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Abstract

In scene of worrisome water shortage, municipal wastewater has been gradually accepted 
as an alternative water resource containing important nutrients for irrigation. Rice cul‐
tivation, which is one of the main crops feeding global population and requires plenty 
of water for its effective growth, has been often irrigated by municipal wastewater in 
many countries. While irrigation of municipal wastewater for rice cultivation must bring 
benefits for farmers mainly by increased yield with less amount of fertilizers, it also has 
potential to cause drawbacks to human health and the environment. This chapter dis‐
cusses about these aspects based on scientific works and practical experiences of munici‐
pal wastewater irrigation for rice production as well as the introduction of our concept 
to cultivate rice for animal feeding with irrigation of treated wastewater, which can con‐
tribute to resource circulation between urban and rural areas. The feasibility study under 
this concept has demonstrated that the target value of rice yield can be achieved and 
protein‐rich rice preferable for animal feed can be harvested with irrigation of properly 
treated municipal wastewater.

Keywords: municipal wastewater, rice production, wastewater irrigation, benefit and 
disadvantage, greenhouse gas, rice for animal feeding

1. Introduction

Climate change and global population explosion put water resources scarcity in many cor‐

ners of the world to alarming status [1, 2], with around 1.1 billion people lacking access to 
freshwater in developing countries and nearly 2.4 billion lacking adequate sanitation [3]. It is 

estimated that two‐thirds of the world's population will suffer from moderate to high water 
stress, and about half of the population will face severe water supply constraints in 2025 [4]. 

Agriculture is known as the largest consumer of freshwater resources at the beginning of the 

twenty‐first century, and water consumption for agriculture accounts for over 70% of global 
water withdrawals [5, 6]. However, agricultural irrigation water does not usually require the 

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
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same high grade of water quality as drinking water [7]. Currently, in approximately 1.5 bil‐
lion hectares of agricultural land all over the world [8], total fertilizer use (N + P

2
O

5
 + K

2
O) is 

estimated to be around 190.4 million tons [9]. Wastewater can supply a significant amount of 
nutrients which can improve soil fertility, plant growth and crop production, reducing the 

consumption of required fertilizers [10]. In this circumstance, municipal wastewater is evalu‐

ated as a new resource of water, and the practice of reclaimed wastewater for agricultural 

irrigation is likely to become more commonly applied in many countries with a vast volume 

[11–13]. It is not the main objective, but reuse of wastewater also contributes to interrupting 

discharges of nutrients and organic matters into water environment [14].

Approximately 50% of worldwide irrigation water is used by rice cultivation—one of the agri‐
cultural products which need notable amount of water [15, 16]. Although there are a variety 

of practices of rice cultivation, typically, rice fields are flooded before plowing, and thereafter, 
water levels are kept at 4–6 cm in shallow rice fields. It sometimes becomes as high as 10 cm 
when continuous‐flooding irrigation is done during the growing season [17]. Rice is one of 

the leading cereal crops providing around 20% daily calories for more than 3.5 billion people 
[18]. There are around 150 million hectares of rice land worldwide, which supply 550–600 mil‐
lion tons of rough rice yearly. Irrigated rice cultivation makes up 55% of harvested rice area 
and contributes to 75% of global rice production [19]. Irrigation of rice paddy using treated or 

untreated wastewater is extensively practiced and examined in many countries to investigate 
benefits [20–26] or drawbacks of the practices [12, 27–33].

This chapter provides information about municipal wastewater characteristic as well as dis‐

cussions about positive and negative effects of its reuse for rice cultivation.

2. Municipal wastewater and its treatment

2.1. Characteristics of municipal wastewater

Municipal wastewater, which is usually conveyed in a combined sewer or sanitary sewer, 

consists of domestic wastewater, industrial wastewater, and storm water and groundwater 

seepage entering the municipal sewage network. Domestic wastewater includes effluent 
from households, institutions, commercial buildings and the like. Industrial wastewater is 

the effluent discharged from manufacturing units and food processing plants. In general, 
characteristics of domestic wastewater are not significantly different from one region to 
another, while there are many types of industrial wastewater based on industrial processes 

as its origin.

