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Abstract

Zero-index material is a typical metamaterial with an effective zero refractive index,
possessing a variety of exotic electromagnetic properties and particular functionalities.
We have considered two kinds of zero-index materials with the first one a nearly
matched zero index made of magnetic metamaterial and the second one a radially
anisotropic zero index. The magnetic metamaterial-based systems are shown to be
significant in wavefront engineering and flexibly tunable by an external magnetic field
and a temperature field. The radially anisotropic zero-index-based systems can remark-
ably enhance the omnidirectional isotropic radiation by enclosing a line source and a
dielectric particle within a shell configuration. The physical origin lies in that the dielec-
tric particle effectively rescatters the trapped anisotropic higher order modes and con-
verts them into the isotropic 0th order mode radiated outside the system. The case for
the system with the loss is then examined and the energy compensation with a gain
particle is also demonstrated.

Keywords: zero index materials, magnetic metamaterials, multiple scattering theory,
omnidirectional isotropic radiation, Mie theory

1. Introduction

Metamaterials are a kind of composite electromagnetic (EM) materials consisting of

subwavelength “meta-atoms” with either electric or magnetic response or even both, which

possess nearly arbitrary profile of effective permittivity ε and permeability μ in principle [1–3].

A great deal of novel and unique EM properties, not occurring in natural materials, such as

negative refraction [4, 5], cloaking [6, 7], illusion [8], and subwavelength propagation [9, 10]

are theoretically predicted and experimentally implemented from the microwave region to the

optical region. Zero-index material (ZIM) is a typical metamaterial with effective zero

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



refractive index, including ε-near-zero [11–13], μ-near-zero [14, 15], or both ε and μ near zero,

a matched ZIM (MZIM) [16–18], and even more generally the ZIM with anisotropy [19–21].

Due to the extraordinary refractive index of the ZIMs, a great variety of bizarre EM behaviors

and potential applications based on ZIM have been extensively investigated and reported. It

has been demonstrated both theoretically and experimentally that the ZIM can be used to

squeeze the electromagnetic wave and make it tunnel through a deep subwavelength channel

with arbitrary shape, serving as a highly efficient coupler between incoming and outgoing

waveguides [11, 13, 22]. Due to the zero phase delay in the ZIM, the phase pattern of an EM

wave can be flexibly engineered, enabling the wavefront shaping [16, 23, 24]. The ZIM can also

be used to modify and enhance the directive emission with high efficiency [20, 25, 26]. Com-

pact omnidirectional metamaterial antennas can also be designed based on the anomalous

transmittance of ε-near-zero ultranarrow radial channels [27]. Interestingly, by incorporating

dielectric defects into the MZIM or ε-near-zero material the transmission and reflection can be

switched by delicately controlling the defects [16, 28, 29]. Later on, Luo et al. [30] have

implemented nearly perfect bending waveguides with anisotropic ZIM, while Cheng et al.

[19] have used another kind of anisotropic ZIM, a radially anisotropic ZIM (RAZIM), to

combine multiple sources and acquire omnidirectional radiation.

The ZIMs are usually composed of the building blocks made of metallic materials or dielectric

materials, or sometimes are supposed to homogeneous media with the desired parameters in

theoretical research. Here, we first present another kind of metamaterials composed of build-

ing blocks made of ferrite materials with intrinsic magnetic response, which are accordingly

called magnetic metamaterials. The effective electric permittivity εeff and magnetic permeabil-

ity μeff can be tuned by an external magnetic field (EMF) or temperature due to the dependence

of ferrite materials on EMF and temperature, thus providing us with more degrees of tunabil-

ity. In addition, the permeability of ferrite material is a second rank tensor with nonzero off-

diagonal elements, indicating the time-reversal-symmetry breaking nature in magnetic

metamaterials [31]. As a result, nonreciprocal behaviors can be observed in such system, even

for the geometrically symmetric ZIMmade of magnetic metamaterial. Then, we will consider a

composite system constructed by a RAZIM shell enclosing a dielectric rod inside, which is

used to implement a strongly enhanced two-dimensional (2D) isotropic radiation with rela-

tively high efficiency. In addition, different from the configuration with the gain particles

inserted inside the MZIM [32], our proposal does not alter the structure of the RAZIM shell

and keep its homogeneity, which makes it experimentally feasible.

The research content of the present chapter consists of two main parts. In the first part, we

present the design of ZIM with magnetic metamaterials by optimizing the parameters of

configuration. Then, by calculating the photonic band diagrams and retrieving the effective

constitutive parameters we can confirm the implementation of the ZIM. After that, the field

patterns are simulated to demonstrate the zero-phase delay of the ZIM and wavefront modu-

lation by sculpturing typical outgoing interfaces. Finally, the effective refractive index is shown

to be thermally controlled due to the dependence of the saturation magnetization of ferrite

materials on the ambient temperature. In the second part, we demonstrate a remarkable

enhancement of omnidirectional radiation with the RAZIM shell by surrounding the line

source together with a particular particle. A rigorous theoretical approach is presented to
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analyze the phenomenon and optimize the related parameters. Then, the influence of the loss

is examined, which can be compensated by introducing a gain particle. Finally, all the results

are summarized in the conclusion part.

2. ZIM made of magnetic metamaterials

Magnetic metamaterials concerned in present work consist of an array of ferrite rods arranged

periodically in air with either square or triangular lattice. Actually, configurations with some

randomness introduced to the system are similar in the long wavelength limit, provided that

the filling ratio of the ferrite materials is the same. Single-crystal yttrium-iron-garnet (YIG) is a

good candidate for designing magnetic metamaterials due to its extremely low loss. In partic-

ular, the magnetic permeability of ferrite materials is dependent on an EMF, allowing for the

realization of magnetically manipulable negative-index materials [33]. Combining the time-

reversal symmetry breaking nature under an EMF, the one-way waveguiding tunable by an

external magnetic field has been realized as well [34–36]. Bi and coworkers have shown that

the thermally tunable negative index can also be realized with the magnetic metamaterials

around the Curie temperature Tc based on the ferrimagnetic-paramagnetic transition of ferrite

material. However, due to the narrow temperature range for the Mn-Zn ferrite material used in

their work, the tunability is highly limited. Differently, for the single-crystal YIG employed in

present design an even wider temperature range is permitted so that the effective refractive

index can be adjusted from negative to zero and then to positive [37], signifying a great

possibility to realize the gradient negative-zero-positive index material (NZPIM) [38, 39] when

an appropriate gradient temperature field is applied to the system.

2.1. Photonic band diagrams and effective-medium theory

To examine the eigenmodes of the magnetic metamaterials, we employ the multiple-scattering

theory to calculate the photonic band diagrams, which is proved to be powerful for the

systems consisting of nonoverlap spheres or circular cylinders [40–45]. As for the effective

electric permittivity εeff and magnetic permeability μeff, we will present simply a coherent

potential approximation based effective-medium theory to retrieve these two constitutive

parameters [46]. First thing first, for definiteness we should give the magnetic permeability of

the single-crystal YIG ferrite rods fully magnetized along the z direction, parallel to the rod

axes, which is a second rank tensor given by [47]
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, where ω0 ¼ γH0 is the

resonance frequency with γ ¼ 2:8 MHz/Oe the gyromagnetic ratio, H0 is the sum of the EMF

applied in the z direction and the shape anisotropy field [47], ωm ¼ 4πγMs is the characteristic

frequency with 4πMs ¼ 1750 G the saturation magnetization, and α ¼ 3 · 10−4 is the damping
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coefficient of the single-crystal YIG. The electric permittivity of the single-crystal YIG ferrite

rods is εs ¼ 25þ i3· 10−3. In the calculation of photonic band diagram, we set α = 0 [31] and εs
= 25 to obtain the eigenmodes. For the 2D system, the transverse electric (TE) mode and the

transverse magnetic (TM) mode are decoupled and we consider only the TM mode with the

electric field polarized along the rod axis. In this case, the magnetic field of the incident wave is

perpendicular to the EMF so that the magnetic field will interact with the precessing magnetic

dipoles of the ferrite, thus leading to the control of an EMF on the magnetic permeability.

