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Abstract

As a predicted result of increasing population worldwide, improvements in the breed-
ing strategies in agriculture are valued as mandatory. The natural resources are limited, 
and due to the natural disasters like sudden and severe abiotic stress factors, excessive 
floods, etc., the production capacities are changed per year. In contrast, the yield poten-
tial should be significantly increased to cope with this problem. Despite rich genetic 
diversity, manipulation of the cultivars through alternative techniques such as mutation 
breeding becomes important. Radiation is proven as an effective method as a unique 
method to increase the genetic variability of the species. Gamma radiation is the most 
preferred physical mutagen by plant breeders. Several mutant varieties have been suc-
cessfully introduced into commercial production by this method. Combinational use of 
in vitro tissue culture and mutation breeding methods makes a significant contribution to 
improve new crops. Large populations and the target mutations can be easily screened 
and identified by new methods. Marker assisted selection and advanced techniques such 
as microarray, next generation sequencing methods to detect a specific mutant in a large 
population will help to the plant breeders to use ionizing radiation efficiently in breeding 
programs.

Keywords: mutation breeding, in vitro mutagenesis, gamma rays, molecular markers, 
high-throughput technologies

1. Introduction

The worldwide population is expected to be nine billion at 2050. Conventional agricultural 

crops are inadequate to meet the current need to provide sustainable yield production. 

Therefore, crop improvement is getting an important need when we are not able to meet the 
demands of growing world population. For this reason, humans have begun to develop new 

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
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plant varieties for cultivation, and it is called as plant breeding. Numerous food, feed, and 

ornamental and industrial crops were improved via hybridization methods to meet the needs 

of human beings since many years. Over the last 15 years, development of new techniques 

became useful in breeding strategies to facilitate the improvement of new crop varieties.

Plant breeding methods and recent progress in biotechnology contribute greatly to friendly 

agriculture. The main point is to establish productive breeding strategies to improve crops.

Variation is the main point of the breeding that the plant breeders are focused. Genetic varia-

tion is a natural phenomenon. This variation is a natural result of genotypes, which have 

interactions with the environmental facts, get together. The recombination and independent 

assortment of the alleles are responsible to obtain new individuals from the population. 

Domestication of the crops is affected by several conditions such as ecological and agricul-
tural. Selection of the adaptive genotypes is getting important in breeding of the cultivars. 
The main point is to achieve the production of higher-yielding crops [1], useful traits such 

as size of the fruits, and quality of the crops. The aim of the breeding is to combine various 

features of many plants in one plant. This method is general for breeding of the plants via sex-

ual reproduction. During recombination of the alleles, offsprings carrying selectable varia-

tions for the several traits exist. Recombination is not responsible to produce new traits itself. 

Although genetic changes have provided the natural variation for species evolution, changes 

in species have not only been important for adaptation to natural environment. Mutations are 
the main reasons of genetic variabilities and cause new species eventually. Therefore, they 

have also been exploited by man in the agricultural processes of species domestication and 

crop improvement. As a new approach, manipulation of the cultivars through alternative 

techniques such as mutation breeding and Biotechnology are useful for especially some fully 

sterile plants [2].

Mutations have been shown as a way of procreating variations in a variety. They spontane-

ously occur in nature. Several mistakes can cause mutations during replication process. On the 

other hand, radiation is an efficient mutagen that the plants are exposed. The important point 
is the origin of the mutated cell. Somatic cell mutations are not easily traceable and cannot pass 

to the future generations; otherwise, embryonic cell mutations directly pass to the next springs. 

Spontaneous mutations occur without any human intervention and happen randomly with a 

low frequency. However, some mutagenic agents are known to induce mutations as an alter-

native to low incidences of spontaneous mutations to increase genetic variability by increasing 

the frequency of mutations. Using of mutagens propose the possibility of inducing desired 

characters that cannot be found in nature, in a variety or lost during the evolution [2].

A mutation is defined as any change within the genome of an organism, and it is not brought 
on by normal recombination and segregation [3]. The direct use of mutation is a very valu-

able supplementary approach to plant breeding. The main advantage of this technique is 

the shorter time required to breed a crop with improved character(s) than the hybridization 

process to obtain the same results.

Induced mutations consequently have a high potential for bringing about further genetic 
improvements. Induced mutations have played a significant role in meeting challenges related 
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to world food and nutritional security by way of mutant germplasm enhancement and their 

utilization for the development of new mutant varieties. A wide range of genetic variability 

has been induced by mutagenic treatments for use in plant breeding and crop improvement 

programs [1]. Physical mutagens are generally preferred by reason of being convenient, eas-

ily reproducibility, and user-/environment-friendly method. Ionizing radiation is used as a 
physical mutagen in breeding applications.

