
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900



Chapter 4

IFN-γ versus IL-17: A Battle During Cardiac

Autoimmunity Evolution

Eleonora Kurtenbach and Camila Guerra Martinez

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/66986

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons 
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, 
and reproduction in any medium, provided the original work is properly cited. 

γ versus IL-17: A Battle During Cardiac 
Autoimmunity Evolution

Eleonora Kurtenbach and Camila Guerra 
Martinez

Additional information is available at the end of the chapter

Abstract

Cardiovascular diseases are the leading global cause of death. Cardiomyopathies are 
the most prevalent forms of heart failure diseases currently. They may have genetic 
or environmental etiology, and the development of an autoimmune process is essen-
tial for the progression of the disease. During an autoimmune response, there is the 
breakdown of self-tolerance and generation of a T-lymphocytes-mediated cellular 
autoimmune response and B-lymphocytes-mediated humoral autoimmune response. 
Lymphocytes perpetuate the autoimmune response throughout the release of cyto-
kines, expansion of autoreactive clones, and attenuation of regulatory mechanisms. 
Increasing evidences indicate that interferon (IFN)-γ and interleukin (IL)-17 par-
ticipate during autoimmune disorders development. The use of autoimmune car-
diomyopathy models revealed antagonistic functions for both cytokines during the 
evolution of autoimmune cardiomyopathy: while enhanced IFN-γ levels are associ-
ated to a lower disease severity, the levels of IL-17 are inversely correlated to a favor-
able prognosis. More precisely, recent findings indicate that the IFN-γ/IL-17 ratio 
in combination with other cytokine levels dictates heart’s autoimmunity develop-
ment and dilatation. In this chapter, we discuss the role played by the autoimmune 
response in the development of cardiomyopathy. We also discuss some immune 
mechanisms focused on IFN-γ and IL-17’s ability to induce and perpetuate cardiac 
autoimmunity.
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1. Introduction

Cardiovascular diseases are responsible for over 17 million deaths per year worldwide, rep-

resenting the leading cause of deaths globally (WHO 2015—http://www.who.int). Among the 
main disorders that directly affect the heart and/or circulatory system, there are the coronary 
heart diseases, cerebrovascular accident, hypertension, peripheral arterial diseases, congeni-

tal heart diseases, and heart failure [1]. Currently, cardiomyopathies are the most prevalent 

form of heart failure [2].

About 30% of cardiomyopathies have genetic origins, most of them are autosomal dominant, 
but there are also cases of X-linked-recessive inheritance and even mitochondrial DNA muta-

tions. In 2015, more than 110 nuclear and 24 mitochondrial genes were correlated with car-

diomyopathies [3–5]. Cardiomyopathy patients showed enhanced expression of the mutated 

genes TTN (titin, 27%), LLMNA (laminin A/C, 6%), MYBPC (myosin-binding protein C, 3%), 
TNNT2 (cardiac troponin C, 3%), MYH6 (myosin heavy chain 6, 3%), and SCN5A (sodium 

channel voltage-dependent-α5, 3%) [6–8]. In addition to the classic cases of sarcomeric protein 

mutations, an association between single nucleotide polymorphisms (SNPs) and predisposi-

tion to cardiomyopathies in some specific populations has also been reported. These SNPs 
were mainly observed in genes related to the immune response, such as CTLA-4 (cytotoxic 
T-lymphocyte antigen-4), IL-6 (interleukin-6), TNF-α (tumor necrosis factor alpha), and HLA 
(human leukocyte antigen) [9, 10].

Cardiomyopathy can also be induced by excessive alcohol consumption, poisoning by heavy 

metals or medications (e.g., doxorubicin), metabolic abnormalities, and microbial infections 

(Figure 1) [11]. Among the non-infectious etiologies, alcohol consumption is probably the 
main cause of cardiomyopathy in the Occidental world [10, 12, 13]. Viral infections are the 

most common form of microbial-mediated cardiomyopathy in Europe and North America 
[14]. Analysis of patient biopsies revealed that coxsackie B3 virus infection is the leading 
cause of cardiomyopathy, followed by parvovirus B19, enterovirus, adenovirus, human her-

pes virus 6, and HIV infection [15, 16].