To calculate the eigenmodes and simulate the electric field patterns, we illustrate here how the

multiple scattering theory is used to serve the purpose. For an incident TM wave, the electric

field impinging to the ith ferrite rod can be expanded in terms of the vector cylindrical wave

functions

Einc ¼ E0∑
m
pm Jmðk0riÞ e

imφiez; (2)

where E0 is the amplitude of the electric field, Jmðk0riÞ is the mth order cylindrical Bessel

function, k0 is the wavenumber in the vacuum, ri is the position vector of the polar angle φi in

the coordinate system with the origin at the ith ferrite rod, ez is the unit vector along rod axis,

pm is the expansion coefficient for the mth order partial wave of an incident field. The total

scattering electric field can also be obtained by summarizing the scattering electric field from

all the ferrite rods

Esca ¼ −E0 ∑
N

i¼1
∑
mc

m¼−mc

bðiÞm Hð1Þ
m ðkriÞe

imφiez; (3)

where mc is the critical angular momentum in the simulation to ensure the numerical conver-

gence, N is the number of the ferrite rods, Hð1Þ
m ðkriÞ is the mth order Hankel function of the first

kind, bðiÞm is the mth order scattering coefficient for the ith ferrite rod, which can be obtained

according to

bðiÞm ¼ tðiÞm

h

pðiÞm −∑
j≠i
∑
n
Smnði;jÞb

ðjÞ
n

i

; (4)

where Smnði;jÞ is the structural factor that transforms the scattered wave from the jth ferrite rod

into the incident wave on the ith ferrite rod and t
ðiÞ
m is the Mie-scattering coefficient of the ith

ferrite rod, which was obtained exactly in literature [48].
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In Eq. (5), JmðxÞ and HmðxÞ are, respectively, the Bessel function and the Hankel function of the

first kind, the superscript ‘′’ represents the derivative with respect to x ¼ kbrs with rs the radius

of the ferrite rod, k2s ¼ ω2εsμs, ms ¼ ks=kb, m
′
s ¼ ms=

ffiffiffiffiffiffi

μ′
r

p

, and Dnðms′xÞ ¼ J′nðms′xÞ=Jnðms′xÞ.
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Actually, there exist N · ð2mc þ 1Þ scattering coefficients for the whole system, corresponding

to N · ð2mc þ 1Þ linear equations, which is the kernel part of the multiple scattering theory. In

matrix form, the linear equations can be cast into

ðS þ t−1Þb ¼ p: (6)

The magnetic field can be derived easily from Maxwell’s equations. To calculate the photonic

band diagram, we should set p = 0 to solve the stationary-state equations so that the eigenfre-

quencies corresponding to the wavevectors in reduced Brillouin zone can be obtained.

For convenience, we recapitulate the results for the effective-medium theory; more details are

referred to the published literature [46]. The scenarios of the effective-medium theory are as

follows: (1) transform the periodic lattice of the magnetic metamaterials into the effective

medium with effective constitutive parameters εeff and μeff; (2) take the unit cell of the mag-

netic metamaterials as an equal-area coated rod with ferrite rod as the inner core and the

background medium as the coated layer with radius r0, which is evidently an approximation,

applicable only for the lattice with high symmetry. For a square lattice the radius r0 ¼ a
ffiffiffi

π
p , while

for a hexagonal lattice the corresponding radius of the coated layer is r0 ¼
ffiffiffi

34
p

ffiffiffiffi

2π
p a; (3) the

effective constitutive parameters εeff and μeff are determined by the condition that the total

scattering of this coated rod in the effective medium vanishes in the long wave limit, namely,

k0r0≪1 and k0
ffiffiffiffiffiffiffi

εeff
p

ffiffiffiffiffiffiffi

μeff

p
≪1. After some mathematical manipulations, we can obtain the sim-

plified equations determining the effective electric permittivity εeff and the effective magnetic

permeability μeff.

εeff ¼ ð1−f Þε0 þ f~εs;
μeff−μ0

μeff þ μ0

¼ f
~μs − μ0 − ξ

~μs þ μ0 þ ξ
; (7)

where f is the filling fraction with f ¼ r2s=r
2
0, and

~εs ¼ 2εsF2ðxsÞ, ~μs ¼ μsG2ðxsÞ, ξ ¼ −

ð1−f Þμ2
0ðμκ=μrÞ

2ð~μs=μsÞ
2

ð1−f Þμ0 þ ð1þ f Þ~μs

;

F2ðxsÞ ¼ J1ðxsÞ=½xsJ0ðxsÞ�, G2ðxsÞ ¼ J1ðxsÞ=½xsJ′1ðxsÞ�;
(8)

with xs ¼ ksrs. It is noted that for the isotropic dielectric rod μκ is equal to zero, then Eq. (7) can

be recovered to that for the isotropic metamaterials [49].

2.2. Phase patterns and wavefront engineering

By use of multiple-scattering theory, we calculate the photonic band diagrams for the magnetic

metamaterials composed of the single-crystal YIG ferrite rods of the radius rs ¼ 3:3 mm and

arranged periodically with square lattice with the lattice separation a ¼ 10 mm. The results are

shown in Figure 1(a) and (c), corresponding, respectively, to the magnetic metamaterials under

the EMF H0 ¼ 510 Oe and H0 ¼ 460 Oe. It can be found that there appear no eigenmodes

below the first band, suggesting the formation of the photonic band gap. The first band

possesses the negative slope, namely, dω=dk < 0, corresponding to the negative εeff and μeff

Manipulating Electromagnetic Waves with Zero Index Materials
http://dx.doi.org/10.5772/66663

181



as further corroborated by the effective constitutive parameters shown in Figures 1(b) and (d).

In particular, the first, second, and the third bands are degenerated at Γ point; meanwhile, the

second band is nearly flat, signifying the characteristic of longitudinal mode. This accidental

degeneracy can lead to the appearance of effective zero index with εeff ¼ μeff ¼ 0 as confirmed

by the effective-medium theory for the magnetic metamaterials under the EMFH0 ¼ 510 at the

working frequency f w ¼ 2:65 GHz. Actually, the first and third bands form a Dirac cone at Γ

point, which is consistent with that found by Huang et al. [16]. Interestingly, around the Dirac

cone, the effective constitutive parameters εeff and μeff experience a nearly linear transition

from negative to zero and then to positive except that a very narrow magnetic resonance

appears, which is the difference of the magnetic metamaterials from the dielectric photonic

crystals. This might be significant for investigating the EM features of NZPIM in frequency

domain [50, 51]. More importantly, by decreasing the EMF from H0 ¼ 510 to 460 Oe both the

photonic band diagram and the associated effective constitutive parameters are shifted down-

wards. As a result, the working frequency for the zero index is shifted from f w ¼ 2:65 to

f ′

w ¼ 2:5 GHz, suggesting the flexible tunability of the ZIM by an EMF. This offers us the

opportunity to realize the NZPIM in space domain [38, 39] by applying a gradient EMF on

magnetic metamaterials.