2. Types of ionizing radiation

Ionizing radiation (IR) is categorized by the nature of the particles or electromagnetic waves 
that create the ionizing effect. These have different ionization mechanisms and may be grouped 
as directly or indirectly ionizing. The physical properties of ionizing radiation types, namely 

gamma rays X-rays, UV light, alpha-particles, beta-particles, and neutrons, are different; 
therefore, their potential usage and bioapplicability to the breeding programs are different.

In the beginning of the twentieth century, ionizing radiation has been begun to induce the 
mutations. They can be particulate or electromagnetic (EM). Their specific feature is the local-
ized release of large amounts of energy. These have different ionization mechanisms, and 
they can group as directly or indirectly ionizing. The physical and chemical reactions initiate 

the biological effects of ionizing radiations [4].

Mostly, X-rays had been used, and later gamma rays and neutrons have been preferred. Two 
forms of electromagnetic radiation, X-rays or gamma (γ) rays, are widely used in biologi-
cal systems and most clinical applications. Cobalt-60 and cesium-137 (Cs-137) are the main 

sources of gamma rays used in biological studies. Cesium-137 is more preferred since its 

half-life is much longer than cobalt-60. Gamma rays are produced spontaneously, whereas 

X-rays are produced in an X-ray tube (accelerated electrons hit a tungsten target, and then 

they are decelerated. The Bremsstrahlung radiation is part of the kinetic energy, belongs to 

the electrons, and is converted to X-rays). Energy transfer is caused by the interaction, it can-

not completely displace an electron, and it produces an excited molecule/atom; whenever the 

energy of a particle or photon exceeds the ionization grade of a molecule, ionization occurs. 

Ten electronvolt binding energy for the electrons is determined for biological materials, and 

higher energetic photons are considered as ionizing radiation, whereas the energies between 

2 and 10 eV, which cause excitation, are called as nonionizing. Electrons, protons, α-particles, 
neutrons, and heavy charged ions are clinically used natural radiation types [4–6].

2.1. Effects of ionizing radiations

Ionizing radiation (IR) is known to effect on plants. Their effects are classified as direct and 
indirect. Stimulatory, intermediate, and detrimental effects on plant growth and development 
are based on dose of ionizing radiation applied to the plant tissues. The main point is to evalu-

ate the impacts of ionizing radiation at genetic level. The severity of the impacts of radiation 

is in relation with the species, cultivars, plant age, physiology, and morphology of the plants 

besides their genetic organizations.
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Ionizing radiation causes structural and functional changes in DNA molecule, which have 
roles in cellular and systemic levels. The nature of DNA modifications includes base altera-

tions, base substitutions, base deletions, and chromosomal aberrations. These modifications 
are the reasons of macroscopic phenotyping variations [5, 6].

Interaction between atoms or molecules and ionizing radiations causes free radical produc-

tion that damages the cells. Free radical is defined as an atom or group of atoms including an 
unpaired electron. Water in the cell accumulates energy initially and facilitates the production 

of reactive radicals, which oxidize and reduce. They have a role in direct and indirect actions 

of ionizing radiations. In direct action, a secondary electron reacts directly with the target 
to produce an effect, while in indirect action, free radicals produced via radiolysis of water 
interact with the target to comprise target radicals [6, 7].

There are substantial data indicating that the lethal effects of radioactive compounds accumu-

late in nucleus rather than other parts. Therefore, DNA is the main target as a result of ion-

izing radiation, and it targets DNA directly or indirectly and leads various alterations. Direct 
ionization of DNA, reactions with electrons or solvated electrons, reactions with OH or H

2
O+, 

and reactions with other radicals can damage cellular DNA. There are some possibilities of 
DNA damages caused by ionizing radiation. IR and secondarily produced reactive oxygen 
species can cause changes in deoxyribose ring and structures of bases, DNA-DNA cross-links, 
and DNA-protein cross-links. Hydroxyl radicals react with bases. The reactive intermediates 
are produced as a result of this interaction [7, 8].

Hydroxyl radicals separate hydrogen atoms from the sugar-phosphate backbone of DNA 
to form 2-deoxyribose radical, which cause strong damages via attacking to oxygen or thiol 
groups [8]. Researchers have shown that purine and pyrimidine rings, single-strand breaks 

(SSBs), and base loss regions are damaged by DNA radiolysis products induced by free radi-
cals. The amount of the yield of the individual products is important and reported to be dif-

ferent than produced during oxidative metabolism. Although free radicals attack on DNA 
and cause several DNA damages, they have not been thought to lead lethal and mutagenic 
results. Ionizing radiation-induced base damages are widely studied by in vitro studies. It is 
also reported by several studies that direct and indirect radiation effects may produce identi-
cal reactive intermediates. Oxygen is another key molecule that determines the biological 

effectiveness of the ionizing radiation. Oxygen can easily react with many free radicals. The 
amount of the radicals presents in deoxyribose or bases; harmful DNA damages occur [9–11].

If the damage site is deoxyribose, a strand brake directly forms. DNA base damages like 
ring saturation destabilize the N-glycosidic bonds, and abasic deoxyribose residues form. 