In Latin America, Chagas´ cardiomyopathy is one of the most common forms of morbidity 
and mortality in Trypanosoma cruzi-infected people, now estimated in the order of 5.7 million 
people. Approximately one-third of these patients will develop a dilated chronic form of heart 
failure associated to a worst clinical prognosis [16, 17]

During the development of cardiomyopathy, these genetic or environmental conditions are 

considered initiators that cause local damage. The disease progression will activate immune 

response mechanisms, which may lead to the clearance of the infectious agent and/or the 
defective cardiomyocytes. However, this initial trigger can also activate an immune status 

that modulates disease progression to a chronic state of cardiomyopathy (Figure 1). The lit-

erature suggests that the development of autoimmune processes is the key element in the 

progression of cardiomyopathy regardless of its etiological origin [11, 18]. Nonetheless, the 

specific role of the complex immune system response in the induction of cardiac autoimmu-

nity and perpetuation of cardiomyopathy is poorly understood. Recent findings that shed 
some light in the immune mechanisms of cardiomyopathy induction will be described below.
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2. Development of cardiac autoimmunity

Cardiomyocyte cellular damage may be induced by infection with pathogens, endogenous 

stress from mechanical or oxidative traumas, or from mutated proteins (Figure 1A–C) 

[19–22]. These insults promote activation of the innate immune response through pattern 
recognition receptors (PRRs), such as Toll-like receptors (TLRs) and Nod-like receptors 

(NLRs). PRRs are expressed in immune cells, such as macrophages, dendritic cells and 

lymphocytes, cardiac fibroblasts, and cardiomyocytes (Figure 1) [23–26]. Activation of 

Figure 1. Proposed mechanisms in the development of cardiac autoimmunity. Infection caused by virus, bacteria, 

protozoa, and other stimuli (A) are recognized by receptors of the innate response, such as TLR and NLRs, leading 
to cardiomyocytes damage and death. During this process, the assembly of a multiprotein complex known as 

inflammasome may occur, responsible for secretion of cytokines and the amplification of an autoimmunity cascade. 
Also, diseases as diabetes and hypertension may activate oxidative and mechanical stress responses, respectively (B 
and C). These can lead to a redox imbalance and a change in protein processing, amplifying the heart damage. Proteins 

from infectious agents may exhibit similarity with host proteins, a process known as molecular mimicry (D). All these 
processes jointly or separately will provoke the exposure of cardiac antigens via MHC I by cardiomyocytes or via 

MHC II by antigen-presenting cells (APCs) after cardiac antigens or apoptotic cardiomyocytes phagocytosis. These 
processes will stimulate B-cells, CD4+ and CD8+ T-cells to mount humoral and cellular autoimmune responses. Besides, 

cardiac antigens can stimulate additional damages via TLR activation (E), as positive feedback. Gray continuous arrows 

represent mechanisms described in this review while gray dashed arrows not.
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heart receptors such as TLR2, TLR4, and TLR5 induces the expression of IL-6, MIP-2 (mac-

rophage inflammatory protein 2), KC (CXCL 1 – homolog of human IL-8), and ICAM-1 
(intercellular adhesion molecule-1), and is associated with a decrease in cardiomyocyte 
contractility [26, 27]. The absence of host immunity receptors or associated pathway com-

ponents inhibits the development of cardiomyopathies, as observed using an autoimmune 

animal model in mice depleted for TLR-7−/−, TLR-9−/−, and MyD88−/− [28].