From the photonic band diagrams and the effective constitutive parameters εeff and μeff, we

have obtained a good MZIM at the working frequency f w ¼ 2:65 GHz for the magnetic

metamaterials under the EMF H0 ¼ 510 Oe. To examine the performance of the MZIM, the

electric field pattern inside the MZIM can be simulated as shown in Figure 2 for an MZIM slab

illuminated by a Gaussian beam normally from the left-hand side. It can be found that

although the thicknesses of three MZIM slabs are different, the phases of the outgoing beams

are almost the same, showing nearly no change compared to that at the left interface. Inside the

MZIM slab, the Gaussian beam experiences nearly no phase delay and electric field is nearly

homogeneous, indicating the characteristic of the ZIM. In addition, the amplitude of the

outgoing beam is comparable to that of the incident beam, indicating the impedance match of

the MZIM with the air. Compared to the MZIM based on the dielectric photonic crystals the

Figure 1. The photonic band diagrams for the magnetic metamaterials of square lattice under the EMF (a) H0 ¼ 510 Oe

and (c) H0 ¼ 460 Oe, respectively. The corresponding effective electric permittivity εeff and magnetic permeability μeff are

given in panels (b) and (d), respectively. The lattice separation is a = 10 mm and the radius of the ferrite rod is rs ¼ 3:3 mm.
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coupling efficiency in present system is much higher, which originates from the anisotropy of

the magnetic metamaterials as well as the subwavelength scale of the configuration. But for the

dielectric photonic crystals the lattice separation is comparable to the working wavelength,

implying a strong inhomogeneity. Anyhow, we can still observe some reflection due to the

parallel momentum mismatch of the incident Gaussian beam at the interface. By calculating

the reflectance and transmittance, we find that the reflectance becomes larger with the increase

of the thickness, corresponding to 11.6, 18.9, and 24.1% for three different MZIM slabs. Differ-

ently, for a normal incident plane wave the reflectance is not larger than 1%, consistent with the

above analysis. The transmittance for three different MZIM slabs are 84.3, 71.3, and 59.1%, less

than 1 when adding to the reflectance, which comes from leaking of the EM energy from the

upper and lower interface of the MZIM slabs as shown in Figure 2. Another interesting part is

the upper shift of the reflection beam, corresponding to the nonreciprocal Goos-Hänchen shift,

which deserves a further investigation in future work.

A particular functionality of the ZIM is to tailor the wavefront of the incident EM wave due to

the zero phase delay inside the ZIM. We demonstrate such property by designing four typical

outgoing interfaces sculptured from the MZIM, which are used to manipulate the wavefront of

an incident Gaussian beam. The results are shown in Figure 3, where we can observe that the

convex cylindrical face can transform the plane wavefront into the cylindrical one as shown in

panel (a), different from the conventional convex lens that focuses the incident beam. It should

be noted that the inhomogeneity of the outgoing beam arises from the anisotropy of the

magnetic metamaterials. On the contrary, the concave cylindrical face can be used to focus the

incident beam as shown in panel (b), behaving like a conventional convex lens but not a

concave lens. The triangular prism can be used to split the incident beam into two separated

ones propagating perpendicularly to the outgoing interfaces. More generally, we have shown

in panel (d) an ordinary undulated interface that transforms the wavefront into the one

identical to the interface. Actually, more imaginable configurations can be designed to engi-

neer the wavefront in practice. In addition, the effective index of the magnetic metamaterials

Figure 2. The electric field patterns of a Gaussian beam incident from the left-hand side of the ZIM slabs with the left

interface fixed at x = 0 and the thickness of the slab d1 ¼ 10a (a), d2 ¼ 15a (b), and d3 ¼ 20a (c), respectively. The height of

the slab D ¼ 60a, the working frequency is f w ¼ 2:65 GHz, and the other parameters are the same as those in Figure 1 (a)

and (b).
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can be controlled flexibly by an EMF, which can be used to transform the functionality of the

above systems, for example, from focusing to defocusing or in an opposite manner.

2.3. Thermally controllable effective index

Another important property of ferrite materials is its saturation magnetization that is depen-

dent on temperature, which can also be handled to control the EM properties of magnetic

metamaterials. Single-crystal YIG bears a high Curie temperature Tc ¼ 523 K, allowing a wide

controlling temperature range and thus a better tunability on effective refractive index. The

temperature field ranging from 0 (273.15 K) to 100°C (373.15 K) is considered for the magnetic

metamaterials of triangular lattice with the lattice separation a = 10 mm and the rod radius

rs ¼ 3:4 mm.

To examine the thermal effect on the magnetic metamaterials, we keep H0 ¼ 485 Oe

unchanged, and tune the temperature T. The effective constitutive parameters εeff and μeff are

presented in Figure 4(a)–(c), respectively, under three different temperatures 306, 335, and 362

Figure 3. Wavefront engineering with different outgoing interfaces (a) convex cylindrical face, (b) concave cylindrical

face, (c) triangular prism, and (d) ordinary undulated face. The radius of the curvature is 40a for panels (a) and (b), the

waist radius of the incident Gaussian beam is 2λ for panels (a)–(c) and 6λ for (d). All the other parameters are the same as

those in Figure 2.

Figure 4. The real part of the retrieved effective electric permittivity εeff and magnetic permeability μeff for the magnetic

metamaterials under three different temperatures (a) T ¼ 306 K, (b) T ¼ 335 K, and (c) T ¼ 362 K, respectively. The lattice

separation is a = 10 mm, the rod radius is rs ¼ 3:4 mm, and the EMF is H0 ¼ 485 Oe. The blue solid line marks the

operating frequency f w ¼ 2:53 GHz.
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K, corresponding to the saturation magnetization 4πMs equal to 1740, 1650, and 1550 G. It

should be noted that in our concerned frequency range 0:08≤a
λ≤0:09, satisfying the long-wave-

length approximation. As is shown in Figure 4(a), under the temperature T = 306 K a nearly

matched negative-index material with εeff ¼ μeff ¼ −1 is obtained at the working frequency

f w ¼ 2:53 GHz as marked by blue solid line. By improving the temperature, the curves of the

effective constitutive parameters are shifted downwards as exhibited by comparing panels (a)–

(c) due to the decrease of the saturation magnetization. Under the temperature T ¼ 362 K, the

effective electric permittivity εeff ¼ 1:36 and the effective magnetic permeability μeff ¼ 0:9 are

shown in Figure 4(c), corresponding to a positive refractive index neff ¼ 1:1. In particular, in

between these two temperatures the effective electric permittivity εeff ¼ 0 and the effective

magnetic permeability μeff ¼ −0:04 close to zero under the temperature T ¼ 335 K, resulting in

the design of MZIM. As a result, a nearly continuous tuning of the effective constitutive

parameters from negative to zero and then to positive is realized, suggesting that an NZPIM

in space can be possibly implemented by the magnetic metamaterials under a gradient tem-

perature field.

