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Abstract

In this chapter, we investigate the influence of a node on a network. By virtue of the
classical control theory, the influence of a node is represented by the controllable sub-
space, which is further transformed into a specified graph named general-cacti. An
algorithm is developed to calculate the influence, which contains the searching of differ-
ent kinds of circles and the longest path in the directed graph. Moreover, eight real
networks are studied and simulations show that (1) a node in dense and homogeneous
networks could have more influence comparing with nodes in sparse and heteroge-
neous networks, (2) any single studied classical centrality measure including output
degree, betweenness and PageRank could not rank the influence and (3) a node with
high rank in all these three measures could have more influence.

1. Introduction

With the development of society and technology, nowadays lots of industry and manmade
systems have become larger and larger. Different from traditional systems, these systems have
a large amount of state variables and complex connection between states. Usually the vari-
ables, which capture the connection between states, are unable to measure and at the same
time these variables can be easily changed for reasons of temperature, humidity and so on.
Hence, these complex systems are difficult to analyze by using classical control theory. In the
1970s, a new control conception, structural controllability, was first introduced by Ching-Tai
Lin in 1974 [1]. In Ref. [1] the complete structural controllability of systems with single input
was studied. Shields and Pearson [2] extended the result of Lin to multiple input structural
systems. Glover and Silverman [3] simplified the work of Shields and Pearson. The conception
of structural controllability allows part of systems of the same structure, though with measure
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of zero, be uncontrollable. Mayeda and Yamada [4] introduced the conception of strong
structural controllability to eliminate this kind of uncontrollability. Reinschke et al. [5] studied
the conception in multiinput and multioutput systems. Jarczyk et al. [6] revisited the previous
results and gave out a new graph-theoretic characterization of strong structural controllability.
The solid foundation of structural controllability had been laid down from then on. For those
structural uncontrollable systems, the structural controllable subspace is studied by Hosoe [7]
and Poliak [8]. All these studies shed light on the study on the systems where the variables,
which capture the connections between states, are unmeasured or mutable. When the system
becomes larger, the methods and algorithms mentioned by the above literature studies become
inapplicable for the reason of complexity of computation. Recently, Liu et al. [9] combined the
structural controllability theory with the complex network, by using the algorithm of maxi-
mum match to calculate the minimum input nodes for complete control and methods of
complex network science to analyze the properties of the input nodes. Since then more and
more studies have been dedicated to controllability of complex network. Nepusz and Vicsek
[10] used edge dynamics to describe the controllability of complex networks. Banerjee and Roy
[11] exploited the property of driver nodes and made some supplement for the result of Liu
et al. All the existing literature studies about the controllability of complex networks are
focused on complete controllability. How about those complex networks, who are not control-
lable with the given diver nodes? Among hundreds even thousands or billions nodes, what
role does a single node actually play? How many nodes will it affect, if it is chosen as a driver
node? What properties do those nodes with powerful control ability have? All these questions
motivated us to study the problem when networks are not fully controlled.

The chapter is organized as follows. In Section 2, some useful preliminaries and the model
descriptions are introduced. In Section 3, an algorithm to search for the influence of a single
node is proposed and we apply it to several real complex networks in Section 4. Finally, Section
5 contains concluding remarks.

2. Preliminaries and model description

Consider a linear time-invariant control system

x = Ax(t) + Bu(t) (1)

where x(t)eR", u(t)eR™ and we assume that A and B are structural matrices, which means all
elements in the matrix are either fixed (zero) or unfixed (indeterminate) and the indeterminate
parameters are unrelated. Hereafter Eq. (1) is called a structural system and denoted by (A, B).
Let [AB] denote the matrix of the system and G(V,E) denote the digraph of the system. We
generate a digraph G(V,E) from (A, B), with n + m nodes, V = v1, ..., 0y, Upt1, ..., Uyym, Where
v1, ..., Uy, represent the state nodes of (A, B) and v,,+1, ..., 0,1, represent the control nodes. And
all those edges are generated as follows: for every fixed entry m;; of [AB], the graph contains an
oriented edge (v;,v;). For a structural system (A, B), his corresponding fixed system is denoted

by (A, B), where unfixed parameters in (A, B) are filled by one class of unrelated real numbers.
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Definition 1: A system (A, B) is structural controllable if all its possible fixed systems (A,B) are
controllable.

The above definition was first introduced by C-T Lin. He reduced the property of structural
property to the property of the graph of the system.

Definition 2 (stem) [1]: A stem is an elementary path originating from an input vertex (see
Figure 1).

Definition 3 (bud) [1]: A bud is an elementary cycle with an additional edge that ends, but not
begins, in a vertex of the cycle. Vertex v1 is called the origin of the bud (see Figure 2).

Definition 4 (cactus) [1]: A cactus is defined recursively as follows. A stem is cacti. Given a
stem So and buds B1,By, - -+, By, then S UBj U---UB, is a cacti if for every i(1<i<p) the
origin vertex of B; is also the origin of an edge in SpUB1U - - - UB; and is the only vertex belonging
the same time to B; and Sy U B U - - - U B;. A set of disjoint cacti is called cactus (see Figure 3).