Municipal wastewater mainly consists of water (99.9%) together with relatively low con‐

centrations of suspended and dissolved organic and inorganic solids. Parts of the organic 
substances present in wastewater are carbohydrates, lignin, fats, soaps, synthetic detergents, 

proteins and their decomposition products as well as various natural and synthetic organic 

chemicals from the process industries. Table 1 shows the levels of the major constituents in 

municipal wastewater.
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2.2. Treatment of municipal wastewater

It is not recommended to reuse municipal wastewater directly for rice cultivation due to its 

drawbacks, which are described in the next section. Treatment of wastewater at any level is 
required to overcome the drawbacks. The principal objective of wastewater treatment is to 

remove contaminants such as solids, organic matter and nutrients before the treated waste‐

water is discharged into water bodies. The quality of treated wastewater depends on the treat‐

ment technology and operation.

Although wastewater treatment includes physical, chemical and biological processes, it nor‐

mally has four basic steps: preliminary, primary, secondary and advanced treatments [35]. 

Preliminary treatment is designed to remove coarse solids and other large materials, which 
are often found in raw wastewater. These solids consist of pieces of wood, cloth, paper, plas‐

tics, sand, gravel, etc. The objective of primary treatment is to extract organic and inorganic 
solids from wastewater by the physical process of sedimentation and flotation. Approximately 
25–50% of the BOD, 50–70% of the SS and 65% of the oil are removed throughout this treatment 
step [36].

Secondary treatment, in general, follows primary treatment to do the further treatment. Its 
objective is removal of biodegradable dissolved and colloidal organic matters from effluent 
of primary treatment using many different types of microorganisms in a controlled environ‐

ment. The principal secondary treatment techniques are the trickling filter and the activated 
sludge process. The latter one, which is used most commonly all over the world, can remove 
organic matters effectively but cannot do nutrients, especially nitrogen, from wastewater. 
Hence, the secondary effluent from wastewater treatment plants still has a high content of 
nutrients available for crop growth.

Contaminants Unit Range

Total solid (TS) mg/L 390–1230

Total dissolved solid (TDS) mg/L 270–860

Total suspended solid (TSS) mg/L 120–400

Biochemical oxygen demand (BOD
5
) mg/L 110–350

Chemical oxygen demand (COD) mg/L 250–800

Total organic carbon (TOC) mg/L 80–260

Total nitrogen (TN) mg/L 20–70

Total phosphorus (TP) mg/L 4–12

Total coliform no./100 mL 106–109

Fecal coliform no./100 mL 103–107

Sources: [34].

Table 1. Typical composition of untreated domestic wastewater.
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At most treatment plants, the secondary effluent is discharged into receiving water environ‐

ment after disinfection with chlorine, ozone or ultraviolet radiation. To prevent eutrophica‐

tion in the water environment, advanced treatment is sometimes applied to remove specific 
contaminations such as nutrients in the secondary effluent [37].

2.3. Advantages and disadvantages of wastewater irrigation for rice production

These characteristics of municipal wastewater make us imagine advantages and drawbacks of 

its irrigation for rice production. Major advantages are:

 ‐ Higher crop yields with reduced use of synthetic fertilizers, resulting in saved cost for 
cultivation.

 ‐ Enhanced recycles of nutrients and organic matters, improving soil properties.

 ‐ Reduced discharges of pollutants to surface water bodies.

 ‐ Decreased freshwater withdraw during irrigation.

On the other hand, we should pay attentions to its drawbacks such as:

 ‐ Contamination of irrigated soil with salt, heavy metals and toxic compounds originated 
from wastewater, resulting in reduced soil productivity.

