(QX,PZ)-g(QX, VpyPZ) = 0, (69)
which implies that
PVpyQX =0 and QVpyQX = VpyQX. (70)

From Egs. (66), (68) and (70), it follows that

PVyX = VpyPX + VoyPX. (71)

By using Egs. (64) and (71), we obtain

(VyP)X = VyPX-PVyX = VpyPX + V oy PX-V py PX-V oy PX = 0. (72)

In the same way, we can find VQ = 0. Thus, we obtain

VF =V (P-Q) =0. (73)

This proves our assertion [2].

Theorem 2.3. Both distributions D and D™ are parallel with respect to Levi-Civita connection V

if and only if they are integrable and their leaves are totally geodesic in M.

Proof: Let us assume both distributions D and D* are parallel. Since V is a torsion free linear
connection, we have

[X,Y] = VxY-VyXel(D), for any X, YET (D) (74)

and

[U,V] = VyV-VyUel (DY), for any U, Vel (DY) (75)

Thus, D and D* are integrable distributions. Now, let M be a leaf of D and denote by h the

second fundamental form of the immersion of M in M. Then by the Gauss formula, we have
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VxY = VyY +h(X,Y) (76)

for any X, YET (D), where V' denote the Levi-Civita connection on M. Since D is parallel from
Eq. (76) we conclude h = 0, that is, M is totally in M. In the same way, it follows that each leaf
of D* is totally geodesic in M.

Conversely, suppose D and D* be integrable and their leaves are totally geodesic in M. Then
by using Eq. (4), we have

VxYel'(D) for any X, Yel'(D) (77)
and
VuVer (D) for any U, Vel (D). (78)

Since g is a Riemannian metric tensor, we obtain

2(VuY, V) = —g(Y,VyV) =0 (79)

and

g(VxV,Y) =—g(V,VxY) =0 (80)

for any X, YEI'(D) and U, Vel (D*). Thus, both distributions D and D are parallel on M.

3. Locally decomposable Riemannian manifolds
Let (M,3) be n—-dimensional Riemannian manifold and F be a tensor (1,1)-type on M such
that F* = I, F#x1.

If the Riemannian metric tensor g satisfying

2(X,Y) =g(FX,FY) (81)

for any X, YET'(TM) then M is called almost Riemannian product manifold and F is said to be

almost Riemannian product structure. If F is parallel, that is, (? xF)Y =0, then M is said to be
locally decomposable Riemannian manifold.

Now, let M be an almost Riemannian product manifold. We put

P=-(I+F), Q==(-F). (82)

N —
N =

Then, we have
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P+Q=1I P>=P, @*=Q, PQ=QP=0 and F=P-Q. (83)

Thus, P and Q define two complementary distributions P and Q globally. Since F> = I, we
easily see that the eigenvalues of F are 1 and —1. An eigenvector corresponding to the eigen-
value 1 is in P and an eigenvector corresponding to -1 is in Q. If F has eigenvalue 1 of
multiplicity P and eigenvalue —1 of multiplicity g, then the dimension of P is p and that of Q is

g. Conversely, if there exist in M two globally complementary distributions P and Q of
dimension p and g, respectively. Then, we can define an almost Riemannian product structure

Fon M by M by F = P-Q[7].

Let (M,3,F) be a locally decomposable Riemannian manifold and we denote the integral
manifolds of the distributions P and Q by M’ and MY, respectively. Then we can write

M = MPXMY, (p,q > 2). Also, we denote the components of the Riemannian curvature R of M
by R 10, b, c,d<n = p+4q.