We call the red node in Figure 3, i.e., the input vertex, driver node and the nodes connected to
driver node are defined as driven nodes(e.g., node d1 and 42 in Figure 3.

Figure 1. Stem.

Figure 2. Bud.

Figure 3. Cacti.
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Theorem 1 (Lin) [1]: The single input system pair (A, b) is structurally controllable iff the graph
of (A,b) is spanned by cacti.

Many works have been done to study the complete controllability of a system. Hosoe consid-
ered the problem for the first time, where the system is not fully controllable. He defined the
maximal dimension of controllability matrix of the structural system as the generic dimension
of controllable subspace, denoted by d. = gennericrank[A AB ... A"'B] And give out
two methods for determining the generic dimension of controllable subspace of a system. We
show the graph-theoretic method here (see Theorem 1).

Theorem 2 [2]: Let d, be the generic dimension of the controllable subspace of the struc-
tural system (A,B) and G(A, B) represents the graph of (A,B). Assume that [A B] is irre-

ducible. Then d. = maxg eg{|E(é)|} where G denotes the subgraphs of G(A,B) which is

defined by and |E(G)| represents the number of edges in graph G. Comparing with the
graphic properties of complete controllable system in Lin [1], the graph of controllable
subspace contains more circles than cactus. Those circles are not directly connected to the
cactus in the form of buds. They are connected to the cactus through at least one node. We
define the circle in G as a general-bud. Then replacing all the buds in cacti by general-
buds, we can have the definition of general-cacti (see Figure 4). In Figure 4, those circles
with dash lines are the defined general-bud.

Figure 4. General-cacti.

In our research, we consider the influence of a single node in the complex network. By the
influence of node 7, we mean the controllable subspace of the system when we only control
node i. Then we denote the structural input vector as b;, where all elements in vector b; are
fixed zero except for the ith element. Therefore, we can just study the controllable subspace of
structural system (A, b;), whose corresponding structural matrix and digraph are denoted as
[A bj] and G;. Let us define the controllability of a node i in a complex network as P;. Then we
can easily derive P; from Theorem [1], i.e.,

P; = max {|V(G;)} )
Gi€g;

where G; denotes the set of general-cacti originated from node i in digraph G;. To ignore the
influence of the network size, the influence of node i is normalized as p, = P;/N.
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3. Algorithm

To find the largest general-cacti, we classify the circle in the network into three categories. The
first one is circles with no inbound (see Figure 5a). This kind of circles cannot be arrived by the
input, so they are not in our general-cacti. The second one is circles with no outbound edges
(see Figure 5b). This kind of circles can only act as general-buds in the general-cacti without
affecting the competition of two different general-cactus. The third one is circles with both
inbound and outbound edges (see Figure 5c¢). These circles can also be part of a stem, which
means these nodes affect the dimension of general-cacti.

Figure 5. Circles of three categories.

Our instinct is exploring the longest path to act as a stem and then add all the circles as the
general-buds. Nevertheless, the third kind of circles makes it difficult to search for the largest
general-cacti. As shown in Figure 6, the blue stem in (b) is longer than the red one in (a), but
the circle can also act as a general-bud to increase the dimension of controllable subspace.
Hence, the dimension of general-cacti in (a) is larger than the one in (b).

00—~ _ o-0-¢ .0
'Ci B—»o @

la) ':l'l_:

Figure 6. (a, b) Two different cacti in the same network.

However, if the circle of the third kind is not large enough, the choice of the longest path
will not affect the influence of the origin node significantly. When the circle is large
enough, we set it as a general-bud to prevent it from participating in the stem forming.
The definition of “large” affects the accuracy of our method. However, from the real
database we find that the circles are either very small or very large. Our method is
efficient in real networks. Thus far we can give an approach to discover the influence of
a single node in the complex network.



70

Proceedings of the 2nd Czech-China Scientific Conference 2016

3.1. Procedure to discover the influence of a single node

Search the reachable nodes from node i in the original graph and delete all those
unreachable nodes.

Search for the second category circles in the current graph, count the number (N) of their
nodes, then delete all those nodes and the edges connected to them.

Search for large circles in the current graph, count the number (N) of their nodes, then
delete all those nodes and the edges connected to them.

Search for the longest path originate from the input in the current graph, count the
number (N3) of the nodes, then delete all those nodes and the edges connected to them.

Search for all the circles left in the current graph, count the number (N4) of the nodes, then
delete all those nodes and the edges connected to them.

P;i =Ni+ N+ N3+ Ny

The first, second and fourth steps of this procedure are all about search for the directed circle in
the digraph. We recursively delete the nodes without any input or without any output. Then

we can get all the nodes in circle. Using the depth-first search method, we can separate these
nodes into different circles and count for the number of nodes of each circle. For the circle,
which has small circles inside, we just count the largest circle.

The third step of this procedure is the most difficult one. To the best of our knowledge, there
exist no optimal algorithms to search for the longest path in the digraph. The existing algo-
rithms of searching for the shortest path cannot be modified to search for the longest path, for
the existing of directed circles. We modify the classical depth-first search method to search for
the longest path in a digraph with directed circles (see Algorithm 1).