The listed factors may cause a chronic condition and lead to the activation of cell death mech-

anisms by apoptosis or necrosis [29–31]. Apoptotic cardiomyocytes are processed by anti-
gen-presenting cells, such as dendritic cells and macrophages, resulting in immune system 

activation, myocarditis, and production of autoantibodies against heart protein, as anti-myo-

sin antibodies [32, 33]. The death of cardiomyocytes releases autoantigens which are captured 

by dendritic cells and leads to a "self-aggressive" state through the activation of CD40 and 
TLR receptors. This dendritic cell-mediated activation mechanism is an important regula-

tor of CD4+ T-cell function [32, 34]. The endocytosed cardiac antigens will be processed and 

coupled to a molecule of major histocompatibility complex class II (MHC II) and presented 

via T-cell receptor (TCR) to a CD4+ T-cell (Figure 1). In addition to this initial interaction, the 

correct activation of the CD4+ T-cell requires a second positive signal that is stimulated by 

costimulatory molecules such as CD28 and B7 (CD80 and CD86). However, inhibitory signals, 
such as mediated by CTLA4 molecules, are capable of competing with CD28 for binding to 
B7, reducing T-cell expansion and production of cytokines [35]. T-cells that do not express 

the CTLA4-B7-inhibitory signal exhibit an unregulated proliferation of lymphocytes in the 
heart, which can lead to a severe damage of myocardium, and the development of cardio-

myopathies [36, 37]. Cardiomyopathy patients present higher levels of CTLA4 SNP (+49A>G; 
Thr17Ala), which lead to a loss of function of CTLA4, than healthy subjects (14.7% vs. 7.4%, 
p = 0.005) [38]. Therefore, the correct activation of CD4+ T-cells in cardiac autoimmunity is 

mediated by (1) antigen-presenting cells that phagocytosed death cardiomyocytes or cardiac 
autoantigens and (2) a second co-stimulatory signal mediated by B7 (Figure 1). In addition 

to antigen-presenting cells, other cell types of non-hematopoietic lineage can also present 

antigens to CD4+ T-cells via MHC II under inflammatory stimuli [39]. It has been shown in 

patients and in rodent models that the MHC II expression by non-hematopoietic cells, in 

particular endothelial cells, contributes to the development of cardiomyopathy [40, 41]. Mice 

developed lower cardiac commitment when they did not express MHC II in endothelial cells 

[41]. Finally, properly activated CD4+ T-cells are able to activate B-lymphocytes to produce 

and secrete antibodies against cardiac antigens. The role of B-cells during the development 

of heart disease has been extensively studied [42]. The absence of programmed cell death 

protein-1 (PD-1), a key factor in the differentiation of B cells, can lead to the development of a 
severe form of dilated cardiomyopathy, with high levels of IgG that specifically binds to car-

diomyocytes and induce apoptosis [43, 44]. Depletion of these B-cells recovers the heart failure 

phenotype in mice [42]. The production and release of autoantibodies is dependent of B-cell 

differentiation to plasma cells. During this process, there is a decrease in CD19 expression and 
maintenance of high levels of CD138 and transcription factor Blimp-1 [45]. The expression of 

these two factors is dependent of high levels of IL-17 and activation of autophagy. After this 
differentiation, it is possible to observe high titers of anti-myosin antibodies in BALB/c mice 
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immunized with α-myosin heavy chain peptide (α-Myhc), particularly IgG2a and IgG2b sub-

types, and the development of some cardiac impairment characteristics, such as the increase 

in the ratio of heart and body weight [46]. These antibodies can recognize and bind to specific 
cardiac antigens and deposited into the myocardium [47]. A wide range of evidence suggests 
that these autoantibodies directly affect cardiac function and physiology [48].