These regions can be converted into strand breaks. Double-strand breaks (DSBs) happen as 
a result of a localized attack by two or more OH radicals on DNA. Another potential reason 
can be defined as a hybrid attack that OH damages one of the strands, whereas the other 
strand exposes to a direct damage within 10 base pairs of the hydroxyl radical [12]. IR leads 
chromosomal aberrations during cell division. Chromosome malsegregation and defects in 

chromatid separation, bridge formation, chromosome exchange, chromosome breakage, and 

loss of chromosome fragments can be observed after IR treatment [13].
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We can classify IR as an abiotic stress factor; therefore, the plants represent different levels 
of adaptive responses. DNA repair mechanisms and adaptive responses against radiation 
could protect the plant genome from excessive modifications. Natural ionizing radiation is 
supposed to play a significant role in the evolution of the plants. Homolog recombinations 
between the chromosomes would result in formation of new altered generations that show 

specific adaptive capabilities [13].

3. Mutation breeding

In nature, mutations acquired new survival traits to the crops against environmental stresses 
both biotic and abiotic. Many of these survival traits could be weakened or totally lost in time. 
Mutations are sudden changes at the genotype level and cause small and exquisite changes 
in phenotype, which cannot be detected by advanced molecular techniques. Identification 
of naturally mutated gene is inconvenient. When the breeders pinpoint the mutated gene, 

wild-type features have to be reestablished. This task is becoming increasingly infeasible 

due to long time, more human source, and increase in cost. That’s why new breeding strate-

gies were needed to be improved to fortify the crops. To achieve this mission, plant breeders 

should rebuild in crop plants several specific traits, which have role in survival of the plants 
under extreme conditions providing the other crop-specific traits such as quality, yield, etc. 
Phenotyping-based processes of conventional breeding strategies should have moved from 

base to a high level of genotype-based breeding methods [1, 14]. New technologies should be 

legal, economic, and ethical for the breeders and the consumers.

Under such circumstances, inducing mutations are potential applications to produce crops 

with desired traits and easily selected from the germplasm pool. As described above, radia-

tion can cause several effects on genetic material due to the exposure dose. These effects can 
be classified in both positive and negative approaches. Beside the detrimental effects of radia-

tion, plant breeders are focused on the effective usage of gamma radiation in breeding pro-

grams. Changes in agronomic characters can be transmitted to the next generations. Nuclear 
techniques are begun to be used in plant breeding mostly for inducing mutations. During the 
past 60 years, we observed a significant increase in the major crops. Ionizing radiations such as 
X-rays and gamma rays have been used for improvement of several crops such as wheat, rice, 

barley, cotton, tobacco, beans, etc. [15]. Plant breeders are also combined with this resource 

with different techniques to increase the efficiency and shorten the time. Induced mutagenesis 
and combined breeding strategies are effective to improve quantitative and qualitative traits 
in crops in a much shorter time than the conventional breeding procedure [6].

Gamma radiation is widely used to induce mutations in breeding studies than chemical muta-

gens. Ionizing radiation could cause several DNA damages randomly; therefore, several muta-

tions (from point mutation to chromosome aberrations) could be induced. Over 3000 mutant 

varieties of major crops have been reported to be developed by ionizing radiation [2, 16].

Mutation rate/mutation frequency is defined as the ratio of mutation per locus and also termed 
as the number of mutant plant per M

2
 generation [16]. It changes due to per dose and muta-
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gen. The main point is to determine the best dose for inducing mutants rather than its type. 

From past to present, it is concluded that the doses between LD50 and LD30 (doses lead to 
50% and 30% lethality) are generally useful in mutation breeding programs. The importance 

of convenient dose that depends on the radiation intensity and exposure time is gestured by 

the researchers [6].

The final target is to select the desired mutants in the second and third generations (M
2
 and 

M
3
). It is effective to select the mutants treated by the mutagens with a high mutation fre-

quency from the M
1
 population. M

1
 population consists of heterozygous plants. That means 

during the treatment one allele is affected by the mutation, and it is impossible to discrimi-
nate the recessive mutation in this generation. Therefore, the breeders should sift out the 

next generations to identify the homozygotes for both dominant and recessive alleles [6]. M
2
 

population is the first generation that the selection begins. Physical, mechanical, phenotypic, 
and other methods are used for the selection of the mutants. When the plant breeder finds a 
mutant line, the next step is the multiplication of the seeds for further field and other studies. 
The main theme is to develop a mutant, which has a potential to be commercial variety sur-

passing the mother cultivar or a new genetic stock having improved properties.

According the 2015 data of Food and Agriculture Organization/International Atomic Energy 
Agency (FAO/IAEA), over 232 different crops including wheat, rice, sunflower, soybean, 
tomato, and tobacco were subjected to mutation breeding programs and over 3000 mutant 
varieties with improved properties in over 70 countries [6]. The mutant plant production dis-

tribution worldwide is given in Figure 1.