With the above knowledge, we can examine the performance of the magnetic metamaterials

for molding EM wave propagation by simulating the field patterns of a TM Gaussian beam

incident normally on a triangular prism with the apex angle θ ¼ 90. The results are shown in

Figure 5, where we can observe that under the temperature T ¼ 306 K the incident Gaussian

beam is split into two separated beams propagating with the refractive angle θref ¼ 45 as

shown in panels (a) and (e), equal to the incident angle θinc, implying that the effective index

of the triangular prism is neff ¼ −1, consistent with the results from effective-medium theory

given in Figure 4(a). Under the temperature T ¼ 335 K the effective constitutive parameters

εeff ¼ 0 and μeff ¼ −0:04, corresponding nearly to an MZIM, the electric field exhibits an

invariant phase inside the prism, resulting in two perpendicularly outgoing beams with the

same phase at two lateral interfaces as shown in panels (b) and (f). With further increasing the

temperature to T ¼ 362 K, we obtain the effective constitutive parameters εeff ¼ 1:36 and

μeff ¼ 0:9, corresponding to the effective index neff ¼ 1:1, the Gaussian beam experiences a

little bit focusing and collimation as shown in panels (c) and (g). When the temperature reaches

T ¼ 367 K, the effective constitutive parameters εeff ¼ 1:75 and μeff ¼ 1:11, corresponding to

the effective index neff ¼ 1:4, a strong focusing with the outgoing beam waist radius shrunk

nearly to λ can be observed as shown in panels (d) and (h).

3. Omnidirectional isotropic radiation via RAZIM

It has been shown that 2D RAZIM shell can be used to generate 2D isotropic radiation due to

the fact that it can trap the anisotropic higher order modes, while it is transparent for the

isotropic 0th order EM modes [19]. However, the efficiency is quite low since all the energy

from the higher order modes are wasted, especially, when multiple sources are used since the

energy of the higher order modes in that case occupies an even larger portion. We present an

improved system with the 2D RAZIM shell enclosing a line source together with a conven-

tional dielectric rod, which permits the generation of a perfect 2D EM mode; meanwhile, it is
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experimentally feasible. The dielectric rod can rescatter the anisotropic higher order EMmodes

and transform them into the isotropic 0th order modes. By positioning the dielectric rod at the

strong field region of the anisotropic higher order modes, it can thus realize a great enhance-

ment of omnidirectional radiation. The intrinsic loss of the RAZIM shell can also be examined

and a gain-particle is used to compensate this dissipation.

3.1. Theoretical approach

The configuration of the system is schematically illustrated in Figure 6, where the shadowed

green region is the RAZIM shell with a and b the inner and outer shell radii, and the dielectric

rod and the line source are positioned inside the shell and denoted by D and S, respectively. In

the cylindrical coordinate, the electric permittivity and magnetic permeability tensors of the

RAZIM shell are characterized by [19, 52, 53]

ε ¼ ε0ðr̂r̂εr þ φ̂φ̂εφ þ ẑẑεzÞ; μ ¼ μ0ðr̂r̂μr
þ φ̂φ̂μφ þ ẑẑμ

z
Þ; (9)

where μ
r
! 0, corresponding to the radially anisotropic zero index. The origin of the cylindri-

cal coordinate fixed at the center of the RAZIM shell. A line source of TM polarization is

considered to interact with the RAZIM shell. For convenience, we first consider the simple

system schematically illustrated in Figure 6(a) to depict the physical picture, based on which

the system with further introducing a dielectric particle as shown in Figure 6(b) can be solved

by further taking account of the mutual scattering between the dielectric particle and the

RAZIM shell.

Figure 5. The electric field intensity jEj2 (a)–(d) and electric field Re{E} (e)–(h) patterns for a Gaussian beam illuminating a

triangular prism with the apex angle θ = 90° at the temperatures T = 306 K (a), (e); T = 335 K (b), (f); T = 362 K (c), (g); and T

= 367 K (d), (h).
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3.1.1. RAZIM shell enclosing only a single line source

In the framework of the generalized Lorenz-Mie theory, the EM field propagating in the

RAZIM region can be expanded into the linear combination of the corresponding eigenmodes

[19, 52]

Ez ¼ ∑
m
½BmJνðksrÞ þ CmHνðksrÞ�e

imφ; a ≤ r ≤ b; (10)

where k2s ¼ k20μφεz with k0 the wavenumber in the vacuum, Jν and Hν are, respectively, the νth

order Bessel functions and Hankel functions of first kind with the order ν ¼ jmj
ffiffiffiffiffiffiffiffiffiffiffiffiffi

μφ=μr

q

, and

the summation m runs from −∞ to ∞. The corresponding magnetic field in the transverse xoy

plane can be obtained from Maxwell equations

Hr ¼
1

iωμ0μr

1

r

∂Ez

∂φ
; Hφ ¼ −

1

iωμ0μφ

∂Ez

∂r
; (11)

for the TM waves. The electric field radiated by a TM line source positioned at ls can also be

expanded around the RAZIM shell center [54, 55]

Ez ¼ H0ðkjr−lsjÞ ¼ ∑
m
JmðksÞHmðkrÞe

imφ; r > s;

Ez ¼ H0ðkjr−lsjÞ ¼ ∑
m
HmðksÞJmðkrÞe

imφ; r < s;
(12)

where r is the position vector and s ¼ jlsj is the separation between the line source and

the RAZIM shell center. For convenience and without loss of generality, the line source is

supposed to be located at (xs;ys) with ys ¼ 0, namely, the line source can be moved along the

x axis. With these expansions, we can write the total electric field in different regions

according to

Figure 6. A schematic diagram illustrating the isotropic radiation system consisting of a RAZIM shell enclosing (a) a TM

line source only and (b) both a TM line source and a dielectric rod of the radius rd. The RAZIM shell center as well as the

positions of the line source and the dielectric rod are denoted, respectively, by O, S, and D with jODj ¼ d and jOSj ¼ s.

The background medium inside and outside the shell is vacuum. The inner and outer shell radii are a and b, respectively.
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Ez ¼ ∑
m
½AmJmðkrÞ þ JmðksÞHmðkrÞ�e

imφ; s < r ≤ a;

Ez ¼ ∑
m
DmHmðkrÞe

imφ; r ≥ b;
(13)

where the coefficients Am characterize the reflection ofmth order partial wave from the RAZIM

shell, and Dm describes the transmission of the mth order partial wave radiating out of the

shell.

By matching the boundary conditions, namely, the continuity of the tangential components of

the EM field Ez and Hφ at the interface, we can work out the partial wave expansion coeffi-

cients for the EM fields in different regions,

Bm ¼ qmCm; Dm ¼ pmCm; (14a)

Am ¼ q′

mJmðksÞ, Cm ¼ p′

mJmðksÞ, (14b)

where the generalized Mie coefficients are given by

pm ¼
ksHνðksbÞJ

′

νðksbÞ−ksH
′
νðksbÞJνðksbÞ

ksHmðkbÞJ
′

νðksbÞ−kμφH
′
mðkbÞJνðksbÞ

; (15a)

qm ¼
kμφHνðksbÞH

′
mðkbÞ−ksH

′
νðksbÞHmðkbÞ

ksHmðkbÞJ
′

νðksbÞ−kμφH
′
mðkbÞJνðksbÞ

; (15b)

p′

m ¼
kμφHmðkaÞJ

′

mðkaÞ−kμφH
′
mðkaÞJmðkaÞ

kμφ½HνðksaÞ þ qmJνðksaÞ�J
′

mðkaÞ−ks½H
′
νðksaÞ þ qmJ

′

νðksaÞ�JmðkaÞ
; (15c)

q′

m ¼
ksHmðkaÞ½H

′
νðksaÞ þ qmJ

′

νðksaÞ�−kμφH
′
mðkaÞ½HνðksaÞ þ qmJνðksaÞ�

kμφ½HνðksaÞ þ qmJνðksaÞ�J
′

mðkaÞ−ks½H
′
νðksaÞ þ qmJ

′

νðksaÞ�JmðkaÞ
: (15d)

