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Abstract

Recent genomic research has ranked sphingolipid metabolism as the top dysregulated 
pathways in lung cancer, demonstrating that these lipids and their metabolic enzymes 
play key roles in lung cancer pathogenesis. Hence, sphingolipid metabolism has become 
a forefront in lung cancer research. However, the function of the diverse sphingolipids 
and their metabolic enzymes and the underlying mechanism in lung cancer are still 
unclear. In this chapter, we will focus on ceramide and sphingosine-1-phosphate (S1P), 
the best characterized sphingolipids so far, to summarize the most recent studies and 
highlight the essential role of sphingolipids in lung cancer pathology, diagnosis, and 
treatment.

Keywords: lung cancer, NSCLC, sphingolipid, ceramide, sphingosine, sphingosine-1-
phosphate (S1P), Spns2

1. Introduction

Lung (pulmonary) cancer is the leading cause of cancer-related death in the United States 

and worldwide. Its two major types are non–small cell lung cancer (NSCLC) and small-cell 

lung cancer, among which NSCLC is the most common form accounting for 85–90% of newly 

diagnosed cases [1, 2]. NSCLC can be further categorized into three major subtypes: large-cell 

lung cancer, squamous cell carcinoma, and adenocarcinoma.

Most lung cancer is diagnosed at a late stage; thus, chemotherapy is the most common approach 

for management [3]. However, the effectiveness of conventional chemotherapy for lung cancer 
has reached its plateau [3]. Multiple genes and signaling pathways have been associated with 

NSCLC, including the epidermal growth factor receptor (EGFR) family, mitogen-activated 

protein kinase (MAPK), mesenchymal-epithelial transition factor (c-MET), phosphatidylinosit-

ide 3-kinases (PI3K)-Protein Kinase B (PKB/Akt)-mammalian target of rapamycin (mTOR), 
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and vascular endothelial growth factor (VEGF) pathways [1, 2, 4]. Precision therapies have 

been designed to use inhibitors of these pathways such as gefitinib for EGFR mutations [5]. 
However, these drugs work for certain patients/for a while and the patients develop drug resis-

tance, and the tumor develops to more aggressive metastatic cancer [2, 6].

Sphingolipid metabolism is among the pathways that show the highest abundance of dys-

regulation in lung cancer [7]. Yet the function of sphingolipids and underlying mechanism in 

lung cancer are still not clear, due in part to a lack of suitable in vivo models [8, 9]. Bioactive 

sphingolipids, including ceramide, ceramide-1-phosphate, sphingosine, and sphingosine-

1-phosphate (S1P), regulate a wide range of cell signaling pathways that control cell pro-

liferation, apoptosis, senescence, angiogenesis, and migration, key components of cancer 

pathology and progression. The roles of sphingolipids in general tumorigenesis have been 

reviewed extensively, and the readers are encouraged to resort to these resources [10–13]. In 

this chapter, we will focus on ceramide and S1P to discuss the essential functions of sphingo-

lipids in lung cancer pathology, diagnosis, and treatment. Many enzymes in the sphingolipid 

metabolism are closely related to lung tumorigenesis. For the ease of discussion, we will first 
briefly introduce the sphingolipid metabolism pathways.

2. Sphingolipid metabolism

Sphingolipids are acyl derivatives of the amino alcohols sphingosine and dihydrosphingosine. 

They encompass sphingosine, ceramide, and ceramide derivatives such as ceramide-1-phos-

phate, S1P, sphingomyelin, and glycosphingolipids (Figure 1). These lipids are synthesized 

Figure 1. Schematics of ceramide synthesis.
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in an interconnected network of enzymes, which is centered on ceramide (Figure 1). There 

are three pathways that produce ceramide, de novo, sphingomyelin cycle, and the salvage 

pathways [14–16]. In the de novo pathway, ceramide synthesis is initiated by serine palmi-

toyltransferase which condenses serine and palmitate to form ketosphinganine, followed by 

reduction of the ketone group to dihydrosphingosine. Dihydrosphingosine is then acylated 

by ceramide synthase (CerS) to generate dihydroceramides. A desaturation step, which is cat-

alyzed by dihydroceramide desaturase, completes ceramide biosynthesis [14, 16]. In addition, 

ceramide can be generated by the salvage pathway in which CerS uses sphingosine as an acyl 

acceptor (Figure 1) [14, 16]. In a third pathway, ceramide is generated from sphingomyelin 

by sphingomyelinase (SMase) (Figure 1). The CerS enzymes, which currently encompass six 

enzymes (CerS1–6, also known as Lass1–6), and neutral SMase2 (nSMase2) are particularly 

interesting in lung cancer which will be discussed more in detail later. CerS enzymes use dif-

ferent chain lengths of acyl-CoAs and generate ceramide of varying lengths ranging from C14 

to C32, while nSmase2 catalyzes sphingomyelin to generate ceramide.