Now, we suppose that the two components are both of constant curvature A and u. Then, we have

RdCbﬂ - A{gdagcb_gcagdb} (84)
and
Rzyxw = :u{gzwgyx_gngzx}‘ (85)

Then, the above equations may also be written in the form

1
Rijin = 7 (A + 1){(811.8~8n8:) + (FrnFji—FjnFi) }
4 ] ] (86)

1
T (A=) (Fung;i~Fingii) + (8 Fii—8jnFri) }-

Conversely, suppose that the curvature tensor of a locally decomposable Riemannian manifold
has the form

Ryjin = a{ (818i~8n&xi) + (FunFji=FjnFi) }

(87)
+0{(Fung;i=Fin8yi) + (8 Fji=8juFri) }-
Then, we have
Rcdbu = 2(5[ + b) {gdugcb_gcagdb} (88)
and
Rzyxw = z(a_b){gzwgyx_gngzx}‘ (89)

Let M be an m—dimensional almost Riemannian product manifold with the Riemannian structure
(F,3) and M be an n—dimensional sub-manifold of M. For any vector field X tangent to M, we put
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FX = fX + wX, (90)

where fX and wX denote the tangential and normal components of FX, with respect to M,
respectively. In the same way, for VEl'(T*M), we also put

FV = BV +CV, (91)

where BV and CV denote the tangential and normal components of FV, respectively.

Then, we have
f*+Bw=1I1Cw+wf =0 (92)

and

fB+BC =0,wB+C*>=1. (93)
On the other hand, we can easily see that

g(X’fY) = g(fX’ Y) (%94)

and

8(X,Y) = (fX.fY) + g(wX, wY) (95)

for any X, YET(TM) [6].

If wX=0 for all Xe[(TM), then M is said to be invariant sub-manifold in M,
i.e,F(Tm(p))CTm(p) for each peM. In this case, f2 =1 and g(fX,fY) =g(X,Y). Thus, (f,g)
defines an almost product Riemannian on M.

Conversely, (f,g) is an almost product Riemannian structure on M, the w = 0 and hence M is

an invariant sub-manifold in M.

Consequently, we can give the following theorem [7].

Theorem 3.1. Let M be a sub-manifold of an almost Riemannian product manifold M with
almost Riemannian product structure (F,g). The induced structure (f,g) on M is an almost

Riemannian product structure if and only if M is an invariant sub-manifold of M.

Definition 3.1. Let M be a sub-manifold of an almost Riemannian product M with almost
product Riemannian structure (F,g). For each non-zero vector X,€Ty(p) at peM, we denote
the slant angle between FX,, and Ty (p) by 0(p). Then M said to be slant sub-manifold if the
angle O(p) is constant, i.e., it is independent of the choice of peM and X,€Tu(p) [5].

Thus, invariant and anti-invariant immersions are slant immersions with slant angle 0 = 0 and
0 = 7, respectively. A proper slant immersion is neither invariant nor anti-invariant.
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Theorem 3.2. Let M be a sub-manifold of an almost Riemannian product manifold M with
almost product Riemannian structure (F, g). M is a slant sub-manifold if and only if there exists
a constant A€(0, 1), such tha

F=AL (96)

Furthermore, if the slant angle is 0, then it satisfies A = cos?6 [9].

Definition 3.2. Let M be a sub-manifold of an almost Riemannian product manifold M with
almost Riemannian product structure (F,g). M is said to be semi-slant sub-manifold if there

exist distributions DY and DT on M such that

(i) TM has the orthogonal direct decomposition TM = D@D".

(ii) The distribution D? is a slant distribution with slant angle 6.
(iii) The distribution DT is an invariant distribution, .e., F(Dr)CD!.

In a semi-slant sub-manifold, if 6 = 7, then semi-slant sub-manifold is called semi-invariant
sub-manifold [8].

Example 3.1. Now, let us consider an immersed sub-manifold M in R” given by the equations
X7+ x5 = X2 + xg,x3 + x4 = 0. (97)

By direct calculations, it is easy to check that the tangent bundle of M is spanned by the
vectors

z1 = cosO 9 + sin@i + cosﬁa—z5 + sinf 6%6

0x1 Oxo
f§)
= —usin@ — — 3= 98
Zn usin® o + ucos6 o ,2Z3 o oxy’ (98)
.0
Z4 = _MSIHﬁa—xs + uCOSﬁa—xé ,25 = a—x7 ,

where 0, and u denote arbitrary parameters.