Regarding the RAZIM shell considered in our system, μr ! 0, implying that the order ν of the

cylindrical functions Jν and Hν in Eqs. (10), (13), and (15) tends to infinity for m≠0. As a result,

jHνj ! ∞ and jJνj ! 0, leading to the vanishment of the Mie coefficient p′

m for m≠0. Therefore,

it follows from Eq. (14) that Bm ! 0, Cm ! 0, and Dm ! 0 for m≠0. This indicates that the

permitted propagating EM waves in the RAZIM shell are nearly independent of the azimuthal

angle φ, as demonstrated by Eqs. (10) and (13). In addition, for the case when εz ¼ μφ ¼ 1, the

Mie coefficients p0 ¼ p′

0 ¼ 1, q0 ¼ q′

0 ¼ 0, and D0 ¼ J0ðkdÞ. As a consequence, only the 0th

order of the isotropic cylindrical EM wave can be radiated out of the RAZIM shell, ensuring

its omnidirectionality, in agreement with the results obtained by Cheng et al. [19]. However, all

the higher order modes of the cylindrical waves are confined within the RAZIM shell, hence,

the RAZIM shell behaves like a cavity for these modes. Accordingly, the introduction of the

RAZIM shell leads to the decrease of radiation power and reduces the radiation efficiency,

although it can implement the spatial power combination for omnidirectional radiation.
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Another important aspect for the RAZIM shell comes in the fact that it forms a cylindrical

resonator for the higher order modes, which results in the creation of the standing wave with

strong inhomogeneity inside the RAZIM shell. This particular feature arises from the anisot-

ropy of the RAZIM shell, which is an essential aspect for the realization of isotropic radiation

pattern. Besides, it is shown the RAZIM shell can be experimentally realizable both in micro-

wave region [19] and in terahertz region [56], implying promising applications in future.

3.1.2. RAZIM shell enclosing a single line source together with a dielectric rod

To improve the radiating efficiency for the system shown in Figure 6(a), we have to transform

the higher order modes confined within the RAZIM shell into the isotropic lower order mode,

and then radiating outside the RAZIM shell. To this end, a dielectric particle D can be intro-

duced inside the RAZIM shell as illustrated in Figure 6(b), which can rescatter the EMwave so

that a part of the higher order modes can be converted into isotropic 0th order mode, thus

enhancing the omnidirectional isotropic radiation from the RZAIM-shell-based system. There-

fore, in this part we have to incorporate the contribution of the dielectric rod into theoretical

framework. As is certain, the dielectric rod will change the scattering field inside central area

surrounded by the shell and that propagating inside the shell. Therefore, the partial wave

expansion coefficients Am and Cm in Eq. (14b) should be altered

Am ¼ q′

m½JmðksÞ þ Em�; Cm ¼ p′

m½JmðksÞ þ Em�; (16)

where Em are the partial wave expansion coefficients of the scattered EM field from the

dielectric rod D. As a result, the partial wave expansion coefficients Bm, and Dm are altered

accordingly as indicated by Eq. (14a). It should be noted that the coefficients pm, qm, p
′

m, and q′

m

that characterize the scattering property of the RAZIM shell remain unchanged due to the fact

that the RZAIM shell is intact when the dielectric rod D is introduced.

To consider the scattering behavior of the dielectric rod and obtain Em, we should transform

the expanding partial waves from the shell center to those from the dielectric rod D. The

electric field inside the dielectric rod Ei
z and scattered by the rod Es

z can be expanded easily into

Ei
z ¼ ∑

m
TmJmðkjr−ldjÞe

imφ
; jr−ldj < rd; (17a)

Es
z ¼ ∑

m
SmHmðkjr−ldjÞe

imφ
; jr−ldj > rd; (17b)

where ld is the position of the dielectric rod with d ¼ jldj denoting the separation between the

dielectric rod and the RAZIM shell center and rd is the radius of the dielectric rodD. The partial

wave expansion coefficients Tm and Sm are given by

Tm ¼ bmðRm þ ImÞ, Sm ¼ amðRm þ ImÞ, (18)

where am and bm are the Mie coefficients of the dielectric rod, Im and Rm correspond to the

contribution from the line source and that scattered inside by the RAZIM shell
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Im ¼ HmðklÞe
inφ′

; Rm ¼ ∑
n
AmþnJnðkdÞe

inφc ; Sm ¼ ∑
n
EmþnJnðkdÞe

inφc : (19)

The parameters in Eq. (19) are defined as φc ¼ ∠DOS, φ′ ¼ ∠DSO, and l2 ¼ d2 þ s2−2d s cosφc

is the distances from the dielectric rod to the line source S with l= sinφc ¼ d= sinφ′. The Mie

coefficients am and bm of the dielectric rod can be easily obtained from the Mie theory [57]

bm ¼
kμdJ

′

mðkrdÞHmðkrdÞ−kμdJmðkrdÞH
′
mðkrdÞ

kdJ
′

mðkdrdÞHmðkrdÞ−kμdH
′
mðkrdÞJmðkdrdÞ

; (20a)

am ¼
kμdJ

′

mðkrdÞJmðkdrdÞ−kdJmðkrdÞJ
′

mðkdrdÞ

kdJ
′

mðkdrdÞHmðkrdÞ−kμdH
′
mðkrdÞJmðkdrdÞ

; (20b)

where k2d ¼ k20εdμd with εd and μd being the permittivity and permeability of dielectric rod,

respectively. For a particular case when the RAZIM shell is removed from the system, the

corresponding scattering from the shell disappears, leading to Rm = 0. Combining Eqs. (16),

(18), and (19) and after some mathematical manipulations, we can finally arrive at a set of

linear equations

∑
n
ð1−amq

′

nÞJn−mðkcÞe
iðn−mÞφcEn ¼ ∑

n
amq

′

nJnðkdÞJn−mðkcÞe
iðn−mÞφc þ amIm; (21)

which determine the coefficients En For now, we have solved the scattering problem for the

RAZIM systems in both Figure 6(a) and (b), based on which we can gain insight into the

physical mechanism of the phenomenon as well as the role of the RAZIM shell and

surrounded dielectric rod, meanwhile, optimize the configuration to achieve a better radiation

efficiency.

3.2. Amplifying radiation with dielectric particle

In the simulations and calculations in this part except otherwise specified, the parameters for

the RAZIM shell are a = 0.5, b = 1, μr ¼ 0:01, μφ ¼ 1, εz ¼ 1, and those for the dielectric rod are

rd ¼ 0:15, εd ¼ 2, and μd ¼ 1. The wavelength of the line source is set as unit λ ¼ 1. To

characterize the higher order modes trapped inside the RAZIM shell, we simulate the electric

field amplitude jEzj pattern for the RAZIM shell enclosing only a line source, the result is

shown in Figure 7(a), where the line source is fixed at (0.1, 0) deviated from the shell center

so that the higher order modes can be excited. A standing wave with strong inhomogeneity

emerges, which is created by the higher order partial waves in Eq. (12) due to the nearly total

reflection from the RAZIM shell. The EM wave-radiating outside the RAZIM shell can be

calculated approximately by Ez≈D0H0ðkrÞ ¼ ½J0ðksÞ þ E0�H0ðkrÞ. Therefore, the performance of

the dielectric rod can be evaluated approximately by calculating the amplitude of jD0j. The

simulating result is shown in Figure 7(b), where the map of jD0j as the function of the dielectric

rod position ðxd;ydÞ is plotted, based on which we can find the optimal position of the dielectric

rod is near to the area with the strongest electric field amplitude. In addition, jD0j has a much
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larger value than that of a free line source in a large area, indicating the crucial role of the

dielectric rod for enhancing the isotropic radiation. Another merit of the present system lies in

that the introduction of a dielectric rod inside the RAZIM shell does not destroy the homoge-

neity of the RAZIM shell, making it experimentally realizable.

