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Abstract

Digital image processing techniques are needed in order to recover the object informa-
tion encoded in fringe patterns generated in a determined interferometric setup. Main
fringe analysis techniques are reviewed in order to give the reader the most fundamen-
tal insights for the interpretation of interferograms. Phase shifted, open fringe, lateral
shear and other types of interferograms make use of specific procedures to correctly
retrieving the searched phase. Here, algorithms are described and tested in numerical
simulations and real data.
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1. Introduction

Interferometric techniques are widely used for measuring a wide range of physical variables

including refraction index, deformations, temperature gradients, etc. Typically, an interfer-

ometer is used to generate one or several interferometric fringe patterns that contain the

information of the physical variable that is being measured. Those images must be

interpreted in order to recover the parameters that are encoded in the fringe patterns gener-

ated by the interferometric setup. Thus, fringe analysis methods deal with the problem of a

three-dimensional reconstruction (the object information) from a two-dimensional intensity

patterns (interferograms) acquired by a CCD camera. Digital interferometry became exten-

sively used since the development of lasers and CCD devices. In those years, however, the

resulting interferograms had to be interpreted visually, and only qualitative results were

often achieved. Visual interpretation of an interferogram with only straight or circular

fringes is not difficult, but things become more complicated for a fringe pattern that

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



combines several regions with circular, straight and crossed fringes of varying density.

Rapidly, it was recognized the need of automatic methods for fringe analysis. The first great

advance arises with the development of the phase-shifting techniques. With those proce-

dures, a set of interferograms is acquired with a phase shift among them. The phase shifts are

usually introduced by a piezoelectric transducer moving the reference mirror in such way

that the phase difference between two consecutive interferograms is a constant term. With

phase-shifting techniques, it is possible to isolate the sine and cosine of the phase allowing

the calculation of the wrapped phase distribution and consequently the continuous phase

with an unwrapping algorithm. Another great success came with the method proposed by

Takeda (also referred as the Fourier method) performing a band-pass filtering in the Fourier

domain. The method of Takeda works only with interferograms that contain open fringes

(patterns that consist in nearly straight fringes). In order to generate such interferograms, the

reference beam (e.g., in a two arm interferometer) is tilted introducing a large carrier func-

tion to the phase. The Fourier transform of these interferograms is composed of three

lobules, one at the center that corresponds to the background term and two lobules located

symmetrically respect to the origin. One of this lobules and the one that is located at the

origin are filtered out. The remaining spectrum is transformed back to the spatial domain

from which the so-called wrapped phase can be calculated. A final step is to apply a phase

unwrapping technique to recover the continuous phase. Interferometric measurements and

fringe analysis techniques are a growing and fast-changing field of research. Through this

chapter, we will review the most known procedures.

2. Interferogram acquisition

The wave nature of light can be studied theoretically by a homogeneous partial differential

equation of second order, which satisfies the superposition principle:

∇Uðx, y, z, tÞ ¼
1

c2
∂Uðx, y, z, tÞ

∂t
: (1)

If two waves of the same frequency are superimposed on a point in space, they excite oscilla-

tions in the same direction:

U1ðtÞ ¼ A1cosðωtþ ϕ1Þ; (2)

and

U2ðtÞ ¼ A2cosðωtþ ϕ2Þ: (3)

In the preceding equations and the subsequent ones in this section, we will drop the spatial

dependence for displaying purposes. The amplitude of the resulting oscillation at that point is

determined by the equation:

A2 ¼ A1
2 þ A2

2 þ 2A1A2cosðδÞ, (4)

where

Optical Interferometry2



δ ¼ ϕ1−ϕ2: (5)

If the phase difference, δ, of the oscillations excited by waves remains constant with time, these

waves are coherent. In the case of noncoherent waves, δ varies continuosly, taking any values

with equal probability, so the average value of cos(δ) is zero. Therefore,

A
2 ¼ A

2
1 þ A

2
2: (6)

So, we can conclude that the intensity observed in the superposed point by noncoherent waves

equals the sum of the intensities, which create each separately. However, if the difference δ = ϕ1

− ϕ2 is constant, the cos(δ) will also have a constant value over time, but own for each point in

space, so that:

I ¼ I1 þ I2 þ 2
ffiffiffiffiffiffiffiffi

I1I2

p

cosðδÞ (7)

where I1 = A1
2 and I2 = A2

2. This superposition at a point in space results in a different sum of

the intensities of the separate components intensity [1]. This phenomenon is known as inter-

ference. The light and dark areas that observed on screen placed in the region of interference

are called interference fringes, and the fringes are intensity which changes from minimum to

maximum, which together form a pattern commonly called interference pattern or interfero-

gram, as can be seen in Figure 1.