Algorithm 1 Algorithm to search for the longest path in a digraph

Require: v # NULL

Ensure: Long(v)

deep < deep + 1, visited(v) < 1,
vexdeep(v) < deep,
vex < the vertex v directs to
while vex # NULL do
if visited(v) = 0 and (circle(v) # 0 or
deep > vexdeep(v)) then
Long(vex)

visited(v) < 0
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vex < the vertex v directs to
deep < deep — 1

else if visited(v) = 1 then
for all vertex 7 in the current circle do
circle(i) < 1
end for

vex < the vertex which has the same origin as
vex

else

vex < the vertex which has the same origin as
vex

end if

end while

In the algorithm, we use vector visited and circle to mark the node. Node i is visited (in a
circle) if visited(i) =1 (circle(i) = 1), otherwise unvisited (not in a circle). We use deep to
record the current depth and vector vexdeep to record the depth of every vertex. The most
significant difference between our method and the depth-first search method is that we
allow one vertex to be detected more than one time and at the same time we record the
circles in the network for searching in other directions. The time complexity of our
algorithm is O(NM), where N is the number of nodes in the network and M denotes the
number of edges.

4. Simulation results

We now apply the proposed algorithm to several kinds of real networks. It is infeasible
to search all the nodes to find out the most influential node, for the unbearable
complexity. Hence, we rank the node by their ODCR (outcome-degree centrality rank),
BCR (betweenness centrality rank) and PR (page rank), then analysis the first three
nodes of every categories. Form Table 1, we can find that nodes in dense and homo-
geneous networks, like network Caenorhabditis elegans, network Seagrass, network
s838, network s420 and network s208, can control more percentage of nodes than nodes
in sparse and heterogeneous networks. This phenomenon implies that nodes are more
influential in dense and homogeneous networks. We think it is reason why dense and
homogeneous networks need less driver nodes for full structural control which is
observed in [9].
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Type Regulatory Neuronal Food web  Electronic circuits
TRN-Yeast-1 TRN-Yeast-2 TRN-EC-2  Caenorhabditis Seagrass  S838 $420 5208
Name [12] [12] [12] elegans [13] [14] [12] [12] [12]
N 4441 688 418 297 49 512 252 122
L 12873 1079 519 2345 226 819 399 189
np 96.5% 82.1% 75.1% 16.5% 26.5% 232%  234%  23.8%
Poori  0.97% 0.29% 0.96% 58.59% 24.49% 31.64% 32.54% 34.43%
Popre 1.10% 0.44% 0.48% 58.59% 22.45% 2.73%  31.35% 24.60%
Poprs 1.15% 0.29% 0.72% 56.9% 16.33% 26.95% 3.17%  31.97%
Pecrn 1.15% 0.73% 0.96% 0.34% 24.49% 31.64% 3.17%  5.74%
Pocra 1.10% 0.44% 1.20% 58.59% 14.29% 742%  3.17%  34.43%
Ppcrs  1.04% 0.29% 0.48% 58.59% 10.20% 1.76%  3.57%  18.03%
Ppri 1.15% 0.29% 0.96% 0.34% 10.20% 31.64% 32.54% 34.43%
Prra 1.10% 0.44% 0.48% 58.59% 1429%  234% 31.35% 5.74%
Prrs 0.97% 0.44% 0.72% 58.59% 12.24% 2.73%  595%  12.30%

Table 1. The influence of the studied nodes in eight real networks.

From Figure 7, we find influence of node does not rank according to any single studied
centrality measure. In fact, in network Yeast-1, nodes ODR3, BCR1 and PR1 are the same
node and it has largest influence 1.15% among the considered nodes. In network Yeast-2,
nodes ODR2, BCR2 and PR2 are the same node and it has the largest influence 0.44%. In
network EC-2, nodes ODR1, BCR1 and PR1 are the same node and it has the largest
influence 0.96%. In network elegans, nodes ODR1, BCR2 and PR2 are the same node and
it has the largest influence 58.59%. In network Seagrass, nodes ODR1 and BCRI1 are the
same node and it has the largest influence 24.49%. In network s838, nodes ODR1, BCR1 and
PR1 are the same node and it has the largest influence 31.64%. In network s240, nodes
ODRI1 and PR1 are the same node and it has the largest influence 32.54%. In network s208,
nodes ODR1, BCR2 and PR1 are the same node and it has the largest influence 34.43%.
Hence, we can conclude that if a node has a high ODCR, BCR and PR at the same time, this
node can have lager influence.

5. Conclusions

In this chapter, we have introduced the notion of the influence of a node in complex
networks and gave out a useful algorithm to count for that property. Meanwhile we
applied this method to exploit the influence of nodes in some real networks. Results
have shown that nodes in dense and homogeneous networks were more influential
than nodes in sparse and heterogeneous networks. And in the same network node
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which has high rank in ODR, BCR and PR simultaneously could be more influential.
Next we will try to study the characteristic of the most influential node in a complex
network and the influence of a set of nodes.
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Figure 7. The influence of top three nodes according to each centrality measure in eight real networks.
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