To optimize the performance of the dielectric rod, we calculate the total power radiating out of

the RAZIM shell, which is defined as

Ps ¼ ∮ LS � er dl; with S ¼
1

2
Re½E ·H

��; (22)

where S is the Pointing vector, the integral curve L is a circle around the shell center Owith the

radius larger than outer radius of the RAZIM shell b. Considering the fact that only the 0th

order cylindrical wave is radiated out, the radiating power can be approximately evaluated

according to Pwi≈ 2
ωμ0
jD0j

2. For the convenience of comparison, we also calculate the radiating

power Pwo when the RAZIM shell is removed from the system Pwo ¼ 2
ωμ0

∑mjamHmðklÞ þJmðklÞj
2.

In Figure 8, we present the radiating power normalized by that of a line source in free space Ps0

and the profile of the normalized irradiance by that of a line source in free space I0. For the

radiating power without the RAZIM shell Pwo=Ps0, its value exhibits nearly no change with

respect to the dielectric rod position xd as indicated by the blue dashed line in panels (a). Even

when the dielectric rod is replaced by a gain particle, Pwo=Ps0 remains close to 1, suggesting

that without the RAZIM shell the insertion of either passive or active particle has nearly no

obvious influence on the radiating power due to the nearly homogeneous distribution of a line

Figure 7. (a) The electric field amplitude pattern inside the RAZIM shell for the configuration in Figure 6(a). (b) The 0th

order partial wave amplitude jD0j is plotted as the function of the dielectric rod position ðxd;ydÞ. The whiteout region in

panel (b) denotes the area that the dielectric rod cannot reach. The line source is located at (0.1, 0), and the parameters of

the RAZIM-based system are a = 0.5, b = 1, rd ¼ 0:15, μr ¼ 0:01, μφ ¼ 1, εz ¼ 1, εd ¼ 2, and μd ¼ 1.
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source in free space. Differently, for the radiating power with the RAZIM shell Pwi=Ps0, its

value can be significantly improved as indicated by the red solid line shown in panels (a). The

maximal enhancement is realized at the position close to the strongest electric field amplitude

in Figure 7(a) with the value larger than 10. To illustrate the performance of the dielectric rod

on the isotropic omnidirectional radiation, we present in Figure 8(b) the normalized irradiance

by that of the line source in free space I0 with the irradiance is defined as I ¼ lim
r!∞

ðS � rÞ. From

the irradiance profile for the system with the RAZIM shell Iwi, it can be found that the

irradiance is reinforced by over 10 times as indicated by the red solid line, consistent with the

result shown in Figure 8(a). In addition, a highly isotropic feature is demonstrated as well by

examining the irradiance map. For the convenience of comparison, we also present the irradi-

ance Iwo for the system without the RAZIM shell as denoted by the blue dash line, which is not

isotropic anymore and no evident enhancement is achieved with either the dielectric rod or the

gain particle. The efficiency of the dielectric rod can be evaluated by comparing Iwi with the

radiance I
N

wi
for the case with the dielectric rod removed from the system. The profile of IN

wi
is

denoted by the green dash-dot line, where we can find that only 80% EM energy of the line

source is radiated out because of the trap of the high order modes by the RAZIM shell. This

suggests that an insertion of a dielectric rod leads to a nearly 15 times amplification of the

radiation power.

3.3. Amplifying radiation with gain particle

In practice, the loss should be an inevitable issue due to the finite size of the RAZIM shell and

its resonant nature. To illustrate the effect of the loss on the radiation enhancement, we present

in Figure 9 the results for the system with the loss taken into account, where we can find that

the output radiating power is reduced seriously compared to the results shown in Figure 8. To

compensate the energy loss, the active coated nanoparticles might be a good choice. By

Figure 8. (a) The normalized radiating power Ps=Ps0 is plotted as the function of the dielectric rod position xd with the

line source positioned at (0.1, 0), where the blue-dashed (red solid) line denotes the radiating power Pwo (Pwi) for the case

without (with) the RAZIM shell. (b) The map of the normalized irradiance I=I0, where the red solid line, the blue-dashed

line, and the green dash-dotted line correspond to Iwi=4, Iwo, and I
N

wi
, respectively, with Iwi=4 for the system with the

RAZIM shell and the dielectric rod, Iwo for the system without the RAZIM shell, and I
N

wi
for the system with RAZIM shell

but without the dielectric rodD. The dielectric rod is placed at ð−0:24, 0Þ and all the other parameters are the same as those

in Figure 7.
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enclosing a gain particle with εd ¼ 2:5−0:5i, we can compensate the energy loss from the

RAZIM shell, yielding an enhancement of the output radiating power by a factor of about 7

as indicated by the red solid line in Figure 9. For comparison, the case for the system without

the RAZIM shell but with a gain particle is also simulated as indicated by the blue solid line.

Neither significant increase nor isotropy in the output radiation is achieved, suggesting once

again the crucial role of the RAZIM shell.

Figure 9. (a) The normalized radiating power Ps=Ps0 is plotted as the function of the position xd of the gain particle with

εd ¼ 2:5−0:5i (solid lines) and the lossless dielectric particle with εd ¼ 2:5 (dashed lines) for the system with (red lines) and

without (blue lines) the RAZIM shell, respectively. The map of the normalized irradiance I=I0 is shown in panel (b), where

the red (blue) solid line corresponds to the result IA
wi

(IA
wo
) for the system with the gain particle modeled by εd ¼ 2:5−0:5i

and with (without) the RAZIM shell, the red (blue) dashed line corresponds to the result Iwi (Iwo) for the system with the

lossless dielectric particle of εd ¼ 2:5 and with (without) the RAZIM shell, and the green dash-dotted line is for the system

with the RAZIM shell but without the particle inside. The particle with the radius rd ¼ 0:15 is placed at ð−0:2; 0Þ, the line

source is positioned at (0.1, 0), μ
r
¼ 0:01þ 0:005i, μφ ¼ 1þ 0:005i, and εz ¼ 2þ 0:005i. All the other parameters are the

same as those in Figure 6.