The interference of two or more electromagnetic waves can be usually achieved in two ways:

by division of the wave front and by division of the amplitude. A mechanism used for the

division of the wave front is, for example, the Young’s experiment or double slit that is showed

in Figure 2.

A mechanism used for dividing the amplitude of the wave is, for example, the Michelson

interferometer that is shown in Figure 3.

Both mechanisms produce a pattern of light and dark intensities in the plane of interference

fringes. The image resulting from the interference is known as interferogram. When the

interferogram is captured by a recording medium, that is, a photographic film or a CCD

Figure 1. Interference pattern or interferogram showing circular fringes.
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camera, the process commonly involves some optical system, which introduces imperfections

with respect to the ideal image. Such imperfections are known as aberrations. Aberrations can

be classified as chromatic and monochromatic. Chromatic aberrations are present to illuminate

the object with white light or polychromatic light, that is, light with different wavelengths.

These aberrations are the only ones that can be predicted by the theory of the first order, which

states that an optical system consisting of lenses has different focal lengths for different

wavelengths. These variations are related to the change of refractive index with respect to

wavelength causing that both the position and the image size are different for each wave-

length. Monochromatic aberrations occur when the object is illuminated with monochromatic

Figure 2. Young’s experiment, where a double slit produces two wave fronts that interfere on a screen.

Figure 3. Michelson interferometer.
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light (i.e., light of a single wavelength), and the reflected or transmitted light is registered by a

recording medium. This type of aberration causes that the captured image of a punctual object

is no longer a point, but a blurred point. Monochromatic aberrations can be calculated roughly

in the third-order theory, using the first two terms of the expansion in power series of the sinθ

and cosθ. Another alternative to calculate more accurately is to make the exact trigonometric

trace rays through the system, where the deviation of the rays is calculated. These aberrations

were studied in detail first by Ludwig von Seidel, hence often called Seidel aberrations, and are

sphericity, coma, astigmatism, field curvature and distortion. These aberrations have a distinc-

tive fringe distribution that appears frequently in the testing of a variety of objects with an

interferometer. As the interferogram acquisition is only the capture of the interference phe-

nomenon or interference pattern in a recording medium, it is convenient to study correcting

aberrations problems. From these patterns, it can be known as the aberration coefficients using

Zernike polynomials. Zernike polynomials have been successfully used in the recognition of

patterns and image processing. Additionally, these have been used in astronomy to describe

wavefront aberrations due to atmospheric turbulence and to describe wavefront aberrations in

the human eye. This is because of the Seidel aberrations are related to the Zernike polynomials.

Due to this relationship, polynomials are used to describe wavefront aberrations in order to

calculate the aberration coefficients of a set of interferograms generated by an adaptive lens.

These coefficients enable to describe the behavior of the aberrations present in the lens.

3. Interferogram filtering

In order to enhance the interferogram images and reduce the noisy caused by external factors

at the interference phenomenon in an interferometer (interference produced by two or more

controlled wave fronts), low-pass techniques are used as preprocessing filtering step. Interfer-

ogram smoothing and denoising are the principal purposes for the application of low-pass

filters in interferometry. Filtering techniques can be grouped in spatial or frequency domains,

where the spatial filtering is directly applied to the interferogram image, pixel to pixel, while

the frequency filtering is usually performed in the Fourier domain. Band-pass and band-stop

are some filtering techniques that can be applied in the Fourier domain, and these filters are

used to attenuate some frequencies of specific noise.

3.1. Spatial filtering

The mathematical entity applied in spatial filtering is the convolution operation, also known as

windowing [2], written as follows:

f ðx, yÞ�gðx, yÞ ¼ ∑
Mþ1
2

m¼−Mþ1
2

∑
Nþ1
2

n¼−Nþ1
2

f ðx−m, y−nÞgðm, nÞ, (8)

where f, g, (x, y), (m, n) and M +N are the image to be filtered, the convolution mask, the

original image coordinates, the coordinates where the convolution is performed and the size of

the convolution mask, respectively. The kind of convolution filter is determined by the chosen
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convolution filter (averaging, Gaussian, quadratic, triangular, trigonometric, etc.). These con-

volution functions are presented in a mathematical form as follows: [3]

gðm, nÞ ¼
1

∑
M

m¼1∑
N

n¼1ωm,n

ω1,1 ⋯ ω1,N

⋮ ⋱ ⋮

ωM,1 ⋯ ωM,N

2

4

3

5, (9)

where

ωm,n ¼

Aeð−B½m
2þn2�Þ,

A−Bðm2 þ n2Þ,
A

2
þ
A

4
½ cos ðBmÞ þ cosðBnÞ�,

A,

Gaussian
quadratic

trigonometric
average

:

8

>

>

>

<

>

>

>

:

(10)

Here A, B and ω are the amplitude, the width factor and the weight of the spatial filter

function, respectively. The study about the magnitude spectrums of Eq. (10) (low-pass masks)

was reported in Ref. [2], where the Gaussian and quadratic masks delivered the best results.