S1P is synthesized intracellularly from sphingosine by the sphingosine kinases SphK1 and 

SphK2 (Figure 2). SphK1 is mainly cytoplasmic and can acutely translocate to the plasma 

membrane, whereas SphK2 is present predominately in the nucleus but also can be found 

in the cytoplasm [17]. Once formed, S1P is tightly regulated by three pathways to main-

tain intracellular homeostasis (Figure 2). Firstly, S1P is recycled to ceramide through CerS 

after dephosphorylation by S1P-specific ER phosphatases, S1P phosphatases 1 (SPP1) and 

S1P phosphatases 2 (SPP2) [18, 19], or lipid phosphatases. Secondly, S1P can be irreversibly 

Figure 2. Schematics of S1P metabolism and function.
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degraded by S1P lyase (SPL) into phosphoethanolamine (PEA) and hexadecenal [20]. In the 

third pathway, S1P is released to the extracellular space through transporter proteins, a pro-

cess that is highly efficient in blood cells and endothelial cells [21, 22]. Several ATP-binding 

cassette (ABC) transporters are reported to transport S1P in blood cells. However, this notion 

is still being debated because knockout of the corresponding ABC transporters does not alter 

serum S1P level. A specific S1P transporter, Spns2, is responsible for S1P secretion in endo-

thelial cells [23–26]. Spns2 gene deficiency in zebrafish and mice leads to significantly reduced 
extracellular S1P level and impaired egress of lymphocytes and migration of cardiomyocyte 

precursors [23–25, 27].

3. Ceramide in lung cancer

3.1. Ceramide and related enzymes in lung cancer pathology

Ceramide is generally believed to induce cell death and senescence. However, recent evi-

dence has demonstrated that the roles of ceramide are concentration, cell context, and subcel-

lular localization specific [8, 9, 28–30]. For example, C16 ceramide is shown to favor cancer 
cell proliferation and promote metastasis in lung cancer patients with CerS6 elevation [28, 

29, 31–33]. On the other hand, C18 ceramide mediates cell death [28, 29, 31, 32]. These results 

emphasize the significance of concentration and cellular context in ceramide-mediated lung 
cancer cell death.

Most recently, CerS6, the enzyme that catalyzes C16:0 ceramide, was found to be overex-

pressed in advanced NSCLC patients and inversely correlated with clinical outcome [33]. 

C16:0 ceramide promotes NSCLC cell migration in vitro through formation of a RAC1-

positive lamellipodia/ruffling structure in cells that escape C16 ceramide-induced apoptosis 
[33]. This notion is supported by data showing that CerS6 knockdown alters the ceramide 

profile, leading to decreased cell migration/invasion, reduced RAC1-positive lamellipodia 
formation in vitro, and attenuated lung metastasis in transplanted NSCLC cells in vivo [33].

Ceramide has been linked to cigarette smoking, the number one risk factor for lung cancer 
[8, 9, 34, 35]. Higher ceramide levels are reported in emphysema patients who are smokers, a 

subpopulation of patients greatly susceptible to lung cancer [34]. Just like ionizing radiation 

and chemotherapy drugs, cigarette smoking induces ceramide production which is mediated 
by nSMase2, an enzyme that hydrolyzes sphingomyelin to ceramide (Figure 1) [35]. Further 

evidence shows that during cigarette smoking, EGFR is favorably co-localized in ceramide-
enriched regions of the plasma membrane, suggesting that nSMase2/ceramide plays a role in 

the aberrant EGFR activation, leading to augmented tumorigenic signaling and drug resis-

tance [36]. Increased ceramide also triggers multidrug-resistant gene expression and synthe-

sis of the pro-survival S1P and cell surface glycosphingolipids Gb3, which provide additional 

mechanisms for acquired drug resistance [8, 28, 37–39].

