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Abstract

In order to study the seismic behavior of ultra‐high toughness cementitious composites 
reinforced concrete column, the concrete columns were simulated based on the finite ele‐
ment program OpenSees. The simulated hysteresis curves and skeleton curves were in 
good agreement with the test curves. The results well reflected the seismic performance 
of ultra‐high toughness cementitious composite (UHTCC) reinforced concrete columns 
under earthquake and showed that the constitutive relation and the related parameters 
had good applicability for the simulation of fiber concrete columns. The UHTCC rein‐
forced concrete column had higher bearing capacity and energy dissipation capacity.

Keywords: ultra‐high toughness cementitious composites, concrete column, low cyclic 
loading, finite element analysis

1. Introduction

In the earthquake, reinforced concrete columns often lead to plastic hinge under compression, 

bending, and shear. Shear failure occurs frequently, such as protection layer spalling, rein‐

forcement exposed, concrete crushing, deformation of steel bars, and even overall collapse. 

In the Seismic code GB50011 (2010), shear stirrups are allocation at the end of column and 

the diameter, spacing and reinforcement length are stipulated. But, due to the construction 

factors, the connection between confined concrete and protective layer cannot be guaranteed 
and leading to hidden danger.

Ultra‐High toughness cementitious composite (UHTCC) is a kind of high performance 

cement matrix composite based on micromechanics and fracture mechanics (Xu and Li, 2008). 

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



It shows the obvious characteristic of strain hardening and high toughness under tension 

and shearing force and it strengthens the softening performance of traditional cementitious 

material. Moreover, the characteristics of stable cracking effectively improved the durability 
and make the deformation coordinate with the steel bar. In view of this, based on the test 

research, this chapter uses OpenSees to simulate and analyze the seismic behavior of UHTCC 

reinforced concrete columns and provide reference for engineering application.

2. Numerical model of OpenSees

Concrete column adopted the flexibility‐based fiber model in OpenSees program, for every 
root fibers only consider the axial constitutive relation, and every fiber can be defined differ‐

ent constitutive relations.

Concrete constitutive relation used the Concrete 02 model (Based on the Kent and Park (1971) 

uniaxial concrete constitutive model), which reflects the restriction of the stirrup by consider‐

ing the peak stress, peak strain, and the softening curvature of compressive concrete.

A steel constitutive model adopted the Steel 02 material provided by OpenSees. This model 

considers the double broken line constitutive relation to reflect the Bauschinger effect and 
have good stability (Liu et al., 2012).

As the constraint effect of stirrups, the section is divided into cover concrete and core concrete 
according to the different stress‐strain relations of the protective layer and confined concrete. 
Figure 1 shows the column fiber section. The core concrete is divided into 10 × 10, a total of 
100 grids, and adopted the confined concrete constitutive model.

3. Model validation

The quasistatic test of side and middle columns under low cyclic loading was provided in the 

study by Tang (2011). The column specimens were numbered Za1, Za2, Zb1, and Zb2: a repre‐

sented the middle column and b represented the side. The remaining parameters are given in 

Table 1. Comparison of hysteretic curves and skeleton curves between the test and OpenSees 

is shown in Figures 2 and 3. Table 2 shows the peak load.

Figure 1. Sketch of column section fiber model.
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Figure 2 shows that the hysteresis curves based on OpenSees were in good agreement with 

the test results in initial stiffness, pinch degree, and trend. The hysteresis curves showed lin‐

ear change before Za, Zb yield, and the stiffness degradation was not obvious. But, in the 
processes of loading and unloading, the stiffness degradation increased gradually. Finite ele‐

ment simulation could well reflect the phenomenon of column crack open and close, develop, 
and pinch. There are some differences during the late period of the loading process, and the 

simulation curves were very full. The main reasons were as following: generally, the col‐

umn specimens were loaded to 85% limit load, but this specimen was loaded to collapse. It 

is difficult to accurately reflect the stiffness degradation and cumulative damage in the later 
stage of loading. In the stress‐strain model, the parameters of the descending segment and the 

strength coefficient of steel bars were not very reasonable.