Low frequencies were conserved by these filters, while the high frequencies were attenuated.

However, the filtering results may vary depending on the interferogram under process, as can

be seen in Figure 4, where the results of the filter on a ronchigram (a particular kind of

interferogram) can be seen in Figure 4a. The four kinds of masks presented in Eq. (10) were

employed to generate the filtered fringe patterns shown in Figure 4b. The parameters used by

the filters were A = 1 and B = 0.1, with mask sizes of 3 + 3, 5 + 5 and 7 + 7 pixels.

Figure 4. Spatial low-pass filters: (a) original ronchigram, (b) convolution image filtering with Gaussian, quadratic,

trigonometric and average masks, as well as 3 + 3, 5 + 5 and 7 + 7 convolution mask sizes.

Optical Interferometry6



3.2. Frequency filtering

Frequency filtering is usually performed in the Fourier domain. The Fourier transform repre-

sents the change from spatial to frequency domain. Eq. (11) and Eq. (12) represent a pair of

discrete Fourier transforms in two dimensions [2]

Fðu, vÞ ¼ Fff ðx, yÞg ¼ ∑
U

x¼1

∑
V

y¼1

f ðx, yÞe−2πi
ux
Uþ

vy
Vð Þ, (11)

and

f ðx, yÞ ¼ F
−1fFðu, vÞg ¼ ∑

U

u¼1

∑
V

v¼1

Fðu, vÞe2πi
ux
Uþ

vy
Vð Þ (12)

where (u, v), U +V, F and F −1 are the frequency coordinates, the image size in pixels, the

Fourier transform and the inverse Fourier transform operators, respectively. A significant

Figure 5. Frequency filtering: (a) Fourier transform of the original ronchigram, (b) low-pass filtering with different radius

of binary circle mask, (c) band-pass filtering with two size of binary ring mask, and (d) band-stop filtering with two size of

binary ring mask.
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attribute obtained from the Fourier transform is that it gives the frequencies content of the

image. Due to this property, frequency filter design is a very straight forward task for image

processing. Low frequencies are located into the Fourier domain around the central coordi-

nates; as frequencies gradually increase, they spread out from the center in a radial form. This

characteristic is ideal for frequency filtering (low-pass, high-pass, band-pass and band-stop)

[3]. The frequency filtering development consists in the multiplication between the Fourier

transform with some kind convolution function. The kind of convolution mask will determine

the class of filtering to be performed. The following is a summary of the most usual filtering

masks: a white centered circle for low-pass; a black centered circle for high-pass; a white

centered ring for band-pass and a black centered ring for band-stop.

In Figure 5, it is showed the masks described above along with the results of the filtering

process. Low-pass filtering masks and results are presented in Figure 5b, band-pass filters and

filtered images are seen in Figure 5c and finally, band-stop filters and filtering results can be

appreciated in Figure 5d. The kind of filter or the size of geometrical mask depends directly in

the image and in its noise content. There is no ideal filter; the kind of applied filter to process

an image is dependent of the characteristics that are pretended to enhance or eliminate.

4. Phase-shifting interferometry

Interference fringe patterns obtained by means of interferometric techniques can be evaluated

by using digital image processing techniques for the estimation of phase map distributions.

The intensity of an image in an interference fringe pattern, according with Eq. (7), can be

represented by Eq. (13)

Iðx, yÞ ¼ aðx, yÞ þ bðx, yÞcos½φðx, yÞ� (13)

where φ(x, y) is the phase difference between the reference and testing wave fronts that

interfere, a(x, y) = I1(x, y) + I2(x, y) is the mean intensity and b(x, y) = 2(I1I2)
1/2 is the intensity

modulation registered by each pixel (x, y) of a CCD camera. When analyzing a single image for

the estimation of the relative phase difference in applied metrology, the sign of the phase

cannot be assessed because of the argument in the sinusoidal function of the modulation term

in Eq. (13) results in an identical interferogram for ±φ(x, y) values. In order to overcome this

difficulty, multiple interferograms can be sequentially registered introducing a known small

phase change amount which is linear in time; this method is well known as phase shifting [4].