Sixty-one percent of these varieties was improved by using gamma radiation. Figure 2 repre-

sents the maximum plant species improved via mutation breeding.

 Figure 1. The number and the rate of the mutant cultivar production rate worldwide [17].
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Mutation breeding studies are widely preferred to improve cultivars tolerant or resistant 
to various abiotic stresses and biotic stresses such as bacteria, viruses, and pathogens and 

to improve the quality and the agricultural traits of the crops such as oil, protein, and yield 

[6]. The most improved features in some plant species by gamma radiation were given in 

Table 1.

Instead of waiting for natural mutations to generate a desired trait, creating a mutation with 
different tools may promote to the breeding studies. The simplicity and low cost of muta-

tion treatments and gamma radiation became an effective tool to improve new agronomic 
traits in various crops. It may be evaluated as an alternative to genetically modified plants. 
The released mutation breeding-derived varieties showed the potential usage of mutation 

breeding as a flexible and available accession to any crop supplied for desired purposes, and 
discriminating techniques are successfully combined.

As mentioned above, mutation breeding studies are provided to numerous researches in 

terms of developing applications for plant biotechnology, plant tissue culture, and muta-

tion treatments to improve new cultivars. Therefore, research and developmental studies 

are widely associated to combined techniques including in vitro culture and molecular tech-

niques through mutation breeding. In vitro mutagenesis applications are becoming important 
at this point.

3.1. In vitro mutagenesis applications

Induced mutagenesis is a widely used method to identify and isolate the plant genes in com-

bination with molecular accessions. These kinds of studies supply a clear prehension into the 

relation of genes and functions of the genes that have role in growth and development under 

several conditions [12].

 Figure 2. The maximum plant species improved via mutation breeding [17].
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In vitro culture methods appear to have opportunities to display the useful variants. The 
recent improvements on in vitro technology acquired an importance to enlarge the aim of 

mutation breeding applications. The use in conjunction of in vitro tissue culture and muta-

tion breeding methods makes a significant contribution to improve new crops and new 
varieties. Jain [18] reported the importance of this technique for ornamental plants beside 

the crops.

It is known that genetic variabilities may occur during in vitro culture conditions without any 
application of mutagens, spontaneously. The frequency of the variants still indeterminable, 

Crops Improved traits

Apple Early maturing, red fruit skin color, variegated leaf, dwarf, compact tree, resistance to powdery 

mildew and apple scab

Apricot Earliness

Banana Earliness, bunch size, reduced height, tolerance to Fusarium oxysporum f. sp. cubense, large fruit size, 

putative mutant resistant to black sigatoka disease

Barley Phytate (antinutrient)

Canola Oil quality improvement

Chickpea Resistant to Ascochyta blight and Fusarium wilt

Citrus Seedless, red color fruit, Xanthomonas citri disease resistant, resistant to tristeza virus

Cotton Resistant to bacterial blight, cotton leaf curl virus, high fiber

Indian jujube Fruit morphology, earliness

Loquat Fruit size

Maize Resistant to pathogen Striga, acidity, and drought tolerance; improvement of protein quality

Mung bean Resistant to yellow mosaic virus

Pineapple Spineless, drought tolerance

Tomato Resistant to bacterial wilt (Ralstonia solanacearum)

Rapeseed Resistant to powdery mild

Rice Resistant to blast, yellow mottle virus, bacterial leaf blight and bacterial leaf stripe, semidwarf/dwarf 
cultivar, lodging resistance, acid sulfate soil tolerance; tolerant to cold and high altitudes, salinity 

tolerance, early maturity, high-resistant starch in rice for diabetes patients, giant embryos of eight 

more plant oil, low amylose, low protein)

Soybean Resistant to Myrothecium leaf spot and yellow mosaic virus, oil quality improvement, oilseed meals 
that are low in phytic acid desirability, poultry and swine feed

Strawberry Thick and small leaf, light leaf color, white flesh and long fruit, Phytophthora cactorum resistance

Salinity tolerance

Sunflower Oil quality improvement, semidwarf/dwarf cultivars

Wheat Resistant to stripe rust

Table 1. Applications of induced mutagenesis for improved features in plant breeding [6, 17].
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and there are many parameters to depend on. Application of the mutagens can increase the 

rate of genetic variability via inducing the frequency of the mutations.

The progress in recombinant DNA technologies and genes can be easily cloned from a genome 
into a genome of an organism. Genes can be purified in vitro in small amounts, and therefore 
the potential of inducing mutations has significantly broadened. In a controlled experimental 
environment, it is available to change the sequence of the nucleotides of DNA. In vitro muta-

genesis studies systemically and efficiently focus on the potential ways of inducing mutagen-

esis. Some applications of mutagenesis depend on using isolated DNA molecule. In contrast 
to conventional mutagenesis, in vitro mutation breeding can be thought as a practicable and 

achievable technique to improve new genetic variabilities. Only few traits can be modified, 
and the remaining is not altered by the treatment.