 ‐ Contamination of agricultural products (rice crop) with heavy metals and toxic com‐

pounds, posing health risks to consumers.

 ‐ Farmers’ risk of health problems due to exposure to paddy water contaminated with 
pathogens, heavy metals and toxic compounds.

 ‐ Contamination of groundwater due to infiltration of wastewater used for irrigation.

The following sections describe more detail explanation about the above advantages and 
drawbacks. Most of them are common to irrigation of the treated wastewater, although its 

treatment may highlight the advantages and overcome the drawbacks.

3. Potential impacts of municipal wastewater reuse for rice production

3.1. Impacts on crops

In general, wastewater irrigation can affect rice crops in terms of yields and crop quality 
such as appearance and flavor. Municipal wastewater is a rich source of nutrients neces‐

sary for crop growth, so it is expected that crops irrigated with municipal wastewater get 
higher yield than normal. Yoon et al. [20] examined the effect of treated sewage irriga‐

tion on paddy rice cultivation. They found that the irrigation did not adversely affect the 
growth and yield of rice, resulting in up to 50% greater yield than rice without wastewater 
irrigation. Thu [38] also reported that wastewater irrigation brought 10–15% higher yield 
of rice crops.
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If nitrogen supplied to the crop exceeds its dose recommended for optimal yields, crop 
growth may be stimulated together with yield loss and delayed ripening [14]. The study by 

Nyomora [26] illustrated that wastewater irrigation resulted in four times higher rice yield 

than tap water irrigation, but, in contrast, wastewater irrigation applied with N‐P‐K fertilizer 
depressed the yield potential to 3.2 times of that obtained without its application. This situa‐

tion can happen accidentally. For example, urea plant effluents, as a rich source of liquid fer‐

tilizer in concentrated forms, have adverse effects on rice and corn yields [2]. Also, oversupply 

of nitrogen may be resulted in overgrowth of rice plants, which triggers their lodging and 

reduces eating quality of rice due to increased content of proteins [39].

Crops irrigated with wastewater have potential to be contaminated with microbes, heavy 

metals and organic toxic compounds in wastewater. This effect is discussed separately in the 
Section 3.5.

3.2. Effects on soil resources

Wastewater can affect paddy soil in two opposite ways: by providing benefits and caus‐

ing problems. It is usually difficult to predict which effect appears in wastewater irrigation 
because soil is a very complicated structure involving inorganic and organic matters. One of 
the most recognizable effects of wastewater irrigation is a rise of yield due to nutrients sup‐

plied with wastewater as well as soil texture improved by organic matters in wastewater [40]. 

Supplying organic matter improves soil texture by enhancing soil humidity and microbial 
activity [41].

Nitrogen in wastewater consists of several chemical forms such as nitrate, nitrite, ammonia 
and organic nitrogen. All of these forms are soluble and mobile in water, and when the waste‐

water is irrigated, all forms of nitrogen except ammonia are easily washed out and may cause 
pollution of groundwater and surface water receiving the runoff water. Only ammonia in 
wastewater can attach to soil particles and is retained in paddy fields, but, at the surface of 
soil layer and rhizosphere with the presence of oxygen, it is gradually converted to nitrite and 
finally nitrate with bacterial activities. By contrast, phosphorus, which can exist as a trivalent 
cation, is so stable in soil layer. In addition to this fact, since wastewater contains a smaller 

amount of phosphorus than that required by crops, its irrigation hardly gives an adverse 

impact on the water environment [14].