In practical phase shifting, a piezoelectric device PZT is included in the interferometric system

to produce the phase-shifted interferograms. In general, when a voltage signal is used to

polarize a PZT actuator, this electrical signal is converted directly into linear displacement

motion. Then, phase-displaced intensity images can be represented by

Iðx, yÞ ¼ aðx, yÞ þ bðx, yÞcos½φðx, yÞ þ θ�: (14)

Since there are three unknown terms in the representation of the interference intensity equa-

tion, then the measurement of at least three interferograms at known phase shifts is needed to

Optical Interferometry8



determine the relative phase difference. However, one of the simplest modes to determinate

the phase considers the use of four interferograms equally spaced by θ = π/2, obtaining:

I1 ¼ aþ bcosðφÞ, (15)

I2 ¼ a−bsinðφÞ, (16)

I3 ¼ a−bcosðφÞ, (17)

and

I4 ¼ aþ bsinðφÞ: (18)

Rearranging the simultaneous equation system from the above formulas, in which the spatial

dependence (x, y) was not included, the phase distribution from intensity images can be

calculated with:

tanðφÞ ¼
I4−I2
I1−I3

: (19)

The phase difference estimated from the four equations is determined in the range between −π

and π when using the arctangent function, hence producing a wrapped phase distribution. In

order to analyze an interference pattern by the phase-shifting techniques, a Twyman-Green

interferometer is considered for the testing of optical elements; the basic arrangement is shown

in Figure 6. A laser diode is used in the interferometer as illumination source, and then the

emerging laser beam is collimated by a lens to obtain a plane wave front that propagates

throughout a 50:50 beam splitter to produce two wave fronts of same amplitude. One beam is

deviated to the reference mirror M1, and the second beam, to the mirror M2 under test. Next,

the beams are reflected back toward the beam splitter, and part of the intensity overlaps on the

Figure 6. Twyman-Green interferometer for the testing of optical elements.
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observation plane, where a CCD camera sensor is placed to register an image of the resulting

interferogram that is then stored in a PC for subsequent processing.

In Figure 7, a set of four phase-shifted interferograms with phase shifts of π/2 is shown. A first

interferogram with θ = 0 is seen in Figure 7a, and subsequent interferograms with θ = π/2, θ = π

and θ = 3π/2 are observed in Figure 7b–d, respectively. The wrapped phase is showed in

Figure 7e, and the unwrapped phase related with the shape of the optical element being tested

is shown in Figure 7f. A three-dimensional representation of the unwrapped phase seen in

Figure 7f is presented in Figure 8.

In applied phase-shifting interferometry, there are concerns about the presence of errors that

may affect the accurate phase extraction from phase-shifted interferograms. A typical

systematical source of error introduced PZT arises when there is miscalibration of the phase-

shifting actuator, causing detuning in the phase extraction process. The inclusion of phase-

shifting algorithms with more than three or four interferograms can be implemented in order

to reduce this systematic error [5].

Figure 7. Four-step phase-shifted interferograms from (a) to (d), the wrapped phase (e) and the unwrapped phase (f).

Optical Interferometry10



5. The Fourier method

The method of Takeda or the Fourier method was developed in 1982 [6]. Unlike phase-shifting

methods, see Ref. [7], a single interferogram with open fringes can be analyzed. This is useful

when the object under study changes dynamically or environmental disturbances (vibrations

or air turbulence) do not allow the use of phase-shifting methods unless special, and often,

very expensive hardware is used to acquire several images simultaneously. However, in

general, the accuracy and the dynamical range of the phase that can be measured are reduced.

The Fourier method makes use of the fast Fourier transform technique to separate, in the

frequency domain, the background and phase terms of the interferogram. Employing complex

notation, an interferogram can be written as follows:

Iðx, yÞ ¼ aðx, yÞ þ
1

2
bðx, yÞei½φðx,yÞþϕðx,yÞ� þ

1

2
bðx, yÞe−i½φðx,yÞþϕðx,yÞ�, (20)

where a(x, y) and b(x, y) are the background intensity and the modulation term, respectively.