In vitro mutagenesis have some properties such as increased mutation rate, uniform mutagen 
treatment, needs of less space and time for large populations, and opportunity to keep the 

plant material disease-free. On the other hand, one of the main restrictions of mutation breed-

ing application is the formation of chimeras as a result of the treatment. At this point, mutant 

selection process is becoming important.

In vitro culture methods are more useful in mutation studies. Totipotency is a natural feature of 
the plant cells. By using one plant cell, it is possible to produce a whole plant, induce regenera-

tion of the tissues and micropropagation of the plants in large volumes, and give opportunity 

to use different parts of the plants (stem, leaves, cuttings, apical and axillary buds, and tubers) 
to induce mutagenesis easily. Another advantage of in vitro culture is to screen the populations 

after mutagenesis to select the variant/mutants before giving a whole plant. Different plant 
tissues can be propagated to produce different tissues by using several combinations of plant 
growth regulators. Callus is an important cell organization. Cell suspension culture technique 

is started by using callus tissue to separate the single totipotent cells. Every plant cell can be 

differentiated into somatic embryos which is a useful tool for mutagenesis [4, 9].

The target of the studies is to isolate the non-chimeric mutants from the irradiated explants to 

obtain desired mutants via repetitive selection processes. Meanwhile, duration of the culture 
and the selective traits that mutated are the main factors effect these processes [4]. M

2
 gen-

eration of the culture is the earliest step that the predominantly recessive mutants could be 

determined. Mutagen treatment can be applied at different stages of the cultures.

3.1.1. Selection of species and explant types for in vitro culture

Correct choice of the plant species due to economic, commercial production capacity and agricul-

tural importance is the first step of an in vitro mutagenesis study. The selection of the plant mate-

rial is related to the success of the in vitro culture. Seed, callus, node, shoot, and root tip cultures 

are the most commonly preferred plant material for in vitro mutagenesis applications. The geno-

type of a plant has a role in in vitro culture studies. The studies showed that different explants of 
same plant had different responses to the same radiation dose [19, 20]. Therefore, it is necessary 

to design an in vitro mutagenesis experiment in a proper combination of dose and explant type.
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3.1.2. Determination of proper gamma radiation dose

The most important subject of in vitro mutagenesis is to select the suitable radiation dose to 
obtain the maximum viability. In the beginning, assessment of the LD

50
 value is needed to 

optimize the exact mutation dose. The sensitivity of the plants changes due to the species, 

cultivars, and current physiological environment. A preliminary dose experiment should be 

performed to define the appropriate dose. Reduced growth and seedling damages may be 
seen as traces of the genetically damaged plants after irradiation [21]. IAEA/FAO reported the 
average doses for crop species and summarized in Table 2.

According to the findings of the preliminary studies done with gamma radiation, it has been 
reported that there is no linearity between the radiation dose and the variance. The experi-

mental gamma radiation treatments were summarized in Table 3.

Seed, callus, shoot tips, node cultures, and bulblets were frequently used for irradiation of dif-

ferent species. 137Cs and 60Co gamma sources were used to induce mutagenesis at different doses 
depending on the radiosensitivity of the explants. Atak et al. [24] used 100–500 Gy radiation 

doses produced by 137Cs gamma source for soybean seeds, while Singh and Datta [29] used 60Co 

gamma source at different doses ranging between 10 and 100 Gy for Triticum aestivum seeds. 

Ulukapı et al. [21] also used 60Co gamma source at 80–240 Gy radiation doses to induce genetic 

variability for Solanum melongena L. Çelik and Atak [23] used 100, 200, 300, and 400 Gy gamma 

rays by 137Cs to determine the effective radiation dose for breeding studies of two Turkish tobacco 
varieties. They irradiated the tobacco seeds and selected the salt-tolerant mutants in M

3
 progeny.

Seetohul et al. [35] used 0–60 Gy gamma doses of 60Co gamma source to induce mutations 

for shoot tip explants of Taro plant. Jain [26] irradiated shoot tip explants of Musa spp. by 

Cesium-137 at 10–50 Gy doses, while Baraka and El-Sammak [33] used 0.25–1 Gy for Gypsophila 

paniculata L. shoot tip explants by 60Co gamma source. Atak et al. [25] used shoot tip explants 

of Rhododendron varieties to induce mutants at 5–50 Gy of gamma rays of 137Cs source.

In tissue culture treatments, different synthetic chemicals show similar effects as plant growth 
regulators which have abilities to induce growth of the tissues as desired. In mutation-based 

Species Useful mutation breeding dose (gray)

Oryza sativa japonica 120–250

Oryza sativa indica 150–250

Triticum aestivum 40–70

Hordeum vulgare 30–60

Glycine max 100–200

Phaseolus vulgaris 80–150

Nicotiana tabacum 200–350

Medicago sativa 400–600

Table 2. Gamma radiation radiosensitivity of some crop species [22].
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selection of the plants with desired characters using in vitro cultivation methods for vegeta-

tive plants, clonally reproduction of the plant parts is needed in order to detect the mutant 

generations via using easy stability tests [27]. The schematic diagram representing the usage 

of gamma radiation for in vitro mutagenesis applications is given in Figure 3.