On the other hand, wastewater irrigation may make consequent adverse effects on soils. The 
most commonly reported impact is accumulation of metals that, depending on the level, may 

be harmful. Chung et al. [12] indicated that application of domestic wastewater to arable 

land for 3 years slightly increased the levels of Pb, Cd, Cu and Zn in soil. Kang et al. [21] 

conducted rice cultivation with groundwater and treated wastewater in different treatment 
levels. The results showed no adverse effects on chemical concentrations including the heavy 
metals (Cu, As, Cd, Zn, Hg and Pb) in paddy soil. This indicates the possibility that treated 
municipal wastewater can be safely used as an alternative water source for the irrigation of 

rice, although continued monitoring will be needed to determine the long‐term effects with 
regard to soil contamination.
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A field research in Thessaloniki, Greece, during a 2‐year period [22] reported no adverse effects 
on the physicochemical properties of soil, whereas macro and trace elements concentration 

showed discrepancies between the 2 years and the three treatments (river water with N‐P 
fertilizer, treated wastewater with N fertilization and treated wastewater without fertilizer).

Wastewaters including industrial discharges with a high metal concentration are harmful to 

crops and eventually to consumers, as a result of metal accumulation in soil. The elements 

of major concern are heavy metals such as cadmium, copper, molybdenum, nickel and zinc. 
Yang et al. [27] reported that the paddy soil irrigated with untreated mining wastewater in 

Lechang lead/zinc mine area was heavily contaminated by Cd and would pose a human/ani‐
mal health risk through Cd mobility in the food chain. Very high concentrations of As, Cd, Cu, 

Pb and Zn were found in the paddy soils irrigated by river water, which received wastewater 
from mining activity [42].

Wastewater, particularly domestic wastewater, normally contains salts which may be accu‐

mulated in the root zone with possible harmful impacts on soil health. Increase rate of salinity 
depends on the salinity of irrigated water, soil transmissivity, organic matter concentration, 
land drainage, irrigation rate, depth to the groundwater level and the type of soils. Long‐term 

use of wastewater with high salt contents is a potential hazard for soil as it may erode the 
soil structure, resulting in less productivity. The problem of soil salinity can be settled by 
the application of natural or artificial solutions, although it is costly and leads to economic 
constraints.

Wastewater with a large amount of solids may cause soil clogging, depending on soil poros‐

ity, concentration (>100 mg/L can cause the problem) and chemical composition. The most 
concerning components are minerals that are not biodegraded. If soil is clogged, irrigation 

will become less effective due to dismissed water percolation [43].

3.3. Effects on ground and surface water

The first effect of irrigated agriculture on groundwater resource is aquifer recharge. The 
recharge happens almost always non‐intentionally and has the advantage of increasing the 

local availability of water [44]. Pescod [36] estimated that 50–70% of the irrigation water could 
infiltrate to groundwater aquifer in some parts.

Due to this phenomenon, wastewater irrigation can cause adverse effects on groundwater 
resource. The most famous adverse effect is infiltration of nitrates in irrigated wastewater into 
groundwater. Groundwater contaminated with nitrates is known to cause methemoglobin‐

emia in infants, so‐called blue baby syndrome, if it is used as a source of drinking water [43].

Not only nitrogen but also organic matters and metals may contaminate groundwater in munic‐

ipal wastewater irrigation. If some of most toxic metals to humans—cadmium, lead, mercury 
and arsenic—are present in irrigated wastewater at a higher concentration than the acceptable 
level, groundwater is severely contaminated, posing risk of serious diseases like cancer to the 

groundwater users. Contamination of groundwater with organic matters brings another type 
of health risk to its users, through the formation of organochlorides when the groundwater is 

disinfected with chlorine (the most common method) for drinking purpose [45].

Current Perspective on Irrigation and Drainage42



Long‐term irrigation of municipal wastewater may result in a significant increase of salt con‐

tent in aquifers, although quality of irrigated wastewater, soil characteristics and original qual‐

ity of the receiving groundwater are all important factors to determine the extent to which the 
quality of groundwater is impacted. Even though groundwater has a low salt concentration, 

addition of salts originated from irrigated wastewater may not be considered too adverse if its 

movement is limited or if it is not used for any purposes. Thus, the impact of increased salts 

in groundwater by wastewater irrigation, which is sometimes inevitable, needs to be weighed 

up in consideration with all the risks and benefits from the irrigation [46].