The phase term is denoted by φ(x, y) and finally, the symbol ϕ(x, y) denotes the lineal carrier

Figure 8. The unwrapped continuous phase obtained from a set of four phase-shifted fringe patterns and an unwrapping

method.
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function or tilt that is introduced usually by tilting the reference mirror in a two arm interfer-

ometer. The Fourier transform of the above expression can be written as:

FfIðx, yÞg ¼ ~Iðu, vÞ ¼ δðu, vÞ þ Eðuþ α, vþ βÞ þ E�ðu−α, v−βÞ, (21)

where (u, v) is the coordinates in the frequency domain, δ(u, v) is a delta function and E(u + α, v + β)

and E*(u-α, v-β) are complex conjugate functions that correspond to the transforms of the

second and third terms of Eq. (20), respectively. The introduction of the linear carrier function,

ϕ(x, y) = αx + βy, shifts the terms E(u, v) and E*(u, v) in opposite directions in the frequency

spectrum as can be seen noting that:

Eðu, vÞ ¼ F
1

2
bðx, yÞeiφðx,yÞ

� �

, (22)

and

Eðuþ α, vþ βÞ ¼ F
1

2
bðx, yÞeiφðx,yÞeiϕðx,yÞ

� �

, (23)

similarly

E�ðu, vÞ ¼ F
1

2
bðx, yÞe−iφðx,yÞ

� �

, (24)

and

E�ðu−α, v−βÞ ¼ F
1

2
bðx, yÞe−iφðx,yÞe−iϕðx,yÞ

� �

: (25)

Figure 9. Interferogram with open fringes (a) and its Fourier spectrum (logarithm of the module) (b).
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The separation of the terms in the Fourier spectrum due to the introduction of a linear carrier

can be observed in Figure 9. An open-fringe interferogram and its Fourier spectrum can be

seen in Figure 9a and b. It can be noted that the three terms of Eq. (21) are clearly separated.

The central peak corresponds to the delta function δ(u, v) while the adjacent lobules corre-

spond to E(u + α, v + β) and E*(u - α, v - β). The interferogram was constructed as follows:

aðx, yÞ ¼ 120e−ðx
2þy2Þ (26)

bðx, yÞ ¼ 124e−ðx
2þy2Þ, (27)

φðx, yÞ ¼ 2π
n

4e−4½ðx−0:2Þ2þðy−0:3Þ2�
−5e−6½ðxþ0:2Þ2þðyþ0:3Þ2�

o

, (28)

and

ϕðx, yÞ ¼ 2πð16xþ 20yÞ (29)

where x and y vary from 1 to −1 along the vertical and horizontal directions and the interfer-

ogram was multiplied by a circular function of radius one.

In order to recover the phase, we need to isolate one of the lateral lobules of the Fourier

domain. To this end, we employ a band-pass filter. The filtered spectrum is then transformed

back to the spatial domain to obtain If(x, y) and the wrapped phase is found with the arctan-

gent function of the ratio of the imaginary and real parts of If(x, y) as shown in Figure 10.

Figure 10a shows the band-pass filter H(u, v), the filtered spectrum can be observed in

Figure 10b and finally the wrapped phase is shown in Figure 10c.

The band-pass filter has the following form:

Hðu, vÞ ¼ e−3000
�

ðu−0:2Þ2þðv−0:2Þ2
�2

, (30)

Figure 10. Band-pass filtering process of the Fourier spectrum seen in Figure 9. Pass-band filter (a), filtered spectrum (b)

and recovered wrapped phase (c).
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where u and v vary from 1 to −1 in vertical and horizontal directions, respectively. The filtered

spectrum becomes,

~I f ðu, vÞ ¼ ~Iðu, vÞHðu, vÞ: (31)

Transforming back to spatial domain we obtain:

If ðx, yÞ ¼ F
−1
n

~I f ðu, vÞ
o

: (32)

The wrapped phase is found by:

ψwðx, yÞ ¼ atan2
n

imag½If ðx, yÞ�, real½If ðx, yÞ�
o

(33)

where the atan2() function accepts two arguments corresponding to the sine and cosine and

returns the results modulo 2π. This wrapped phase, however, is not the desired one because it

contains the introduced tilt that is not part of the object information. The wrapped desired

phase is found with:

φwðx, yÞ ¼ atan2
n

sin½ψwðx, yÞ−ϕðx, yÞ�, cos½ψwðx, yÞ−ϕðx, yÞ�
o

: (34)

The final step is to apply an unwrapping method to obtain the continuous phase related with the

object under study. This last procedures are shown in Figure 11a and b where the wrapped

phase ϕw(x, y) and the unwrapped reconstructed phase ϕr(x, y) can be appreciated, respectively.