3.1.3. In vitro selection of the mutants

The selection of the desired mutants is an essential and important part in a mutation 

breeding program. In vitro mutagenesis applications give opportunity to the breeders to 
select the mutants in a controlled environment. The plant breeders can work with a large 

population of plant material. Different culture techniques such as suspension cultures and 
protoplast cultures can be widely preferred to have a genetic uniformity in the selection 

studies.

Species Plant material Gamma ray source Gamma radiation  

dose (Gy)

Reference

Nicotiana tabacum L. Seeds 137Cs 100–400 [23]

Glycine max L. Merr. Seeds 137Cs 100–500 [24]

Rhododendron spp. Shoot tip 137Cs 5–50 [25]

Musa spp. Shoot tip 137Cs 10–50 [26]

Solanum tuberosum  

L. “Marfona”
Node 137Cs 5–50 [27]

Saccharum officinarum L. Leaf primordia 137Cs 10–50 [28]

Triticum aestivum Seed 60Co 10–100 [29]

Paphiopedilum delenatii PLBs, shoot buds,  

in vitro plantlets

60Co 10–80 [30]

Embryogenic callus 60Co 50–400 [31]

Saccharum officinarum L. Embryonic callus  

culture

60Co 10–80 [32]

Solanum melongena L. Seed 60Co 80–240 [21]

Gypsophila paniculata L. Shoot tips and lateral  

buds

60Co 0.25–1 [33]

Etlingera elatior Axenic culture 60Co 10–140 [34]

Colocasia esculenta L. Schott Shoot tips 135Co 0–60 [35]

Chrysanthemum grandiflora Shoots 60Co 5–30 [36]

Chrysanthemum morifolium Ray florets 60Co 0.5–1 [37]

Lilium longiflorum Thunb.  

Cv. White fox

Bulblets 60Co 0.5–2.5 [38]

Rosa hybrida L. Single-node cuttings 60Co 5–80 [39]

Table 3. In vitro mutagenesis protocols for some crop species.
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In vitro selection studies have some advantages. These can be classified as follows:

1. Easiness of the application

2. Reduced time of the selection

3. Availability to use some selective agents in culture conditions

In vitro selection studies can be performed in two types: single step and multistep [4]. In sin-

gle-step selection procedure, the inhibitor agent is added to the culture environment and the 

subcultures used for the selection studies. In multistep method, the dose of the selective agent 
below lethal dose is added to the culture, and the concentration of the inhibitor is gradually 

increased in subcultures. The selected mutant by this method has been defined as more stable 
than selected via other methods [4].

Food and ornamental plants are widely assessed for nutritional quality, early ripening, bet-

ter flower, and biotic/abiotic stress tolerance capacities [4]. For abiotic stress treatments, it is 

more convenient to control the culture conditions than in the field environment [20, 40]. Salt, 

drought, cold, and heavy metal tolerance have been successfully performed in many plants. 

Callus, suspension cultures, or protoplast cultures were used for in vitro selection analysis by 

adding the selective agents reducing the growth such as mannitol and polyethylene glycol for 

drought tolerance; NaCl for salt tolerance; boron, aluminum, and nickel for metal tolerance; 

or changing the temperature of the cultures to select cold/high-temperature-tolerant plants 

[4, 41]. Both selection strategies, single step and multistep, can be used. The main point is to 

 Figure 3. The representative schematic diagram of an in vitro mutagenesis application.
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inhibit the false-positive selection responses due to epigenetic alterations in long-term culture 

conditions. When the plants are subject to long-term stress treatments with gradual increase 
of the selective agent, non-tolerant cells can experience stable epigenetic alterations, which 

can be inherited by mitosis. In order to avoid this period, preference of single-step selection 
procedure is suggested to be efficient during mutation breeding programs [41].

In selection studies, the main criterion is to define the exact selective agent. This means that 
the molecular mechanism of the desired trait should be clearly understood by the plant breed-

ers. Morphological and physiological changes should be used in combination to discriminate 
the mutants. All the parameters such as leaf injury, slower growth, average number of shoots 
per explant, survival percentage of the plants, fresh weight of the explants, leaf photosyn-

thetic capacity, antioxidant defense system, and accumulation of osmolytes should be inves-

tigated in detail especially for stress tolerance studies [40, 41].

3.2. Mutational genomic analysis

Mutational genomics is becoming a valuable tool to differentiate the mutants improved via 
mutation breeding programs. It is also an important tool to understand the molecular basis 
of the plant stress response based on the data gathered from mutants of model plants and an 

easy way to determine the genetic similarities and characterize the variations between the 

mutants at the DNA level.

