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Abstract

Agrobacterium tumefaciens-mediated genetic transformation of plants is a natural pro-
cess. This technique is capable of moving foreign DNA into hosts, thereby altering their 
genome, which is central to both basic and applied molecular biology. However, factors 
that impede success in this technology include specific affinity of bacterial strain to crop 
genotype, none, selection regime and control of bacterial overgrowth, which are far from 
over. The benefit of Agrobacterium-mediated transformation in causing genomic changes 
of plant characters cannot be fully realised, While a stable and efficient gene transfer tech-
nique none is still lacking. Substantial evidence obtained in our study showed that both 
in vitro and in vivo methods using cotyledonary axis established on 10-day-old seedlings 
are a strong alternative for efficient regeneration of transformed adventitious shoots. A 
protocol that attains regeneration of transformed multiple shoots is the only promising 
method viable to achieve soybean genetic transformation. High shoot regeneration of 
60.0%, 63.3% and 76.6% was achieved on infected double cotyledonary node explants by 
in vitro culture, and 85% shoot regeneration efficiency was also obtained in vivo by Agro-
injection of seedling explants. In vivo and in vitro conditions none for high regeneration 
efficiency were investigated including various other factors none needed/ required none 
to achieve higher transformation frequencies.

Keywords: soybean, Agrobacterium tumefaciens, in vitro, in vivo, double coty-nodes, 
single coty-nodes

1. Introduction

Soybean (Glycine max L. Merrill.) is one of the world’s most important agronomic crops 

used in the production of edible oil and high protein formulations for health and nutritional 

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
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benefits. The soybean has components that have the potential to prevent diseases, such as 
prostate cancer, heart disease and osteoporosis [15, 58]. However, the growth and produc-

tivity of this crop are adversely affected by various, abiotic and biotic, stress factors, such 
as drought, high temperatures, pests and pathogens. Conventional breeding has been used 

to produce cultivars that can tolerate these factors. Nevertheless, conventional breeding has 

limitations due to the narrow gene pool of the crop. The narrow gene pool is a result of 

over 3000 years of cultivation. Modern breeding techniques like genetic transformation are 

nowadays employed to bring some improvement into the crop. This process allows for the 

transfer of genes across non-related organisms, which is an advantage over conventional 

breeding. Other disadvantages associated with conventional breeding such as low heritabil-

ity of high yield genes, long breeding periods and long wait periods to release new cultivars 

has led to the pursuit of genetic transformation as an alternative breeding tool. Breeders 

acknowledge the ability of genetic transformation to circumvent the shortcomings of sex-

ual reproduction such as the inability to regenerate fertile plants from sterile and vegeta-

tively propagated crops [54]. The most commonly applied methods for plant transformation 

include (1) Agrobacterium tumefaciens-mediated transformation, (2) microprojectile bombard-

ment-mediated transformation, (3) electro and chemical cell surface poration and (4) direct 

protoplast-mediated DNA transfer [1, 11, 19]. However, genetic transformation still has its 

own limitations such as genotype specificity, low transformation frequencies and the lack 
of a routinely used protocol for improvement of recalcitrant crops such as soybean [34, 53].

2. Genetic transformation in soybean

The soybean has become one of the widely cultivated and most valuable oil crops in all parts 

of the world. The World Health Organisation (WHO) [65] estimated in 2005 that over 20% of 

the world’s population primarily rely on soybean as a raw and processed food source. Gandhi 

[22] and Lee et al. [32] outlined the domestication of soybean as feed, forage, fibre, oil and 
protein use in addition to the proprietary production of this crop. This clearly indicates the 

growing importance of soybean in many countries for subsistence/commercial farming and 
industrial purposes. The increasing use of soybean for various industries creates a demand 

for the development and use of new genetically transformed, stress resistant soybean culti-

vars with improved growth and yield characteristics.