The Fourier method is not the unique procedure for phase retrieval from one interferogram

with open fringes. Besides the Fourier approach there are other procedures in the spatial

domain including phase locked loop [8] and spatial carrier phase-shifting methods [9, 10].

Figure 11. Phase reconstruction results. Wrapped phase (a) and unwrapped continuous phase (b).
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6. Phase unwrapping

Phase unwrapping is a common step to finally find a continuous phase for several fringe

analysis techniques such as phase shifting, Fourier, the phase synchronous and others methods

that use the arctangent function of the ratio of the sine and cosine of the phase to obtain a

wrapped phase. In its simplest form, phase unwrapping consists in adding or subtracting 2π

terms to the pixel being unwrapped if a difference greater that π is found with a previous pixel

already unwrapped [11]. The phase unwrapping problem in one dimension can be observed in

Figure 12. The wrapped phase found with the arctangent function is seen in Figure 12a and the

unwrapped continuous phase is showed in Figure 12b.

The described procedure works well only for wrapped phases with no inconsistencies and low

noise levels, however, delivers wrong results when dealing with noisy wrapped phases or

those obtained from interferograms with broken or unconnected fringes. A more consistent

approach is achieved with the least squares phase unwrapping method [12]. The least square

technique integrates the discretized laplacian of the phase. To this end, the laplacian of the

phase is calculated as follows:

Li, j ¼ φx
iþ1, j − φx

i, j þ φ
y
i, jþ1 − φ

y
i, j, (35)

where

φx
i, j ¼ atan2

h

sin ðφw
i, j−φ

w
i−1, jÞ, cosðφ

w
i, j−φ

w
i−1, jÞ

i

pi, jpi−1, j, (36)

and

φ
y
i, j ¼ atan2

h

sin ðφw
i, j−φ

w
i, j−1Þ, cosðφ

w
i, j−φ

w
i, j−1Þ

i

pi, jpi, j−1: (37)

In the last equations, we have used pixel subscript notation in order to limit the extension of

the equations. The pupil function pi, j is defined as equal to one where we have valid data and

zero otherwise. One may note that if pi, j = pi+1, j = pi-1, j = pi, j+1 = pi, j-1 = 1, then

Li, j ¼ −4φi, j þ φiþ1, j þ φi−1, j þ φi, jþ1 þ φi, j−1: (38)

Solving for the phase in the above equation, we obtain that the unwrapping problem under the

least square approach consist in the resolution of a linear system of equations, as:

φi, j ¼
φiþ1, j þ φi−1, j þ φi, jþ1 þ φi, j−1 − Li, j

4
: (39)

Figure 12. Wrapped (a) and unwrapped phase (b).
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An iterative technique that solves the above system of linear equations is the overrelaxation

method in which the following equation is iterated until convergence:

φkþ1
i, j ¼ φk

i, j−
ðdφk

i, j− φ
kþ1
i−1, j− φ

k
iþ1, j− φ

kþ1
i, j−1− φ

k
i, jþ1 þ Li, jÞw

d
, (40)

where

d ¼ pi−1, j þ piþ1, j þ pi, j−1 þ pi, jþ1: (41)

In the last equations, k is the iteration number and w is a parameter of the overrelaxation

method that must be set between 1 and 2. Results of the least square technique are showed in

Figure 13. A two-dimensional wrapped phase is seen Figure 13a, the phases differences are

shown in Figure 13b and c, respectively. The laplacian of the phase is showed in Figure 13d,

Figure 13. Least square results to unwrap the phase. Wrapped phase (a), phase differences in the x (b) and y (c) directions,

laplacian of the phase (d), unwrapped phase (e) and rewrapped phase (f).
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the reconstructed phase in a two-dimensional view is observed in Figure 13e and finally, for

comparison purposes the reconstructed rewrapped phase is also showed in Figure 13f. One

may observe that the original wrapped phase and the reconstructed wrapped phase are

slightly different, this is because the least square method recovers the phase with an arbitrary

constant term, however this term is usually neglected since doesn’t carry any information of

the object being measured.