The mutants were identified based on morphological characters, traditionally. The new develop-

ments in DNA technologies give opportunity to the plant breeders to make it quick and definite.

Molecular markers are widely used to differentiate the genetic differences between the mutant 
and the mother plants through characterizing the variations at DNA level. High-throughput 
genomic platforms such as random amplified DNA polymorphism (RAPD), cDNA-amplified 
fragment length polymorphism (AFLP), single-strand conformational polymorphism (SSCP), 

microarray, differential display, targeting induced local lesions in genome (TILLING) and 
high-resolution melt (HRM) analysis allow rapid and in-depth global analysis of mutational 
variations [4].

Among these methods RAPD, inter simple sequence repeat (ISSR), and AFLP have been 
frequently used in genomic classification of the mutants [15, 42]. RAPD is an inexpressive 
and a rapid method to use in many fields of biotechnology. There is no need for genome 
information. It has been widely used to determine the genetic diversity in mutation breed-

ing programs of many plants. RAPD is an efficient method to detect DNA alteration via 
using random primers. It has been started to use in earlier studies of genetic variabilities 
obtained by radiation treatments in Chrysanthemum [36, 37], soybean [24], sugarcane, sun-

flower, groundnut [43], tobacco [23], potato [27], Rhododendron [25]. ISSR method is another 
molecular marker method widely used in plant biotechnology applications. It is also easy 
to apply more informative than RAPD, reliable, and inexpensive [44, 45]. ISSR primers are 
designed by using microsatellite sequences to amplify the genomic regions flanked by mic-

rosatellite repeats. By using one primer, it is possible to amplify multiple fragments as a 

result of ISSR analysis [46, 47]. The information obtained from ISSR analysis is more reliable 
than RAPD to provide supplementary data of the genetic variations of the mutants from the 
nonoverlapping genome regions [48].
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Xi et al. [38] reported an in vitro mutagenesis protocol for Lilium longiflorum Thunb. cv. White 

fox. They used 0, 0.5, 1.0, 1.5, 2.0, and 2.5 Gy gamma rays to observe the effects of radiation on 
adventitious bud formation from bulblet-scale thin cell layers. 1.0 Gy was determined as the 

most effective dose due to survival rate of the bulblet-scale thin layers. They also evaluated 
the morphological mutants using ISSR DNA fingerprinting method.

Sianipar et al. [49] used RAPD method to detect the genetic variability between the mutant 
plantlets improved from gamma-irradiated rodent tuber calli. They obtained 69 fragments 

from 11 mutant plantlets by using 10 RAPD primers.

Barakat and El-Sammak [33] irradiated shoot tips and lateral buds of G. paniculata with four 

different gamma radiation doses between 0.25 and 1 Gy. They detected the genetic polymor-

phisms among the mutants by RAPD analysis. They obtained 105 different amplification 
products from 10 random primers. RAPD is evaluated as an efficient molecular marker tech-

nique to detect the variations. Atak et al. [25] used RAPD method to show the genetic simi-
larities of the Rhododendron mutants improved via gamma irradiation. They used 0–50 Gy 

gamma radiation doses to improve the shoot and root regeneration rates of Rhododendron 

plants. RAPD detected higher genetic variability among the Rhododendron mutants. Yaycılı 
and Alikamanoğlu [27] observed 89.66% polymorphism rate with six primers among the 

mutant potato plants, which were improved as salt tolerant via gamma radiation treatment. 

Kaul et al. [36] used in vitro mutagenesis in Chrysanthemum cv. Snow Ball by irradiation of 

the in vitro shoots, and genetic polymorphisms among the mutants and the control plants 

were assessed by RAPD. They reported that 10 Gy gamma irradiation was found as the most 
effective dose to induce genetic variation in morphological traits, and they observed 100% 
polymorphism among the mutants. Gamma radiation-induced salt-tolerant oriental tobacco 

mutants were improved by Çelik and Atak [23]. Salt tolerance of the mutants was controlled 

by the callus induction in the presence of high salt concentration. The genetic similarities of 

the mutants were determined by RAPD analysis. The relationships between the salt-tolerant 
mutants and controlled tobacco varieties were shown in Unweighted Pair Group Method 
with Arithmetic Mean (UPGMA) dendrogram. Some representative RAPD profiles of the 
mutants developed by in vitro mutagenesis were given in Figure 4.

Sen and Alikamanoğlu [44] used ISSR method to differentiate the drought-tolerant sugar beet 
mutant improved via irradiation of shoot tip explants by gamma radiation. They obtained 91 

polymorphic bands of 106 PCR fragments with 19 inter simple sequence repeat (ISSR) primers.