Figure 10. (a) The normalized radiating power Ps=Ps0 is plotted as a function of the position xd of the particle with εd ¼ 2

for the system with (red solid line) and without (blue dashed line) the RAZIM shell, respectively. The map of the

normalized irradiance I=I0 is shown in panel (b), where the red solid (blue dashed) line corresponds to the result

0:25· Iwi ðIwoÞ for the system with a lossless dielectric particle of εd ¼ 2:5 and with (without) the RAZIM shell and the

green dash-dotted line is for the system with the RAZIM shell but without the particle inside. The particle with the radius

rd ¼ 0:15 is placed at ð−0:25; 0Þ, the line source is fixed at (0.1, 0), a = 1, b = 2, λ = 1, μ
r
¼ 0:001, μφ ¼ 1, and εz ¼ 1.
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The size of the RAZIM shell also has effect on the enhancement of the output radiation, which

is illustrated in Figure 10 for the RAZIM shell with a = 1 and b = 2. It can be found that the

enhancement of the omnidirectional radiation becomes difficult in that only in a quite narrow

range of the enhancement can be achieved as shown in Figure 10(a). The underlying physics is

as follows. Since the field due to the anisotropic higher order modes is trapped inside the

RAZIM shell, the field is highly confined and anisotropic when the shell is small so that there

appears the region with strong field easily. Then, a dielectric rod located near the position with

strong field can rescatter the anisotropic modes into the isotropic mode, inducing a remarkable

increase of the output radiating power. Differently, for large RAZIM shell, the anisotropic

higher order modes are usually much less confined. As a result, the introduction of a dielectric

rod cannot yield a strong rescattering of the trapped anisotropic modes into the isotropic field,

resulting in a smaller enhancement of radiation power. Roughly speaking, the design works

when the RAZIM shell is small. Nevertheless, the size of RAZIM shell is not necessarily limited

to subwavelength scale. As shown in Figure 10(b) by the red solid line, a strong enhancement

can still be achieved by a proper arrangement of the dielectric particle.

4. Conclusion

In summary, we have designed a kind of zero-index materials (ZIMs) with magnetic

metamaterials based on the multiple scattering theory and effective-medium theory. The zero

phase delay inside the ZIMs and the wavefront engineering are demonstrated. It is also shown

that the effective index can be flexibly tuned by an external magnetic field and temperature,

enabling the manipulation on the functionalities. In addition, the anisotropy of the ZIMs and

the nonreciprocal feature of the magnetic metamaterials might induce nonreciprocal Goos-

Hänchen and other physical consequences. Then, in the second part we have considered a

radially anisotropic ZIM (RAZIM) based system with a RAZIM shell enclosing both a line

source and a dielectric rod, which can implement a remarkably enhanced omnidirectional

radiation. An exact theoretical approach is developed to solve the system, based on which we

can optimize the configuration to achieve the high efficiency, more importantly, discover the

underlying physics. Actually, the RAZIM shell allows only the 0-th order isotropic mode to

radiate outside the system, ensuring the isotropy of the radiation. Differently, the anisotropic

higher order modes are trapped, thus creating a strongly inhomogeneous standing wave. The

dielectric rod can rescatter the anisotropic modes into isotropic one, enhancing the omnidirec-

tional radiation remarkably. Besides, the present design is experimentally feasible, and mean-

while provides a highly efficient omnidirectional radiation by spatial power combination.

Acknowledgements

This work was supported by the China 973 Projects (No. 2013CB632701), the National Natural

Science Foundation of China (Nos. 11274277, 11574055, and 11574275), MOE of China

(B06011), the Zhejiang Provincial Natural Science Foundation of China (LR16A040001), and

the open project of SKLSP (KF2016_3) in Fudan University.

Wave Propagation Concepts for Near-Future Telecommunication Systems194



Author details

Shiyang Liu1*, Jialin Zhou1, Ying Han1, Xinning Yu2, Huajin Chen2,3 and Zhifang Lin2

*Address all correspondence to: syliu@fudan.edu.cn

1 Institute of Information Optics, Zhejiang Normal University, Zhejiang, China

2 Surface Physics Laboratory, Department of Physics, Fudan University, Shangai, China

3 School of Electrical and Information Engineering, Guangxi University of Science and

Technology, China

References

[1] Pendry JB. Negative refraction makes a perfect lens. Phys. Rev. Lett. 2000; 85: 3966–

3969.

[2] Shelby RA, Smith DR, Schultz S. Experimental verification of a negative index of reflec-

tion. Science. 2001; 292: 77–79.

[3] Caiazzo M, Maci S, Engheta N. A metamaterial surface for compact cavity resonators.

IEEE Antenn. Wireless Propag. Lett. 2004; 3: 261–264.

[4] Shalaev VM. Optical negative-index metamaterials. Nat. Photon. 2007; 1: 41–48.

[5] Valentine J, Zhang S, Zentgraf T, Ulin-Avila E, Genov DA, Bartal G, Zhang X. Three-

dimensional optical metamaterial with a negative refractive index. Nature. 2008; 455:

376–379.

[6] Leonhardt U. Optical conformal mapping. Science. 2006; 312: 1777–1780.

[7] Pendry JB, Schurig D, Smith DR. Controlling electromagnetic fields. Science. 2006; 312:

1780–1782.

[8] Lai Y, Ng J, Chen HY, Han DZ, Xiao JJ, Zhang ZQ, Chan CT. Illusion optics: the

optical transformation of an object into another object. Phys. Rev. Lett. 2009; 102:

253902.

[9] Maier SA, Kik PG, Atwater HA. Observation of coupled plasmon-polariton modes in Au

nanoparticle chain waveguides of different lengths: estimation of waveguide loss. Appl.

Phys. Lett. 2002; 81: 1714–1716.

[10] Maier SA, Kik PG, Atwater HA, Meltzer S, Harel E, Koel BE, Requicha AAG. Local

detection of electromagnetic energy transport below the diffraction limit in metal nano-

particle plasmon waveguides. Nat. Mater. 2003; 2: 229–232.

Manipulating Electromagnetic Waves with Zero Index Materials
http://dx.doi.org/10.5772/66663

195



[11] Edwards B, Alù A, Young M, Silveirinha M, Engheta N. Experimental verification of

epsilon- near-zero metamaterial coupling and energy squeezing using a microwave

waveguide. Phys. Rev. Lett. 2008; 100: 033903.

[12] Garcia N, Ponizovskaya EV, Xiao JQ. Zero permittivity materials: band gaps at the

visible. Appl. Phys. Lett. 2002; 80: 1120–1122.

[13] Silveirinha MG, Engheta N. Tunneling of electromagnetic energy through subwavelength

channels and bends using ε-near-zero materials. Phys. Rev. Lett. 2006; 97: 157403.

[14] Jin Y, Zhang P, He SL. Squeezing electromagnetic energy with a dielectric split ring inside

a permeability-near-zero metamaterial. Phys. Rev. B. 2010; 81: 085117.

[15] Silveirinha MG, Belov PA. Spatial dispersion in lattices of split ring resonators with

permeability near zero. Phys. Rev. B. 2008; 77: 233104.

[16] Huang XQ, Lai Y, Hang ZH, Zheng HH, Chan CT. Dirac cones induced by accidental

degeneracy in photonic crystals and zero-refractive-index materials. Nat. Mater. 2011; 10:

582–586.

[17] Silveirinha MG, Engheta N. Design of matched zero-index metamaterials using

nonmagnetic inclusions in epsilon-near-zero media. Phys. Rev. B. 2007; 75: 075119.

[18] Ziolkowski RW. Propagation in and scattering from a matched metamaterial having a

zero index of refraction. Phys. Rev. E. 2014; 70: 046608.

[19] Cheng Q, Jiang WX, Cui TJ. Spatial power combination for omnidirectional radiation via

anisotropic metamaterials. Phys. Rev. Lett. 2012; 108: 213903.

[20] Yuan Y, Shen LF, Ran LX, Jiang T, Huangfu JT, Kong JA. Directive emission based on

anisotropic metamaterials. Phys. Rev. A. 2008; 77: 053821.