Surface water bodies are also affected due to drainage and runoff from the fields irrigated 
with municipal wastewater. The inevitable contamination in surface water is almost the same 

as that in groundwater, but the extent of the impact depends on the strength of wastewater 
and type of water body (i.e., river, irrigation channel, lake or dam) as well as hydraulic reten‐

tion time in the fields.

3.4. Effects on quality of irrigated wastewater

Although wastewater irrigation has a potential to contaminate freshwater sources, it is 

expected that quality of the wastewater is improved by being used for irrigation. Suspended 
solids including pathogenic microorganisms are trapped and absorbed in upper soil layers 

and removed from the wastewater. The efficiency of solid removal depends on sizes of soil 
pore and the solids [44]. Adsorption of microorganisms to soil particles is favored at low pH, 

high salt concentration in the sewage and high relative concentrations of calcium and magne‐

sium over monovalent cations such as sodium and potassium in soil [14].

Organic matters in wastewater can be rapidly converted in soils to stable and nontoxic ones 
such as humic and fulvic acids. In fact, we can find biodegradation of a wider variety and 
greater amount of organic matters in soils than in water bodies. So the organic matters in term 
of COD and BOD in the irrigated wastewater are significantly decreased after percolation 
through soil layers.

More significant reduction in nitrogen concentration is expected at paddy fields with waste‐

water irrigation due to three main reasons: absorption by plants, release to the atmosphere 

as the result of nitrification and denitrification by nitrogen bacteria such as Nitrobacter and 

Nitrosomonas, and adsorption of ammonium to soil particles. Firstly, rice plants grow taking 

nutrients in wastewater used for irrigation, and nitrogen, one of the fundamental nutrients for 

plant development, is removed from the wastewater stored in soil layers [15, 24]. Secondly, 
soil and rice rhizosphere microorganisms contribute to transformation of organic nitrogen or 
ammonium to nitrogen gas as well as nitrous oxide gas under a variety of redox conditions 
in soil layers [23]. Nitrogen removal is enhanced if flooding and drying periods are alter‐

nated for promoting nitrification/denitrification process, with 75% removal at the maximum 
[14]. Thirdly, ammonium as a cation has an affinity to the surface of soil particles normally 
with positive charge. However, a large amount of ammonium is supplied, and as mentioned 

above, excess nitrogen will be transported to groundwater with infiltrated irrigation water. 
Nitrites and nitrates, which are anions, are easily lost from paddy fields, resulting in ground‐

water contamination.
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3.5. Effects on human health

As mentioned above, municipal wastewater includes pathogenic microorganisms such as 

bacteria, viruses and parasites. These microorganisms potentially pose human health risks 

when the wastewater is reused for some activities. Particularly, human parasites such as pro‐

tozoa and helminth eggs are of special significance in this concern as they are known as being 
more difficult to remove by treatment processes [2].

Paddy fields irrigated with municipal wastewater may have unfavorable health effects on 
farmers. It has been reported that the practice of reuse of raw or even treated wastewater 

for irrigation may cause epidemiological problems among nearby populations and consum‐

ers of uncooked agricultural products [47]. The degree of risk may vary among the various 

age groups [2], and in a study [31], children were found to have a greater risk of infection 

with Escherichia coli. A study conducted in a province in northern Vietnam [29] assessed 

the risk of skin disease among farmers occupationally exposed to wastewater, showing 
that exposure to wastewater is a major risk factor for skin disease, but it is not clear which 
chemical and biological agents might play the main role in causing the diseases. Rhee et 

al. [30] examined the concentrations of E. coli in a paddy rice field irrigated with reclaimed 
wastewater and evaluated the risk of its infection among farmers using beta‐Poisson dose‐
response model. The results showed that the risk was lower in irrigation of groundwater 

and reclaimed wastewater irrigation than in irrigation of direct effluent from wastewater 
treatment plant.