If desired, the constant term in the retrieved phase may be corrected easily in the following

form:

φc ¼ φr−atan2½ sin ðφr−φwÞ, cosðφr−φwÞ�: (42)

The wrapped phase seen in Figure 13a was constructed as follows:

φw ¼ atan2½ sin ðφÞ, cosðφÞ�, (43)

where

φi, j ¼ 2π

(

16
h

ðxiÞ
2 þ ðyjÞ

2
i2

−18
h

ðxiÞ
2 þ ðyjÞ

2
i

þ

5yjðxiÞ
2
−4xiðyjÞ

2 þ 3yjxi þ 2xi−2yj þ 0:56

)

: (44)

In the above equations xi and yj are range variables that vary from −1 to 1, the wrapped phase

was multiplied by an annular pupil function with an exterior radius of 198 pixels, while the

interior radius was 60 pixels for an image size of 400 + 400. The convergence of the

reconstructed phase seen in Figure 2e was reached after 700 iterations; the overrelaxation

parameter w was set to 1.99, which is usual for large images. The reconstructed phase with

the constant term corrected and the phase error, ε = φ = φc, can be appreciated in Figure 14a

and b. The maximum error was about 0.00005 radians.

Finally, results on a noisy wrapped phase are presented. Random noise with uniform distribu-

tion in the range of −π/4 to π/4 radians were added to the phase to obtain the wrapped phase

Figure 14. Unwrapped phase and phase error. Three-dimensional view of the reconstructed and corrected phase (a) and

phase error (b).
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seen in Figure 15a, the unwrapped phase is shown in Figure 15b, and the rewrapped

reconstructed phase is observed in Figure 15c. As can be noticed the least square method is a

very reliable technique that works with any pupil configuration and stands noisy measurements.

7. Phase recovery from lateral shearing interferograms

Lateral shearing interferometry is a very important field in experimental optical measure-

ments, in which, the test beam interferes with a laterally displaced version of itself instead of

a reference beam. The resulting fringe patterns are thus related with the object wavefront

derivative in a given direction. This is very useful when the object information of interest is

related with the derivative as in strain analysis or when the dynamical range of the object wave

front is too high that cannot be measured with direct interferometry. Let us consider a laterally

shear interferogram with a beam displacement in the x direction a quantity Δx, we obtain:

Ixðx, yÞ ¼ Bðx, yÞ þ Cðx, yÞcos½ψxðx, yÞ�, (45)

where

ψxðx, yÞ ¼ φðx, yÞ−φðx−Δx, yÞ: (46)

In Eq. (45) B(x, y) is the background intensity and C(x, y) is the modulation term. The objective

is to retrieve the undisplaced phase ϕ(x, y). To this end, we need, at least, another laterally

shear interferogram with a beam displacement in the y direction another quantity Δy,

obtaining:

Iyðx, yÞ ¼ Bðx, yÞ þ Cðx, yÞcos½ψyðx, yÞ�, (47)

where

Figure 15. Results on noisy measurements. Wrapped phase with noise (a), retrieved phase (b) and wrapped retrieved

phase (c).
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ψyðx, yÞ ¼ φðx, yÞ−φðx, y−ΔyÞ: (48)

Let us considered that we have retrieved the phase differences ψx(x, y) and ψy(x, y) by means of

a phase-shifting technique as is depicted in Figure 16 and Figure 17 for the x and y directions,

respectively. A set of four phase-shifted interferograms can be seen in Figure 16a. The wrapped

phase differences ψwx(x, y) and the unwrapped phase ψx(x, y) are observed in Figure 16e and f,

respectively. The modulation term and a sheared pupil function p
x(x, y) are shown in Figure 16g

and h, respectively. The sheared pupil px(x, y) is found after normalization from zero to one

and thresholding the normalized modulation term. A second set of phase-shifted interfero-

grams are seen Figure 17a and d. The wrapped phase differences ψwy(x, y) and the unwrapped

phase ψy(x, y) are observed in Figure 17e and f, respectively. The modulation term and a

sheared pupil function p
y(x, y) are shown in Figure 4g and h, respectively. In a similar way to

the first set of phase-shifted interferograms, the pupil py(x, y) is found after normalization from

zero to one and thresholding the normalized modulation term. The sheared pupils px(x, y) and

p
y(x, y) are useful to find the undisplaced pupil p(x, y), where the original wave front ϕ(x, y)

have valid data, since px(x, y) = p(x, y)p(x − Δx, y) and p
y(x, y) = p(x, y)p((x, y) − Δy)

Once the phase differences θx(x, y) and θy(x, y) are known, we can use the next procedure to

find the searched phase ϕ(x, y) observing that:

Figure 16. Recovery of the phase differences in the x direction. Set of four sheared interferograms acquired under a phase-

shifting technique (a) to (d), wrapped phase differences (e), unwrapped phase differences (f), modulation (g) and

recovered sheared pupil (h).
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ψx
i, jpi−a, j−ψ

x
iþa, jpiþa, j ¼ φi, jðpi−a, j−piþa, jÞ−φi−a, jpi−a, j−φiþa, jpiþa, j, (49)

and

ψ
y
i, jpi, j−b−ψ

y
i, jþbpi, jþb ¼ φi, jðpi, j−b−pi, jþbÞ−φi, j−bpi, j−b−φi, jþbpi, jþb: (50)