For the coordinate system of R” = {(x1,x2,x3, X4, X5, X6, x7)|x;€ER,1 <i <7}, we define the
almost product Riemannian structure F as follows:

0 0 0 0
— | =— F|l— ]| =—,1<i< <j<7.
g <6x1'> ox;’ i <6x]'> ox;’ teisdandds >

Since Fz; and Fz3 are orthogonal to M and Fz,,Fz4,Fzs are tangent to M, we can choose a
D = Sy{z2,24,25} and Dt = Sp{z1,23}. Thus, M is a 5-dimensional semi-invariant sub-mani-

fold of R” with usual almost Riemannian product structure (F, <, >).
Example 3.2. Let M be sub-manifold of R® by given

(u + v, u—v, ucosa, usina, u + v, u=v, ucosp, usinp) (100)
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where u,v and § are the arbitrary parameters. By direct calculations, we can easily see that the
tangent bundle of M is spanned by

e = i—f'i—f- Cosai+ sinaiJri——%— cos i+ sim/%i

= axl axz 6x3 6x4 6x5 6x6 ‘86x7 axg
e 0.9 i—l—— e3 = —usin— + Ucosa — (101)
27 le axz GX5 6x6 T GX3 6364 ’

)
eg = —usinﬁa + ucosp S
7 8

For the almost Riemannian product structure F of R® = R*xR*, F(TM) is spanned by vectors

Fe; = i + — + cosa — + sinozi—i + i—cosﬁi—sinﬁ—
P o ox3 Oxg Oxs Oxg 0x7 Oxg” (102)
F€2 —— i i—i, F€3 =e3 and F€4 = —€4.

- oxy - Ox2 _6x5 Oxe

Since Fe; and Fe, are orthogonal to M and Fe; and Fe; are tangent to M, we can choose
Dl = Sp{es,es} and Dt = Sp{ei1,ex}. Thus, M is a four-dimensional semi-invariant sub-mani-
fold of R® = R*xR* with usual Riemannian product structure F.

Definition 3.3. Let M be a sub-manifold of an almost Riemannian product manifold M with
almost Riemannian product structure (F, g). M is said to be pseudo-slant sub-manifold if there
exist distributions Dy and D, on M such that

i. The tangent bundle TM = Do®D.
ii. The distribution Dy is a slant distribution with slant angle 0.
iii. The distribution D" is an anti-invariant distribution, i.e., F(D*)CT*M.

As a special case, if 0 = 0 and 0 = 7, then pseudo-slant sub-manifold becomes semi-invariant
and anti-invariant sub-manifolds, respectively.

Example 3.3. Let M be a sub-manifold of R® by the given equation

(\/§u, v, vsinB, vcosO, scost, —scost) (103)

where u,v,s and t arbitrary parameters and 0 is a constant.

We can check that the tangent bundle of M is spanned by the tangent vectors

e1 = ﬁi,ez = i+ sin@i + Cosei,
abaq Ay, ox; ay, (104)
e3 = costa—m—costa—y?’,&; = —ssmta + ssmta—y?).

For the almost product Riemannian structure F of R°® whose coordinate systems
(X1,Y4,X2,Y,,X3,Y5) choosing
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F i = i ,1<i<3,
ox; Ay,
(105)
3] 6] .
F| — | =—,1<j<3,
oy, ox;
Then, we have
Fe, = \/gi,Fez = —i + sin@i—cosei
dy, ox1 Y, Oxo (106)
e3 = cost 6y3 + cost R €4 ssint 5]/3 ssint o

Thus, Dg = S,{e1,e2} is a slant distribution with slant angle @ = 7. Since Fe3 and Fe, are
orthogonal to M, Dt = Sp{es,es} is an anti-invariant distribution, that is, M is a 4-dimensional

proper pseudo-slant sub-manifold of R® with its almost Riemannian product structure
(F, <, >).
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