Municipal wastewater sometimes has harmful metals such as Zn, Cu, Pb, Mn, Ni, Cr and Cd, 
depending upon the type of activities in the associated area. Continuous irrigation of munici‐

pal wastewater may result in heavy metal accumulation in the soil and agricultural products 

[48]. In case of rice plant, it is well known that Cd is the metal to which a special attention 
should be paid because it is accumulated so intensively in edible part of rice.

Most of the heavy metals are normally removed well by wastewater treatment processes. 

Even so, we should take case about heavy metal contamination in the paddy field consider‐

ing subsequent food chain involving agricultural products and consumers [49]. Due to the 

nonbiodegradable and persistent nature, heavy metals are accumulated in viscera and born, 

and are associated with numerous serious health disorders [50]. Singh et al. [51] indicated that 

rice and wheat grains contained less heavy metals than vegetables, but health risk was more 

significant due to higher contribution of cereals in the diet.

3.6. Socioeconomic effect

Wastewater irrigation brings various economic benefits. Wastewater for irrigation does not 
require as high quality as the effluent which is discharged to water bodies. Indeed, thanks 
to the function of paddy fields to improve water quality as explained in the Section 3.4, the 
discharge from the field has a better quality than the irrigation water. By using this function 
effectively, we can save the cost for wastewater treatment.

In addition, when wastewater containing rich nutrients is used for irrigation, we can reduce 

the amount of fertilizer applied to the field, resulting in cost saving or higher yield obtained. 
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This must contribute to improvement of economic status of farmers. Papadopoulos et al. [22] 

reported that the total production cost decreased up to 11.9% by applying municipal waste‐

water for rice production, compared to the normal paddy field.

3.7. Effects on greenhouse gas emission

Global warming is caused by the emission of greenhouse gases (GHGs) such as methane 
(CH

4
) and nitrous oxide (N

2
O). On global scale, agricultural activities accounted for about 

50% of CH
4
 and 60% of N

2
O in the total anthropogenic GHGs emissions in 2005 and nearly 

17% increase of these emissions from 1990 to 2005 [52]. In particular, paddy fields and irri‐
gated lowland rice production systems are known to be significant sources of CH

4
 and N

2
O, 

which are two important trace gases contributing to an observed increase of approximately 
0.6–0.7°C in global surface temperature during the last century.

GHGs emission from paddy fields may be affected by many factors such as water regime, 
organic matter and nitrogen resource including fertilizer. As introduced above, municipal 
wastewater is rich in organic matters and also contains an appreciable amount of macronu‐

trients and micronutrients, and thus nutrient levels of soils are expected to increase with 
its irrigation. Several studies focused on the effects of water regime and fertilizer applica‐

tion on GHGs emission strength; however, to our knowledge, there was only one research 
[53] examining the effect of wastewater irrigation on CH

4
 and N

2
O emissions from paddy 

field. Reports showed that CH
4
 and N

2
O emissions from rice paddies are closely associ‐

ated with soil carbon and nitrogen availabilities and transformation processes, which are 

significantly dependent on soil properties, soil heavy metal contents and soil microbial 
communities [54–56]. Consequently, Zou et al. [53] hypothesized that wastewater irrigation 
would significantly increase these gas emissions from rice paddies. The increments of CH

4
 

and N
2
O emissions were 27 and 68%, respectively, compared to paddy fields irrigated by 

river water.

4. New concept: cultivation of rice for animal feeding with irrigation of 

municipal wastewater

4.1. Motivation and goal

In previous sections, we discussed the benefits and downsides of municipal wastewater reuse 
for irrigation, in particular for rice cultivation. Most of the drawbacks are from the contami‐

nants in the irrigated wastewater, and therefore, one of the best ways to reduce its adverse 

effects is to use treated wastewater after the contaminants are removed to the suitable level. 
For this purpose, advanced treatments are not necessary and low‐cost technologies are prefer‐

able to keep the total cost for cultivation acceptable.