Specimens Dimension (mm2) Length (mm) Strength (MPa) Longitudinal 

reinforcement

Hoop 

reinforcement

Za1 200 × 200 850 30.1 8Φ8 Φ6/70

Za2 200 × 200 850 30.1 8Φ8 Φ6/70

Zb1 200 × 200 850 30.1 4Φ10 + 4Φ8 Φ6/70

Zb2 200 × 200 850 30.1 4Φ10 + 4Φ8 Φ6/70

Table 1. Specimen size and reinforcement.

Figure 2. Comparison of Hysteresis curve. (a) Za1, (b) Za2, (c) Zb1, (d) Zb2.

Figure 3. Comparison of Skeleton curve. (a) Za1, (b) Za2, (c) Zb1, (d) Zb2.

Finite Element Analysis on Seismic Behavior of Ultra-High Toughness Cementitious Composites...
http://dx.doi.org/10.5772/66808

367



4. Numerical simulation of UHTCC reinforced concrete column

4.1. Design of column specimen

According to the size and reinforcement shown in Table 1, the model of UHTCC reinforced 

column was established and numbered UZ1 and UZ2.

The characteristic value of cube strength took f
cu

 = 40 MPa, and the elastic modulus was E
c
 = 17,000 

MPa, stiffness decreased to 0.1 E
c
 when unloading. As the confinement effects from hoop steels, 

the strength increasing coefficient K took 1.1. The longitudinal reinforcement used HRB335 and 

strength variable coefficient took δ = 0.07, the modulus of elasticity was 2.00 × 105 N/mm2 accord‐

ing to the specification. The specific parameters are summarized in Tables 3 and 4.

4.2. Finite element simulation and analysis

The comparisons of UZ1 and UZ2 with ordinary column are shown in Figure 4.

Bearing capacity. The yield and ultimate load of UHTCC column were significantly higher 
than that of ordinary column. The average yield load of concrete column was 35.31 kN, the 

Specimens Test value (kN) Simulation value (kN) Error (%)

Positive Negative Positive Negative Positive Negative

Za1 38.003 ‐35.446 37.600 ‐36.828 1.06 3.90

Za2 36.002 ‐41.465 4.44 11.18

Zb1 42.059 ‐53.081 46.650 ‐46.673 10.92 12.12

Zb2 39.613 ‐51.435 17.76 9.26

Table 2. Peak load of simulation and test.

Areas f
c
/N/mm2 ε

c
ε

u
f
t
/N/mm2 E

c
/N/mm2

Cover concrete 40 0.005 0.034 5.98 1.7 × 104

Core concrete 44 0.00517 0.0577 5.98 1.7 × 104

Note: ε
c
, ε

u
 are peak strain and ultimate strain, respectively. f

t
 represents the ultimate tensile strength.

Table 3. UHTCC column parameters.

Diameter f
y
/N/mm2 E

s
/N/mm2 b R

0
cR

1
cR

2
a

1
–a

4

6 441 2.00 × 105 0.01 12 0.800 0.13 0

8 582 2.00 × 105 0.01 12 0.800 0.13 0

10 481 2.00 × 105 0.01 12 0.800 0.13 0

Table 4. Reinforcement parameter.
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average ultimate load was 40.25 kN, and the UHTCC column was 40.53 and 47.93 kN, respec‐

tively, which was increased by 14.8 and 19.1%.

Hysteresis curves and skeleton curves. The hysteresis loops of UHTCC columns (UZ1 and 

UZ2), in contrast to that of ordinary column, was fuller. Its linear stage was longer, the defor‐

mation of elastic stage was slight and the slope change was not obvious. Although the stiff‐

ness and strength in the late stage were gradually reduced, the degradation became flat.