In addition to the response mediated by CD4+ T- and B-cells, CD8+ T-cytotoxic lymphocytes 

may be activated through the recognition of conjugated epitopes on MHC I. Damage induced 

by pathogen infection or cell stress mechanisms can alter intracellular protein processing 

resulting in misfolding, which will expose it to MHC I molecules. This will expose self-epi-

topes to autoreactive CD8+ T-cells (Figure 1A, B and D) [13]. Also, molecular mimicry may 
occur between pathogens and heart proteins (Figure 1B and D) [49]. This latter mechanism is 
well described in Chagas’ patients where antibodies against the B13 T. cruzi protein can also 

recognize cardiac α-Myhc (Figure 1D) [50]. This step via MHC I will promote the release of 

cytotoxic agents, such as perforin and granzyme B by CD8+ T-cells that could promote car-

diomyocytes apoptosis and can amplify the release of cardiac antigens [51]. Throughout the 

modulation of immune system, lymphocytes will release cytokines that will expand autore-

active clones propagating the autoimmune response [11]. The autoimmune process formed 

by humoral and cellular responses can amplify the cardiac damage through the secretion of 

autoantibodies, cytokines, and other immune factors, despite initial stimuli.

Analysis of cardiomyopathy patients revealed the presence of autoantibodies against self-myo-

cardial protein in up to 80% of the patients [52], indicating that autoimmunity is a central ele-

ment for cardiomyopathy development. Evidence indicates that these autoantibodies affect the 
heart rather than other organs. Serum or IgG purified from these patients can induce negative 
inotropic effects on the heart of chicken embryos [53] and decrease heart contraction, the cal-

cium transport [54, 55], and the diastolic relaxation in mice [48, 56]. The transference of IgG puri-

fied from patients serum with cardiac dysfunction to healthy mice induced significant necrosis 
in cardiomyocytes and mediated inflammatory effects with the aid of immune cells [57]. The 

characterization of these antibodies started in the 1980s and continues until today. Some of these 
antigens are listed in Table 1 [58–69]. Most of produced autoantibodies directly recognize one 

specific cardiac antigen. But it has been demonstrated in rats that anti-myosin antibodies are 
capable to recognize the β1-adrenergic receptor and promotes their activation [70].

As briefly discussed above, the mechanisms that trigger the development of autoimmune cardio-

myopathy are orchestrated by humoral and cellular responses. Immune cells such as granulo-

cytes, monocytes, T-cells, B-cells, and mast cells infiltrate into the heart and promote the secretion 
of the cytokines, IL-17, -6, -1, -10, -12, IFN-γ, TGF-β, TNF-α, and chemokines that will generate an 
amplification loop, recruiting new inflammatory cells to the heart [71–77]. However, the precise 

elucidation of this complex immune response mechanism remains unclear due to the difficulty 
to determine the precise order that immune cells infiltrate the heart [78–80]. Once activated, this 

cellular response will undergo both beneficial and harmful effects as the disease progresses.

Data obtained in experimental autoimmune cardiomyopathy models using immunization 

with α-Myhc showed a predominance of CD4+ T-cell response [41, 77, 78, 81]. The transfer 
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of CD4+ T-cells from mouse spleen that produced anti-myosin antibodies and developed car-

diomyopathy mimics the disease in severe combined immunodeficiency (SCID) mice. On the 
contrary, CD8+ T-cell transference did not induce changes [32, 82]. Moreover, the depletion of 

CD4+ T-cells or treatment with anti-CD4 antibody prevents acute myocarditis with a decrease 
in the antibodies production and heart size [18, 83], confirming a prominent CD4+ T-cell role 

in this autoimmune cardiomyopathy model.

CD4+ T-lymphocytes can be biased to different profiles: Th1, Th2, Th17, Th9, Th22, follicular 
T (Tfh cells), and induced regulatory T (Treg cells) cells, each of which has a specialized func-

tion and is adapted to suppress a specific class of injuries or counteract the excessive activa-

tion of the immune system [84]. For autoimmune cardiomyopathy, the involvement of Th1, 
Th2, and Th17 cells has been characterized. The most relevant studies in this area are focused 
on Th1 and Th17 responses and their respective cytokines [32, 71–73, 76, 85–88].