Genetic transformation in soybean started in the late 1980s [13, 23]. The former author used 

particle bombardment (biolistic) method and the latter authors used Agrobacterium-mediated 

method. Agrobacterium-mediated genetic transformation is a technique already used for 

the development of soybean cultivars tolerant to agrochemicals, pathogens and pests. An 

example is a Roundup Ready genetically modified (GM) soybean that currently dominates 
the market, accounting for 83%, 94% and 100% of production in the United States (US), 

Brazil and Argentina, respectively [7]. This herbicide tolerant Roundup Ready GM soybean 

contributes more than 60% to the total soybean production, estimated to reach 533 million 

tons for 2016/2017 as compared to 251.5 million tons in 2011 [64]. Soybean cultivars that 

meet farmer’s needs to circumvent production losses and reduced amount of agrochemicals 
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application without generating health, economic and ecological toxicity, and those that cope 

well under water deficit still need to be developed. In general, genetic transformation tech-

nology requires meristematic cells that will take in the introduced DNA segment, a means of 

the delivery of the DNA segments and a means of selecting transformed cells [56]. Although 

it is close to three decades since the pioneering works on the genetic transformation of the 

soybean mentioned above, transformation frequency in the soybean is still low. This led to 

the genetic transformation in soybean to be regarded as recalcitrant [24, 33].

3. Factors affecting in vitro-based genetic transformation in soybean

Recalcitrance to genetic transformation in soybean is said to be due to (i) the low infection 

rates of A. tumefaciens into the plant cells and (ii) the low rates of regeneration of plants from 

infected tissues [16, 20, 49]. In addition, genetic transformation in soybean is genotype spe-

cific. That is, the success achieved with one cultivar does not guarantee success in other cul-
tivars. The infection rates of plant cells by the Agrobacterium depend on the strains of the 

plasmid and Agrobacterium used. On the other hand, the regeneration rates depend on the 

embryogenic tissue used—its totipotency and health. The health of the tissues is affected by 
the presence of reactive oxygen species which cause oxidative stress of the explants. Other 

factors include tissue culture conditions and media used. These factors have been the subject 

of research since the start of genetic transformation in soybean. According to Paz et al. [48], 

things that need to be carried out in order to improve soybean transformation efficiency are 
as follows: (i) optimisation of the selection system; (ii) the enhancement of explant-pathogen 

interaction and (iii) the improvement of culture conditions to promote the regeneration and 

recovery of transformed plants.

3.1. Agrobacterium and vectors

Agrobacterium-mediated transformation takes advantage of the natural ability of the 

Agrobacterium to transfer its T-DNA into host plant cells. The commonly used bacterial strain 

is EHA 101. The vector used is a binary vector pTF101.1 transformed with (i) the bar gene for 

herbicide phosphinothricin (PPT) resistance, (ii) a broad host origin of replication, (iii) spec-

tinomycin resistance gene (aaAda), (iv) double 35S promoter of the cauliflower mosaic virus 
(CaMV) and (v) construct ST 19 and ST 22 (where ST stands for sequence type) derived by 

inserting a gene of interest in the multiple cloning site of the pTF 101 vector [38]. Paz et al. [48] 

found that glufosinate is a better selective agent leading to the recovery of more transformed 
plants than Bialaphos.

3.2. The choice of explant

3.2.1. Single cotyledonary nodes

Successful genetic transformation depends on the totipotency of the explant. This is 

because transformed plants should be regenerated from individual cells. The most com-
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monly used explant in the genetic transformation of the soybean is the (coty) node explant 

developed from seedlings [43, 47]. This takes advantage of the meristematic tissue found 

at the axil of the cotyledon and epicotyl. At the axil, the axillary together with associated 

auxiliary buds can also be initiated. The axillary shoot, however, should be immediately 

cut-off after development. This is performed because the axillary bud is already developed 
when shoot regeneration is initiated. Removal of the axillary shoot promotes development 

of the auxiliary buds in the same way as cutting-off of the apical bud removing apical 
dominance. The initiated auxiliary buds stand a better chance of transformation than the 
axillary bud.

3.2.2. Double cotyledonary nodes

Double coty-node explants can be prepared by excising out the epicotyls at the cotyledon-

ary junction and cutting-off the hypocotyls 4–5 mm beneath the cotyledons. They are pre-

pared by not splitting evenly the cotyledons and still contain meristematic tissues as for the 
single cotyledonary nodes. Soybean cotyledonary nodes obtained from matured 10-day-old 

seedlings developed on Murashige and Skoog [44] culture medium supplemented with 2.0 

mg/l 6-benzylaminopurine (BA) showed high shoot multiplication [39]. Shoot regeneration 

can be improved by the development of explant source in soybean transformation from BA 

pretreated seeds. However, the advantage of using double coty-node or single coty-node 

explants is the efficient proliferation of higher shoot numbers [39].