Deformation and energy dissipation. The yield points P
y
 and Δ

y
 was calculated by the energy 

method, meanwhile, defined the vertex of curves as the ultimate load P
max

 and ultimate dis‐

placement Δ
max

. The failure load P
u
 equaled 0.85 P

max
 and the corresponding displacement was 

Δ
u
. The ductility coefficient was defined as the ratio of the ultimate displacement to the yield 

displacement; Figure 5 shows the method. The equivalent viscous damping coefficient h
e
 was 

used to evaluate the capacity of energy dissipation. In Figure 6, h
e
 = (SBEF + SEDF)/2π(S

AOB
 + S

COD
). 

The simulation results are shown in Table 5.

As shown in Table 5, the ductility coefficient of UHTCC column is higher than that of ordi‐
nary column. With the cycle of load, the decline of the hysteresis curve of UHTCC columns 

occurred slowly. Compared with Za1 and Zb1, the viscous damping coefficients of UZ1 and 

Figure 4. Comparisons of hysteresis curves and skeleton curves. (a) Za1, UZ1. (b) Zb1, UZ2. (c) Za1, UZ1. (d) Zb1, UZ2.

Figure 5. Determination of characteristic points damping.
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UZ2 were increased by 14.1 and 18%, respectively. It indicated that the high toughness of 

UHTCC can effectively improve the deformation and energy dissipation capacity of concrete 
columns.

4.3. Analysis of influence factor

Axial compression ratio. In the case of other factors remained constant, changed the verti‐

cal axial force, and calculated the bearing capacity of UHTCC columns under different axial 
compression ratios. The results are shown in Figure 7. In the range of axial compression ratio 

less than 0.7, the horizontal bearing capacity and ultimate displacement increased with the 

increase of the axial compression ratio.

Volume‐stirrup ratio. If the axial compression ratio remains constant then it can be seen 

than calculated bearing capacity of UHTCC columns is influenced by changing volume‐stir‐

rup ratios. It can be seen that, in the case of other factors unchanged, the horizontal bear‐

ing capacity of the specimens increased little with the increase of the volume‐stirrup ratio 
(Figure 8).

Specimen Δu Δy Δu/Δy h
e

Positive Negative Positive Negative Positive Negative

Za1 11.4 ‐11.2 4.0 ‐4.1 2.85 2.73 7.34

UZ1 20.6 ‐19.3 4.8 ‐4.7 4.29 4.11 8.37

Zb1 10.6 ‐10.2 4.1 ‐3.9 2.59 2.62 7.21

UZ2 28.3 ‐29.1 5.1 ‐5.3 5.55 5.49 8.51

Table 5. The ductility coefficient and energy dissipation of each specimen.

Figure 6. Determination of equivalent viscous coefficient.
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5. Main conclusions

The seismic behavior of UHTCC reinforced concrete column based on OpenSees finite ele‐

ment program was analyzed in this chapter, and the conclusions were as follows:

The flexibility‐based fiber model, the Concrete 02 model, and the Steel 02 material can exactly 
simulate the hysteresis characteristic and energy dissipation of columns under low cyclic 

loading, and it verified the reliability of OpenSees.

The stiffness of hysteretic curves of the test degenerated obviously, but the simulated curves 
declined relatively flat at the later stage. On the one hand, it was because the model did 
not fully take the interaction of various parameters into consideration, on the other hand, 

although the Steel 02 material considered the Bauschinger effect, the fatigue effect of steel bar 
under low cyclic loading had not been embodied, so that the decline became flat.

Figure 7. Relation curve of bearing capacity and axial compression ratio. (a) UZ1 and (b) UZ2.

Figure 8. Relation curve of bearing capacity and volume‐stirrup ratio. (a) UZ1 and (b) UZ2.
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Compared with the ordinary column, the UHTCC column had higher yield strength and 

ultimate strength, and the UHTCC can effectively improve the ductility. With the cycles 
increased, the stiffness degradation became flat. The higher viscous damping coefficient also 
indicates that its energy dissipation capacity was better than that of ordinary column.

The finite element simulation results of the lower axial compression ratio were closer to the 
test results. With the increase of the axial compression ratio, the horizontal‐bearing capacity 

increased and the specimens under the lower axial compression ratio had better deformation 
performance. Under the same conditions, the bearing capacity has no significant change with 
the increase of the volume‐stirrup ratio.
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