3. IL-17 versus IFN-γ

Early studies using immunohistochemical assays identified the presence of cells producing 
mainly TNF-α and IL-1 in heart [89, 90]. In the early 2000 era, novel cytokines were identified 

Class of cardiac protein Protein First citation

G protein–coupled receptors β1 adrenergic receptor

2 muscarinic receptor

Limas et al., [58]

Fu et al., [59]

Mitochondrial M7 antigen 

Adenine nucleotide translocase 
(ANT)

Klein et al. [60]

Schultheiss et al. [61]

Structural α-myosin heavy chain (MyHC)

Troponin I

Laminin 

Myosin-binding protein-C 

Dystrophin

Neu et al. [62]

Okazaki et al. [63]

Wolff et al. [64]

Müller et al. [65]

Müller et al. [65]

Others Na-K ATPase 

Hsp-60

Proteasome 20 S

Calreticulin 

RNA-binding protein 20

Baba et al. [66]

Latif et al. [67]

Voigt et al. [68]

Sánchez et al. [69]

Müller et al. [65]

Table 1. Cardiac antigens characterized in autoimmune cardiomyopathies.

Immunopathogenesis and Immune-based Therapy for Selected Autoimmune Disorders52



in cardiomyopathic animal as IL-2 and IL-1-β [91]. In 2006, the first evidence of the IL-17 par-

ticipation in autoimmune cardiomyopathy [76] was described.

In the last decade, Th17 cells have been extensively characterized in various autoimmune 
diseases [92, 93], including autoimmune cardiomyopathy [3, 80, 94]. Th17 CD4+ T-cells have 

been named after the discovery of their classical cytokine, IL-17A, but they also produce other 
effector cytokines including IL-17F, IL-22, and granulocyte macrophage-colony-stimulating 
factor (GM-CSF) [95]. Additionally, IL-17 may also be secreted by other cell types as Th17 
CD8+ T-cells (Tc17), γδ T-cells (mainly in the skin and intestine), mucosal-associated invariant 
T-cells (MAIT), among other resident T-cells in different tissues [96, 97]. The polarization of 

CD4+ T-cells to Th17 profile initially requires the presence of TGF-β. This cytokine induces the 
expression of ROR-γt (RAR-related orphan receptor-γt) and FoxP3 (Forkhead box P3) tran-

scriptional factors [98]. The co-expression of these two factors allows the physical connection 

between FoxP3 and ROR-γt inhibiting their differentiation to Th17. In the presence of IL-6, 
STAT3 is activated and interrupts the inhibition induced by FoxP3, resulting in the expression 
of IL-23 receptor and initiating the differentiation to Th17. Nevertheless, in the absence of IL-6, 
the inhibition of ROR-γt induced by FoxP3 will favor the development and expansion of Treg 
cells [99]. Beyond IL-6, IL-1-β is also capable of inhibiting FoxP3, generating an amplification 
loop [100, 101]. This cytokine polarization is very well characterized to CD4+ T-cells, but also 

appear to be responsible for differentiation of CD8+ T-cells to Tc17 profile [102, 103]. Recently, 

it was demonstrated that the differentiation of CD8+ T for IL-17 producing CD8+ T-cells is also 

dependent on the inhibition of Blimp-1 and T-bet [104]. Today, it is well accepted that the 

release of cytokines required for this process of differentiation, such as IL-6, IL-12, TNF-α, and 
IL-23 by antigen-presenting cells, such as dendritic cells and CD14+ monocyte, is induced by 

the recognition of cardiac autoantigens by TLR and by the presence of GM-CSF [105, 106]. As 
described, IL-6 and IL-23 will induce the differentiation of T helper (Th) cells to Th17 profile, 
where the release of IL-17 and more GM-CSF occurs, forming a positive feedback [88, 94].