3.2. Ceramide as potential lung cancer treatment strategy and monitoring

Ceramide and related signaling is a promising target for lung cancer therapy. Based 

on the discovery that CerS6 is overexpressed in NSCLC, a combined treatment with 
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 l-α-dimyristoylphosphatidylcholine (DMPC) liposome and the glucosylceramide synthase 
inhibitor d-threo-1-pheny-2-decanoylamino-3-morpholino-1-propanol (D-PDMP) is used to 

induce cell apoptosis [33]. The combined treatment induced cell death in association with C16 

ceramide accumulation and promoted cancer cell apoptosis and tumor regression in murine 

models.

Based on the observation that the C18 ceramide level is reduced and I2PP2A overexpressed 

in lung tumors, a study took advantage of FTY-720, an  US Food and Drug Administration 

(FDA)-approved multiple sclerosis drug, which is a sphingosine analog of myriocin [40]. FTY-

720 mimics C18 ceramide and binds to I2PP2A, leading to PP2A reactivation, lung cancer cell 

death, and tumor suppression in vivo [41].

To overcome the cisplatin resistance caused by the increased cell surface glycosphingolipid Gb3, 

the glucosylceramide synthase inhibitor DL-threo-1-phenyl-2-palmitoylamino-3-morpholino-

1-propanol (PPMP) has been tested. PPMP treatment substantially sensitizes cells to cisplatin 

cytotoxicity [39]. These data suggest that therapies targeting glucosylceramide synthase activ-

ity or Gb3 receptors may ameliorate acquired cisplatin drug resistance in lung cancer cells.

An additional exciting advance is that ceramide is a potential indicator of positive response 

after radiation therapy. Early biomarkers of lung tumor response are urgently needed to dis-

tinguish between responders and nonresponders to radiotherapy. A recent study shows that 

the plasma levels of total ceramide and four main subspecies are significantly higher in objec-

tive responders than in nonresponders of lung oligometastases [42]. In patients with increased 

total plasma ceramide levels, almost complete tumor control is achieved after 1 year, whereas 

the tumors continue to grow in half of the patients with lower ceramide levels [42]. This is 

intriguing since plasma ceramide is easily measurable and would enable early segregation of 

nonresponders so that additional more effective treatment options can be applied.

4. S1P and related signaling in lung cancer

Our understanding of the function of S1P and its signaling in lung cancer pathology is rather 

limited and fragmented when compared to other cancer types. SphK1, a major enzyme that 

generates S1P, was found to be overexpressed in lung patient samples [43]. The SphK/S1P 

pathway was shown to mediate the E2-induced transactivation of EGFR, which is associated 

with carcinogenesis in lung cancer cells [44]. It has also been reported that expression of the 

oncogenic K-Ras leads to plasma membrane localization of SphK1 and increased S1P level [45].

In a longitudinal study of 100 cases, plasma S1P level was found to be greater in lung cancer 

patients, implying that the level of extracellular S1P might contribute to the etiology of lung 

cancer or be a biomarker [46]. On the other hand, intracellular S1P was found to be increased 

in lung cancer cells going through epithelial mesenchymal transition, suggesting that intracel-

lular S1P contributes to pathological epithelial mesenchymal transition, which is essential for 

lung cancer metastasis [47].

Consistent with this, knocking down the S1P transporter Spns2 enhanced migration in 

NSCLC cells partly due to increased intracellular S1P [26]. Pharmacological inhibition of 

S1P synthesis in Spns2 knockdown cells abolished the augmented cell migration mediated 
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by Spns2 knockdown, indicating that intracellular S1P plays a key role in migration. Cell 

 signaling studies indicated that Spns2 knockdown increased GSK-3β and Stat3-mediated pro-
migration pathways [26]. More importantly, genetic studies showed that the Spns2 mRNA 

level was reduced in advanced lung cancer patients as quantified by using a small-scale 
Quantitative PCR (qPCR) array [26]. These data show that Spns2 plays key roles in regulating 

S1P homeostasis and the cellular functions in NSCLC cells and that Spns2 downregulation is 

a potential risk factor for lung cancer metastasis and drug resistance [26].