Such low‐cost technologies, even standard activated sludge process, are difficult to remove 
nutrients from wastewater, and the application of treated wastewater may lead to overgrowth 

of rice plants, resulting in lodging [15]. Too much supply of nutrients, especially nitrogen, 

also reduces the eating quality of rice due to high content of proteins.
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These difficulties in irrigation of treated wastewater gave us motivation to propose a new 
concept to cultivate rice for animal feed rather than for human consumption [39]. The rice 

cultivars used for animal feed have several advantages compared with those used for human 

consumption. These advantages include higher crop yield and plant resistance to lodging. 

Moreover, the high protein content in this rice, which results from the adsorption of excess 
nitrogen, is preferable for animal feed.

We can expect that rice cultivation in this concept contributes to an improvement in the qual‐
ity of treated municipal wastewater. In addition to this merit in environmental protection, it 

is also expected to promote water and nitrogen circulation among urban dwellers who con‐

sume animal products and produce wastewater, farmers who produce rice for animal food 

by reusing treated wastewater and livestock farmers who use the cultivated rice as fodder 

for the animals (Figure 1). Our goal is to realize this resource circulation based on the new 
concept for sustainability of our environment. We recognize that it is another advantage of 
this concept to overcome the psychological hurdle of consumers against eating rice cultivated 

using treated wastewater.

4.2. Progress in our research toward implementation of this concept

The bench‐scale experiment (Figure 2) with dimension of 0.6 × 0.3 m revealed that cultivation 
of rice for animal feeding could remove three times the amount of nitrogen from the treated 

wastewater compared with rice cultivation for human consumption [39]. In addition, the 

experiment showed that upward irrigation called bottom‐to‐top irrigation, in which treated 
wastewater is supplied from the pipe fixed at the bottom of the field and then infiltrate up 
through soil layer to the surface, increased the nitrogen released to the atmosphere, probably 

Figure 1. Resource circulation involving urban (consumers) and rural areas (rice and livestock famers), which is realized 
with cultivation of rice for animal feeding with irrigation of treated municipal wastewater.
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because of enhanced denitrification. This kind of irrigation seemed to increase the rice yield 
and biomass of the plants.

The yield of rice reached its target (8t/ha) for the cultivar used for the experiment [57], and the 

protein content (up to 13.1%) in the rice cultivated with irrigation of treated wastewater was 
significantly higher than that found in the normal paddy fields [58]. Actually, it may be pos‐

sible to harvest such a protein‐rich rice if a larger amount of nitrogen fertilizer is applied, but 
it is not cost‐effective and attractive to farmers. In this sense, application of treated wastewa‐

ter, which enables low‐cost cultivation, is essential and core in the concept. We are now trying 

to examine the performance of rice cultivation practice, which was revealed in the bench‐scale 
experiment, in the real fields.

5. Conclusions

Rice, which is a leading cereal crop, demands a huge amount of water, while the exploding urban 
population needs foods as well as produces wastewater. Reuse of wastewater for rice cultivation 

has a great potential to contribute to sustainable wastewater management. Several instances of 
positive and adverse effects of municipal wastewater irrigation for rice cultivation were given in 
this chapter. To avoid such negative effects on environment and human health, it is highly recom‐

mended that municipal wastewater should be reused for irrigation after being treated properly. 

Supposing it is treated with activated sludge process, a new concept “rice cultivation for animal 
feeding with irrigation of treated municipal wastewater” was introduced. Until now, our bench‐

scale experiment has revealed the feasibility of this concept with the data showing the achieve‐

ment of target value of rice yield and its high protein content which is preferable for animal feed.

Figure 2. Bench‐scale experiment to reveal the performance of treated wastewater irrigation to cultivate rice for animal 
feeding.
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