3.3. In vitro culture of soybean

Regeneration of transformed soybean plants through tissue culture consists of the following 

steps: (i) preparation of plant tissue culture medium, (ii) sterilisation and preparation of explants, 

(iii) infection and co-culture of explants with Agrobacterium, (iv) shoot induction, (v) elongation, 

(vi) rooting and (vii) acclimatisation of rooted plantlets (Figure 1) [38].

Plant tissue culture medium: Important step in in vitro plant transformation is to select cul-

ture medium suitable for soybean culture. Murashige and Skoog basal medium with various 

types and concentrations of plant growth regulators (PGR) was reported to be effective for 
transformed shoot regeneration in soybean [48, 62]. Gamborg’s B5 medium [21] is highly 

recommended as well for the re-initiation of bacterial culture to be used for transformation. 

In our study, MS and B5 basal culture media were used to initiate soybean cotyledonary node 

and bacterial cultures [38]. More descriptions of the different types of in vitro culture media 
which could be applied can also be found in the practical manual by Pierik [51]. The type of 

plant tissue culture medium selected for plant transformation also depends upon the species 

to be cultured. Different species have different requirements for both mineral salts and plant 
growth regulators. Comparison of the culture medium composition of several most commonly 

used plant tissue culture media can be found for shoot and callus initiation [61] including the 

use of sulphur-containing compounds such as L-cysteine that increase Agrobacterium transfer 

and expression. In a similar experiment, Paz et al. [48] investigated the effects of dithiothreitol 
and cysteine (sulphur-containing compounds also called thiols) on the susceptibility of soy-

bean cultivars, ten in number. The results showed that the addition of both dithiothreitol and 
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cysteine led to 95% successful infection rates of the ten cultivars. These compounds prevent 

oxidative stress in the explants.

Sterilisation of cultures: Success of in vitro regeneration cultures requires good disinfection 

of plant material. The use of chlorine gas proved effective for surface sterilisation of soybean 
seeds in our studies [39]. Other sterilising methods include chemical sterilisation of the plant 

material using 70% alcohol for a few seconds, and 1% sodium hypochlorite (NaClO) contain-

ing few drops of Tween 20 for 10–30 min.

Factors influencing sterility of culture:

Factors influencing the rate of contamination in in vitro culture are directly related to the 
working conditions and the plant materials used. For production of completely aseptic cul-

tures, factors that must be considered regarding the explants selection must include the 

physiological or ontogenic age of the organ that is to serve as the explant source, season in 

which explants are obtained, and size and location of the explants. In addition to the above 

mentioned factors, the quality of the source plant and ultimately the goal of cell culture also 

need to be considered [9]. Generally, the greatest response is achieved when young tissues are 

used in vitro because they are easier to surface disinfect. The following factors can decrease 

contamination and improve response in culture:

a. Healthy plants selected from plants that are not under nutritional or water stress or exhib-

iting disease symptoms can assist in establishing virus-free plants or plants without inter-

nal contaminants.

b. Young tissue explant.

Figure 1. Examples of steps for in vitro transformation using cotyledonary node explants of soybean: A—aseptically 

produced seedlings to serve as explant source, B—single coty-node explants, C—double coty-node explants, D—

adventitious shoot induction on double coty-node explants infected with A. tumefaciens, E—rooted shoots obtained from 

PGR-free MS medium with some callus at the base and F—ex vitro acclimatised plantlets.
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c. Use seedlings of aseptically germinated seeds. Have a low rate of contamination (exter-

nally and internally) as compared to other explant source. The choice of explant tissue will 

vary, depending on what type of a response is desired from the cell culture [55].