4.1. Targeting S1P for potential lung cancer therapy

S1P functions to enhance survival, proliferation, and angiogenesis; thus, removal of extracel-

lular S1P and the use of SphK inhibitors to reduce S1P biosynthesis are major approaches for 

lung cancer therapy targeting S1P [48–50].

To remove S1P, an antibody was developed to physically sequester extracellular S1P. In animal 

models, the S1P-specific monoclonal antibody reduced lung tumor growth [51]. Sequestering 
extracellular S1P by using this antibody also attenuates lung metastasis of tumor cells from 
multiple other organs [50, 52].

Although SphK1 is elevated in lung cancer patients suggesting a potentially important role for 

this enzyme in lung tumor cell proliferation and survival [43, 53], results with novel, highly 

potent, and selective inhibitors to SphK1 in tumor cells did not affect their growth in vitro or 
in vivo, suggesting that tumor SphK1 may not be an efficacious therapeutic target for cancer 
[54, 55]. Hence, inhibitors of SphK2 are developed and tested for inducing lung cancer cell 

death, among which ABC294640 is a first-in-class drug [56]. One recent study demonstrates 
that ABC294640 suppressed growth of primary and A549 human lung cancer cells but sparing 

SphK2-low lung epithelial cells [56]. Inhibition of SphK2 by ABC294640 increased ceramide 

and decreased S1P levels, leading to lung cancer cell apoptosis. Another study shows that 

ABC294640 sensitized NSCLC cells to cell death induced by TNF-related apoptosis-inducing 

ligand (TRAIL) [56]. Compared with TRAIL alone, the combination therapy enhanced the apop-

tosis induced by TRAIL, and knockdown of SphK2 by siRNA presented a similar effect [57].

5. Concluding remarks

Exciting advances have been made regarding the roles of ceramide and its signaling in lung 

cancer in the past few years. Excess ceramide clearly has a critical function in inducing cell 

death in lung cancer cells, although those that escape this verdict are more prone to metas-

tasis, as one important study shows [33]. Further increasing ceramide levels in these cells 

using combined drug treatment successfully induced apoptosis and reduced tumor size in 

vitro and in vivo [33]. This kinetic response opens new avenues to treat lung cancer by using 

ceramide-based therapies, the efficiency of which depends on the successful fine-tuning of 
ceramide metabolism, by using ceramide-inducing drugs such as fenretinide, and D-PDMP. 

Another exciting approach is to use ceramide mimics and short-chain ceramide or to increase 

the sensitizer proteins of ceramide, such as I2PP2A and Par-4, which are found to be reduced 

in lung cancer patients [41, 58, 59].
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In terms of targeting S1P in lung cancer, aside from the antibody, using SphK2 inhibitors and 

its combination with SphK1 inhibitors seem to be promising approaches that merit further 

discovery [60]. In addition, agents such as transporter Spns2 [26] have shed new insights 

into the biology of S1P signaling. Such mechanistic insights have revealed additional control 

points for potential lung cancer therapeutic intervention. Even though receptor modulators 

have become the mainstream of current drug discovery [61], only one drug that targets the 

SphK/S1P axis (FTY-720, Fingolimod) is approved by FDA. And, the precise function of FTY-

720 is very complicated and context/concentration dependent [41].

One important way that lung cancer cells overcome ceramide-induced cell death and senes-

cence is to generate S1P, the pro-survival sphingolipid. Therefore, compounds that prevent 

S1P conversion from ceramide or further metabolize S1P to other derivatives which poten-

tially sensitize cells to chemotherapy-induced tumor cell death are becoming an important 

approach for treating patients with lung cancer [62, 63].

In summary, growing evidence suggests that targeting sphingolipid metabolism is essen-

tial in improving lung cancer therapy and overcoming drug resistance. Due to the complex-

ity and ubiquity of the sphingolipid metabolism and signaling, it is likely that a combined 

therapy employing conventional or novel targeted drugs and strategies based on chemical 

compounds or genetic approaches to modulate ceramide and S1P metabolism can be more 

beneficial than monotherapy. However, some important caveats should be considered in 
order to allow the development of more specific drug targets and inhibitors, in particular, the 
complexity of biological events that involve sphingolipids and the redundancy of the func-

tions of the different enzymes.
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