Several works published in the last 10 years, using animal models and patients with cardio-

myopathy, tried to establish IL-17 as a cytokine inducer of autoimmune cardiomyopathy. 
IL-17 was described as an important factor responsible for cardiac remodeling, fibrosis, and 
many other effects in the heart [72, 78, 86, 88]. An increase in IL-17 and IFN-γ transcriptional 
levels in mice that develop experimental autoimmune myocarditis (EAM) induced by subcu-

taneous inoculation with α-Myhc was observed. In this case, the copy number of IL-17 mRNA 
was about 20–30 times higher than those to IFN-γ [107].

It has been shown that the presence of IL-17 increases the expression of MMP-1 (matrix metal-
loproteinase-1), promoting the migration of cardiac fibroblasts in vitro and cardiac remodeling in 

vivo [108]. Furthermore, it was shown that Th17 cells and IL-17 were involved in survival, prolif-
eration, and differentiation of B-cells [109]. In this direction, sera of patients with dilated cardio-

myopathy showed an increase in IL-17 levels and in the frequency of Th17 cells when compared 
to health donors [109]. IL-17 neutralization or depletion slowed the development of autoimmune 
response and reduced the generation of cardiac autoantibodies in EAM myosin model [76, 110]. 

Also, mice treated with anti-IL-6, which were not capable of promoting the polarization of CD4+ 

T-cells to Th17 profile, do not develop autoimmune cardiomyopathy [111].
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But these facts seem to be true only in the acute phase of the disease. After the establishment 
of a chronic condition, patients with cardiomyopathy presented lower levels of IL-17 and 
Th17 cells subtype [112]. So, high IL-17 levels are essential in acute phase of cardiomyopathy 
and for the progression to the final stage of the disease. But when the cardiomyopathy reaches 
this final stage, where heart dilatation is found, IL-17 seems not necessary [86, 87]. And even 
more, the reduction of IL-17 levels after the establishment of cardiac damage did not appear 
to be beneficial. In fact, mice infected with T. cruzi presenting typical functional cardiomyopa-

thy changes, when treated with anti-IL17, developed an acute exacerbation of inflammation 
and cardiac dysfunction [113]. The absence of IL-17 receptor on infected mice also leads to the 
development of a fatal cardiomyopathy [114]. Additionally, it was demonstrated that indi-
viduals infected with T. cruzi who developed severe cardiac dysfunction had lower levels of 

IL-17 when compared with infected patients presenting moderate symptoms [115]. Recently, 

a study analyzed IL-17 levels in blood sample of 41 patients with dilated cardiomyopathy, 
without differentiating the etiology of the disease. They observed an increase in IL-17 levels 
up to 6 months after the diagnosis, but after 1 year of monitoring, IL-17 levels reduced close 
to those found in healthy patients, even in the presence of high levels of IL-6 and TGF-β [94]. 

This association between reduction in IL-17 levels and worse prognosis has also been found in 
patients who suffered acute myocardial infarction [116]. Finally, our research group recently 

showed that this relationship between IL-17 late decrease and worse symptoms occurred in 
heart disease of autoimmune origin. Mice that produce anti-M

2
AChR antibodies induced by 

gene immunization showed dilated cardiomyopathy and an increase in IL-17 production in 
the heart at 20-week postimmunization; however, with the progression of the disease to a 
final dilated stage, about 40 weeks after immunization, the IL-17 levels become comparable 
to the levels produced by the respective control animals [117]. The literature did not present 

explanations about the mechanisms involved in decreasing IL-17 levels. But IL-17 reduction, 
after the achievement of the disease, seems to be more harmful than beneficial to the develop-

ment of cardiomyopathy. Thus, it is crucial to emphasize that the use of anti-IL-17 therapies 
for heart disease and other autoimmune diseases needs to be employed in a precise time to 

avoid harmful effects in the patients.