In the above equations we have changed the (x, y) dependence by pixel subscript notation. As

described before, pi, j is the undisplaced pupil and the displacement quantities Δx and Δy are

rounded to the nearest integer in pixel dimensions obtaining a and b, respectively. Adding

Eq. (49) and Eq. (50) and solving for the phase, we obtain:

φi, j ¼
Fþ G

H
; (51)

where

H ¼ piþa, j þ pi−a, j þ pi, jþb þ pi, j−b, (52)

F ¼ ψx
i, jpi−a, j−ψ

x
iþa, jpiþa, j þ ψ

y
i, jpi, j−b−ψ

y
i, jþbpi, jþb, (53)

and

Figure 17. Recovery of the phase differences in the y direction. Set of four sheared interferograms acquired under a

phase-shifting technique (a) to (d), wrapped phase differences (e), unwrapped phase differences (f), modulation (g) and

recovered sheared pupil (h).
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G ¼ φi−a, jpi−a, j þ φiþa, jpiþa, j þ φi, j−bpi, j−b þ φi, jþbpi, jþb: (54)

Eq. (51) represents a linear system of equations; however, it is ill posed because there are more

unknowns than equations due to the effects of the sheared pupils. Nevertheless, a regulariza-

tion term may be aggregated to overcome this problem [13–15]. The regularization term is in

the form of discrete Laplacians of the phase among adjacent pixels. The following equation

that incorporates the regularization term is iterated until convergence:

φkþ1
i, j ¼ φk

i, j−
Hφk

i, j−ðFþ GÞ þ αðLxiþ1, j−2L
x
i, j þ Lxi−1, j þ L

y
i, jþ1−2L

y
i, j þ L

y
i, j−1Þ

H
, (55)

where

Lxi, j ¼ ðφiþ1, j−2φi, j þ φi−1, jÞpiþ1, jpi−1, j, (56)

and

L
y
i, j ¼ ðφi, jþ1−2φi, j þ φi, j−1Þpi, jþ1pi, j−1: (57)

Here, α is a parameter that controls the effects of the regularization term. The phase recon-

struction is seen in Figure 18. A two-dimensional view of the retrieved phase is observed in

Figure 18a, the same phase but in a three-dimensional perspective is shown in Figure 18b

and the phase error (the actual phase minus the reconstructed one) can be appreciated in

Figure 18c. This reconstruction was achieved after 800 iterations with a parameter α = 0.1

obtaining a maximum error of about 0.0004 radians.

The actual phase was constructed as follows:

φi, j ¼ 2π
20
h

ðxiÞ
2 þ ðyiÞ

2
i2

−24
h

ðxiÞ
2 þ ðyiÞ

2
i

−6ðxiÞ
2yj

þ8xiðyjÞ
2 þ 5xiyj þ 4xi−5yj þ 0:45

)

;

8

<

:

(58)

Figure 18. Phase reconstruction from lateral sheared interferograms. Reconstructed phase (a), three-dimensional view of

the reconstructed phase (b) and the phase error (c).
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where xi and yj are range variables that vary from −1 to 1 in both vertical and horizontal

directions. The pupil function is a circular one with a radius of 170 pixels. The shear distances

were set to Δx = a = 12 pixels and Δy = b = 12 pixels.

8. Conclusions

Digital processing techniques applied to interferometric measurements allow to obtain the

phase from fringe patterns. The fringe analysis methods described here can be used to recover

the phase that is associated with the physical variable under study. Under controlled condi-

tions, phase-shifting techniques are the most used methods to retrieve the wrapped phase. If

experimental conditions suffer from vibrations, air turbulences or the object changes dynami-

cally, among other factors, then a Fourier method may be preferable to analyze an open-fringe

interferogram. Those procedures deliver a wrapped phase. Then, an unwrapping algorithm is

needed to reconstruct a continuous phase related with the object being studied. The aim of this

chapter is to present, to the reader, the fundamentals of principal fringe analysis techniques.

Numerical simulations are provided, in such way that the reader can reproduce them by its

own. The extension of the chapter is insufficient to introduce many important techniques.

However, the methods presented here were described as clearly and briefly as we could. We

hope that the reader finds this information useful in the interpretation of interferograms

obtained in the study of some object or phenomena by using an interferometric setup.
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