[21] Zhu WR, Rukhlenko ID, Premaratne M. Application of zero-index metamaterials for

surface plasmon guiding. Appl. Phys. Lett. 2013; 102: 011910.

[22] Liu RP, Cheng Q, Hand T, Mock JJ, Cui TJ, Cummer SA, Smith DR. Experimental

demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial

at microwave frequencies. Phys. Rev. Lett. 2008; 100: 023903.

[23] Alù A, Silveirinha MG, Salandrino A, Engheta N. Epsilon-near-zero metamaterials and

electromagnetic sources: tailoring the radiation phase pattern. Phys. Rev. B. 2007; 75:

155410.

[24] Feng SM. Loss-induced omnidirectional bending to the normal in ε-near-zero metamaterials.

Phys. Rev. Lett. 2012; 108: 193904.

[25] Enoch S, Tayeb G, Sabouroux P, Guerin N, Vincent P. A metamaterial for directive

emission. Phys. Rev. Lett. 2002; 89: 213902.

[26] Ma YG, Wang P, Chen X, Ong CK. Near-field plane-wave-like beam emitting antenna

fabricated by anisotropic metamaterial. Appl. Phys. Lett. 2009; 94: 044107.

Wave Propagation Concepts for Near-Future Telecommunication Systems196



[27] Soric JC, Engheta N, Maci S, Alù A. Omnidirectional metamaterial antennas based on ε-

near-zero channel matching. IEEE Trans. Antennas Propag. 2013; 61: 33–44.

[28] Hao JM, Yan W, Qiu M. Super-reflection and cloaking based on zero index metamaterial.

Appl. Phys. Lett. 2012; 96: 101109.

[29] Nguyen VC, Chen L, Halterman K. Total transmission and total reflection by zero index

metamaterials with defects. Phys. Rev. Lett. 2010; 105: 233908.

[30] Luo J, Xu P, Chen HY, Hou B, Gao L, Lai Y. Realizing almost perfect bending wave-

guides with anisotropic epsilon-near-zero metamaterials. Appl. Phys. Lett. 2012; 100:

221903.

[31] Wang Z, Chong YD, Joannopoulos JD, SoljačićM. Reflection-free one-way edge modes in

a gyromagnetic photonic crystal. Phys. Rev. Lett. 2008; 100: 013905.

[32] Zhu WR, Rukhlenko ID, Premaratne M. Light amplification in zero-index metamaterial

with gain inserts. Appl. Phys. Lett. 2012; 101: 031907.

[33] Liu SY, Chen WK, Du JJ, Lin ZF, Chui ST, Chan CT. Manipulating negative-refractive

behavior with a magnetic field. Phys. Rev. Lett. 2008; 101: 157407.

[34] Liu SY, Lu WL, Lin ZF, Chui ST. Magnetically controllable unidirectional electromag-

netic waveguiding devices designed with metamaterials. Appl. Rev. Lett. 2010; 97:

201113.

[35] Liu SY, Lu WL, Lin ZF, Chui ST. Molding reflection from metamaterials based on mag-

netic surface plasmons. Phys. Rev. B. 2011; 84: 045425.

[36] Poo Y, Wu RX, Liu SY, Yang Y, Lin ZF, Chui ST. Experimental demonstration of surface

morphology independent electromagnetic chiral edge states originated from magnetic

plasmon resonance. Appl. Phys. Lett. 2012; 101: 081912.

[37] Yu XN, Chen HJ, Lin HX, Zhou JL, Yu JJ, Qian CX, Liu SY. Continuously tuning effective

refractive index based on thermally controllable magnetic metamaterials. Opt. Lett. 2014;

39: 4643–4646.

[38] Ding YS, Chan CT, Wang RP. Optical waves in a gradient negative-index lens of a half-

infinite length. Sci. Rep. 2013; 3: 2954.

[39] Litchinitser NM, Maimistov AI, Gabitov IR, Sagdeev RZ, Shalaev VM. Metamaterials:

electromagnetic enhancement at zero-index transition. Opt. Lett. 2008; 33: 2350–2352.

[40] Li LM, Zhang ZQ. Multiple-scattering approach to finite-sized photonic band-gap mate-

rials. Phys. Rev. B. 1998; 58: 9587–9590.

[41] Lin ZF, Chui ST. Electromagnetic scattering by optically anisotropic magnetic particle.

Phys. Rev. E. 2004; 69: 056614.

[42] Lin ZF, Chui ST. Manipulating electromagnetic radiation with magnetic photonic crys-

tals. Opt. Lett. 2007; 32: 2288–2290.

Manipulating Electromagnetic Waves with Zero Index Materials
http://dx.doi.org/10.5772/66663

197



[43] Liu SY, Lin ZF. Opening up complete photonic bandgaps in three-dimensional photonic

crystals consisting of biaxial dielectric spheres. Phys. Rev. E. 2006; 73: 066609.

[44] Moroz A. Metallo-dielectric diamond and zinc-blende photonic crystals. Phys. Rev. B.

2002; 66: 115109.

[45] Stefanou N, Yannopapas V, Modinos A. Heterostructures of photonic crystals: frequency

bands and transmission coefficients. Comput. Phys. Commun. 1998; 113: 49–77.

[46] Jin JJ, Liu SY, Lin ZF, Chui ST. Effective-medium theory for anisotropic magnetic

metamaterials. Phys. Rev. B. 2009; 80: 115101.

[47] Pozar DM. Microwave Engineering. New York: Wiley; 2004.

[48] Eggimann WH. Scattering of a plane wave on a ferrite cylinder at normal incidence. IRE

Trans. Microwave Theory Tech. 1960; 8: 440.

[49] Wu Y, Li J, Zhang ZQ, Chan CT. Effective medium theory for magnetodielectric compos-

ites: beyond the long-wavelength limit. Phys. Rev. B. 2006; 74: 085111.

[50] Shen M, Ruan LX, Wang XL, Shi JL, Wang Q. Tunable band gap near the Dirac point in

nonlinear negative-zero-positive index metamaterial waveguide. Phys. Rev. A. 2011; 83:

045804.

[51] Yannopapas V, Vanakaras A. Dirac point in the photon dispersion relation of a negative/

zero/positive-index plasmonic metamaterial. Phys. Rev. B. 2011; 84: 045128.

[52] Ni YX, Gao L, Qiu CW. Achieving invisibility of homegeneous cylindrically anisotropic

cylinders. Plamonics. 2010; 5: 251-258.

[53] Wang N, Chen HJ, Lu WL, Liu SY, Lin ZF. Giant omnidirectional radiation enhancement

via radially anisotropic zero-index metamaterial. Opt. Express. 2013; 21: 23712.

[54] Abramowitz M, Stegun IA. Handbook of Mathematical Functions with Formulas, Graph,

and Mathematical Tables. Dover; New York: 1964.

[55] Chew WC. Waves and Fields in Inhomogeneous Media. New York: IEEE Press; 1995.

[56] Chen ZC, Mohsen R, Gong YD, Chong TW, Hong MH. Realization of variable three-

dimensional terahertz metamaterial tubes for passive resonance tunability. Adv. Mater.

2002; 24: 143–147.

[57] Bohren CF, Huffman DR. Absorption and Scattering of Light by Small Particles. New

York: John Wiley & Sons; 1983.

Wave Propagation Concepts for Near-Future Telecommunication Systems198