The immune response via Th1 cells and their cytokine marker IFN-γ is also largely related 
to autoimmune cardiomyopathy. During the innate immune response, IFN-γ is produced 
by natural killer cells and natural killer T-cells [118], as well as macrophages and dendritic 

cells [119]. In adaptive immunity, IFN-γ is mainly produced by CD8+ T-cells and Th1 CD4+ 

T-cells [120, 121]. After TCR stimulation, CD8+ T-cells produce higher levels of IFN-γ than 
CD4+ T-cells [122]. This is possible due to the interaction between TCR-MHC interaction that 

occurs between the CD8+ T-cells and MHC I-expressing antigen-presenting cells is sufficient 
to induce the secretion of IFN-γ and differentiation to a cytotoxic profile, whereas CD4+ T-cells 

need TCR recognition and a series of other stimuli [120]. IFN-γ also contributes to the switch 
process of IgG subclass in B-cells to a more pathogenic profile (IgG2a and IgG3 subclasses), 
activation of the complement system, inflammation, and tissue damage [123, 124]. But the 

IFN-γ expression is not static and confined to these classic subtype cells described above. 
Th17 cells can also produce IFN-γ concomitantly with IL-17 and even can become an exclu-

sive IFN-γ producer [125, 126].
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IFN-γ is an indicator of pathogenicity for autoimmune diseases [127], but its role in cardiomy-

opathies is still controversial [128] and it appears to be more protective than inducer of disease 

[76, 85, 129–131]. For instance, mice treated with anti-IFN-γ antibodies or genetic deleted for 
T-bet, IFN-γ, or IFN-γR presented an exacerbated inflammatory infiltrates and increased heart 
size and its cavities [71–73, 76, 85, 130]. One of the possible protective mechanisms mediated 

by IFN-γ involves the inhibition of autoreactive T-cell proliferation through the induction of 
nitric oxide synthase 2 enzyme (NOS2) and nitric oxide (NO) release [77, 132]. Although today 
this mechanism seems simple, its elucidation was very contradictory and troubled for some 

years. Initially, IL12Rβ1, one of the IL-12 receptor subunits, knockout mice were used for the 
study of participation of the IFN-γ in autoimmune cardiomyopathy. The inhibition of this clas-

sically Th1-polarizing pathway decreased the development of autoimmune cardiomyopathy in 
knockout mice, indicating the pathogenicity of Th1 cells [85]. However, as already mentioned, 

the IFN-γ−/− and IFN-γR−/− mice showed an exaggerated and lethal disease [72, 73], an appar-

ent contradictory result. This impasse was resolved when it was shown that β1 subunit of the 
receptor for IL-12 was shared with the IL-23 receptor, inducer of Th17 response [110]. Despite 

all this characterization of IFN-γ-protective role, it is unclear which mechanisms are activated 
during this process. It is known that high levels of IFN-γ induce the production of NO by NOS2 
with consequently inhibition of CD4+ T-cells autoreactive proliferation [77]. HL-1 cell line and 
primary cardiomyocytes treated with IFN-γ showed an activation of absent in melanoma 2 
(AIM-2), an intracellular receptor of the PRRs family, which reduces IL-6, IP-10 (inducible pro-

tein 10, CXCL10), and TNF-α transcription in cardiomyocytes and limits inflammation in car-

diomyocytes, but not in cardiac fibroblasts [133]. Also, high IFN-γ levels secreted by γδ cells 
could kill pathogenic F4/80+ macrophages in heart and control cardiac damage [134]. There 

could be some explanation for how IFN-γ protects mice from the development of autoimmune 
cardiomyopathy.

Meanwhile, several other studies demonstrated the ability of high IFN-γ levels in inducing 
myocardial inflammation, interstitial fibrosis, apoptosis, wall thinning, systolic dysfunction, 
dilatation, and cardiomyopathy [128]. And more recently, it has been shown that IFN-γ has 
the capacity to induce cardiac damage in autoimmune cardiomyopathy model. High IFN-γ 
levels were associated with cardiorespiratory commitment, electrical abnormalities, and cardiac 

dilatation. This situation was more prominent in the absence of purinergic receptor P2X7 [117]. 

These evidences show that it is not possible to withdraw the IFN-γ participation as a cardiomy-

opathy inducer.