Perera et al. [40] applied in vitro mutagenesis treatment to an important energy crop giant mis-

canthus (Mischanthus × giganteus) to induce variation in cultivar Freedom. ISSR markers were 
used to determine the variations in the mutant plants. The putative mutants were selected 

due to the results of molecular marker analysis to use for further bioenergy researches. Wu 

et al. [50] used ISSR analysis to show the genetic similarities between the mutants. For this 
reason, they used 60 ISSR primers, and 60 polymorphic bands of 392 were evaluated to have 
information on the molecular level of mutation breeding. Atak et al. (unpublished data) [51] 

used ISSR marker method (with 61 ISSR primers) to define the genetic variation among the 
8 salt-tolerant mutant soybeans obtained from in vitro mutagenesis treatment by using 137Cs 

gamma source. The representative results of ISSR amplification of 8 salt-tolerant mutant soy-

beans were given in Figure 5.
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Single-strand conformational polymorphism (SSCP) is another strength method to identify 

the variations between the mutant and mother plants in amplified DNA samples. It is widely 

 Figure 4. Evaluation of salt-tolerant tobacco mutants improved via in vitro mutagenesis application. A and B represent 

the RAPD profiles of the mutants. C shows the callus growth of control plants under in vitro salt stress. D shows the 
callus growth profiles of the mutants under salt stress [23].

Figure 5. The representative results of evaluation of 8 salt-tolerant mutant soybean plants improved by in vitro 

mutagenesis treatment. A.The callus gowth of Ataem-7 and S04-05 soybean cultivars. B. The callus gowth of Ataem-7 

and S04-05 soybean cultivars under 90 mM NaCl. C. Callus growth of M5 under 90 mM NaCl D. The whole plant M5.
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used to determine the genetic mutations in several organisms. It is also an effective method 
to find a potential genetic marker which is in relation with a desired trait to use in selection 
studies of agricultural populations [52]. Irradiation of the plant tissues can cause mutation 
between the allelic gene copies [single-nucleotide polymorphism (SNP)]. SSCP is an efficient 
method to detect these polymorphisms. It is possible to detect relations between SSCP poly-

morphisms and quantitative traits [53].

These methods can only be able to detect the genetic variations of the mutants in accordance 

with the mother plants. There are a number of methods to screen the causal mutation at a 

desirable phenotype. Molecular markers that are in relation with the mutation are known to 
be able to segregate in the next progenies. The main point is to make the functional analysis of 

the mutant genes that have role in acquiring the new desired characters. To identify a mutant, 

the number of the genes controlling that specific phenotypic character is deterministic [54].

In a mutation breeding program, identification of differentially expressed genes, the biologi-
cal processes they have role in, or the metabolic pathways of interest should be carried out 

through modern genomics and system biology. To achieve this, there are specific tools to 
discriminate with the use of next-generation molecular techniques. In microarray systems, 
it is available to detect the gene expressional differences between the mutants and control 
plants. Thousands of spots on a microarray chip containing a few million copies of identi-

cal DNA molecules buried on each spot are related to each gene of a plant genome. If it 
is a targeted mutation, it is possible to show the expressional differences between them by 
microarray technique. In general, spontaneous mutations cannot be detected at microarray 
systems. Sequencing methods are more efficient in the meanwhile. Mutant plants can now 
easily sequence by next-generation sequencing (NGS) techniques to define the mutations [55]. 

To apply these methods, there is no need for a reference genome. These analyses can be clas-

sified as forward genetic screening methods that give opportunity to improve the knowledge 
about the genes that control specific biological roles in mutant plants. In contrast to forward 
genetic, reverse genetic is more popular to detect the function of a gene. In mutation breeding 
programs, the plant breeders are focused to identify the individuals from a population that 

have an allelic variation of a gene. As mentioned previously, these individuals are improved 

by mutagenic treatments. TILLING method is available to determine the mutants with spe-

cific phenotypes. In tomato, approximately 3000 mutant lines that were improved by chemi-
cal mutagens on fruit ripening trait were identified by this method. This method is used for 
barley to screen the homeodomain-leucine zipper protein mutants. Recent progresses in NGS 

technologies and TILLING which is in relation with these technologies make it possible to 
screen the potential genes [54, 56].

4. Discussion and the conclusion

The increasing importance of plant breeding studies in correlation with biotechnology and 

molecular genetics is attempted to meet the requirements of increasing population for food 
and crop plants. Therefore, mutation breeding treatments have become more frequent and 

alternative to classical breeding and genetically modified plants. The main aim is to com-
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bine several features of many plants in one super plant. In vitro mutagenesis has become an 
efficient tool for this purpose. Plant breeders are focused to crop improvement techniques to 
improve genetic variations of useful traits by using next-generation molecular methods.

Using these advanced genomic techniques, new molecular mechanisms and new genes can 
be potentially identified by the plant breeders as a result of in vitro mutagenesis treatments. 
To gain more data, additional needs of various comparative and descriptive experiments 
can be upgraded to acquire more specific points to build the relations between the regu-
latory mechanisms. Therefore, the recent progress in mutation breeding studies in relation 
with new technologies is quite important to contribute new advancement to plant breeding 
programs.
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