4. Immune cells’ function on autoimmune cardiomyopathy

The entire description and discussion made so far focused mainly on the presence and polar-

ization of CD4+ T-cells; however, as already pointed out, the presence and participation of 
other immune cells can be decisive in disease severity. In genetically susceptible mouse 

model, preferably BALB/c, immunization with the α-Myhc in the presence of a strong adju-

vant, like complete Freund’s adjuvant (CFA), the disease is mediated almost exclusively by 
CD4+ T-cells. However, it has been recently identified in EAM-induced A/J mice that the 
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α-Myhc338-348 epitope was the immune dominant for CD8+ response [135]. In this case, they 

showed antibodies production, cardiomyopathy development, and the presence of inflamma-

tory infiltrate composed of 35% of CD8+ T-cells [135]. As previously mentioned, this infiltra-

tion of CD8+ T-cells has a high cytotoxic role as a source of IFN-γ, perforin, and granzyme that 
will induce irreversible damage to cardiomyocytes [51].

Despite the great importance of T-cells, it is believed that the major cells infiltrating the hearts 
during the development of cardiomyopathy are monocytes, especially CD11b+ [77]. These 

cells can differentiate into different profiles ranging from dendritic cells, macrophages, and 
fibroblasts depending on the immune environment (including cytokines, chemokines, and 
growth factors) present in the heart [77, 132, 136]. The more severe cardiomyopathy is found 

when there is the presence of eosinophils in the heart infiltration [131]. It is believed that NK 
cells control the exacerbated proliferation of eosinophils in the heart through direct induction 

of apoptosis [137]. The recruitment of eosinophils to the heart can also be controlled by car-

diac fibroblasts and F4/80+ macrophages through the release of CCL11 and CCL24 (eotaxin-1 
and eotaxin-2), respectively [138].

In the healthy heart, it is possible to find a population of resident macrophages, but the num-

ber of these cells can be expanded after the infiltration of new macrophages under some 
stimulus such as initiators of the autoimmune cardiomyopathy, cited at the beginning of this 

review (Figure 1). Macrophage infiltration is a well-known step, but it is little studied in car-

diomyopathy [139]. These cells can differentiate into various profiles depending on the cyto-

kine present in the medium. Some of these profiles are classically activated, pro-inflammatory 
M1 macrophages and alternatively activated, anti-inflammatory M2-polarized macrophages, 
tumor-associated macrophages (TAM), “immature” monocyte-like (GR1/Ly6C+) or “mature” 
neutrophil-like (GR1/Ly6G+), and suppressor cells derived from myeloid precursor (MDSCs) 

[79]. The functional properties and secretory profile of macrophages likely promote myo-

cardial health or disease. In some cases, their influence on acute inflammation and chronic 
fibrosis is well described, and in others, their cardioprotective function seems to be almost 
indisputable, being proposed as a good source of treatment [140–142]. In models of cardiac 

autoimmunity, there is a predominance of M2 macrophages, around 70%, which promoted 
the resolution of the disease in heart tissue after damage. And with the presence of M1 mac-

rophages, there is the expansion of Th17 cells and cardiac dilation [79, 143–145]. Therefore, 

further studies about the importance and function of macrophages in cardiomyopathies, in 

particular autoimmune ones, are needed.

5. Conclusion

The findings described in this chapter demonstrate the existence of a precise balance of the 
immune response, where a complex network of factors creates the conditions for the progres-

sion of autoimmune cardiomyopathy and dictates its severity. The combination of present 

and future knowledge on this line of study can ultimately guide to a possible effective and 
non-general treatment. However, two factors must be taken into consideration: (1) the correct 
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association between anti-humoral and anti-cytokine therapies and (2) the period where the 

treatment must be applied.

Therefore, the participation of IFN-γ and IL-17 in the autoimmunity development recalls us 
a dance instead of an arms race, where a fine temporal and quantitative control of these cyto-

kines can determine the cardiomyopathy evolution.
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