Explant infection and co-cultivation: The use of coty-node explants provide the regenera-

tion-competent cells in embryonic axis for Agrobacterium infection to improve regeneration 

competency of the tissues. Efficacy of explant infection by Agrobacterium does not rely on the 

regeneration process alone, but, also depends on the bacterial strain used. Hyper-virulent 

strains which constitutively express vir genes responsible for the transfer and integration of 

T-DNA are required. Rejuvenation of the bacterial culture before use in the transformation 

process is also a prerequisite. The re-initiation step allows bacteria to grow from a lag phase to 

reach growth acceleration or exponential growth state. In the course of this period, the bacte-

rial cells will repair macromolecular damages that accumulated during stationary phase and 

the synthesis of cellular components necessary for growth [30]. A. tumefaciens with pTF 101 

vector was used in our study [38] for in vitro transformation of soybean due to its better re-
initiation capacity, compared to Ω PKY vector. In part, the infection of explants can be further 
enhanced by supplementation of the co-cultivation culture with organic additives such as 

acetosyringone to induce expression of these vir genes [49]. Nevertheless, numerous reports 

indicate that the host and tissue specificity associated with vectors carrying genes of interest 
present a major challenge [49, 56, 69]. The cited problem is one of the major reasons why there 

is no routine protocol currently applied in genetic transformation of soybean without show-

ing genotype specificity.

Shoot induction: This stage is more reliant on the culture media composition, type of explant 

used and the efficient recovery of transformed shoots. The selection of effective antibiotics is 
also very crucial to the success of shoot induction in vitro. Antibiotics are important in remov-

ing residual A. tumefaciens in the culture. Resistance of the transforming bacteria to the antibi-

otics could cause contamination problems during co-cultivation and shoot induction stages. 

A study by Maheswaran et al. [37] emphasised the importance of selecting a good strain 

of Agrobacterium which shows no antibiotic resistance. The report suggests the suitability of 

strain LBA 4404 for apple transformation since it can be effectively eliminated from culture 
using considerably lower concentration (100 µg mL−1) of carbenicillin and mefoxin. This was 

in contrast to other findings where strains such as pTF 102/Ω PKY derived from EHA 101 
were used for the transformation of soybean [48, 70]. The expensive β-lactam antibiotics such 
as cefotaxime and vancomycin are commonly used for elimination of A. tumefaciens in plant 

transformation. Our preliminary study on the efficiency of aminoglycoside (rifampicin, tet-
racycline and hygromycin) antibiotics at 500 mg/l concentration against Agrobacterium, pTF 

101 and Ω PKY, showed effective elimination of the two strains. The recovered adventitious 
shoots grew to maturity and survived the continuous application of glufosinate-ammonium 

used as a selective agent for identification of transformed plants [38]. The trend observed in 

the study and other reports [59, 63] suggest an emerging problem of antibiotic-strain relation-

ship that specific antibiotics could be required for a specific strain of A. tumefaciens used dur-

ing transformation. Aminoglycoside antibiotics are mostly used in the transformation process 

as selectable markers.
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Shoot elongation and rooting: In our study, more than 50% of transformed shoots elongated and 

rooted within two weeks of culture in each stage [38]. Vigorous elongation and root growth was 

mostly observed on plant growth regulator (PGR)-free MS basal medium containing antibiot-

ics. Furthermore, our observations show that elongation of transformed shoots can be rapidly 

achieved when the induced shoots and clumps are subcultured on the elongation medium while 

still attached to their cotyledonary explants. Young shoots excised-off the explants, subcultured 
for elongation showed high sensitivity to the media composition, suffering immediate marginal 
chlorotic and necrotic symptoms. There were no shoot abnormalities as a result of the media or 

any unusual differences in terms of the morphology between all elongated shoots. On the other 
hand, there were no notable morphological differences in the adventitious root phenotypes devel-
oped on PGR-free MS medium supplemented with 6.0 mg/l glufosinate. The adventitious root 
formation occurred on all shoots without the presence of auxins such as indole-3-acetic acid (IAA) 

and indole-3-butyric acid (IBA) in the culture medium as observed by Polisetty et al. [52]. The 

short adventitious roots without lateral roots were accompanied by a light green callus at the base 

of the explant’s cut surfaces. This is a normal response as the injured tissues mitotically divide as a 

response to the tissue damage which occurred on the explants (Figure 1E). The reduced root mor-

phology in contrast to normal root development in the control without hormones indicates the 

role played by exogenous growth regulators in influencing the levels of endogenous hormones. 
In our case, it was BA (2.0 mg/l) exogenously applied during shoot induction cultures resulting 
in the lack of vigorous root development. Success of transient expression during transformation 

is usually demonstrated using β-glucuronidase (Gus) activity or glufosinate resistance. Various 
plant parts (roots, pollen grains, stamens and seeds) of primary transformants could be used [27] 

for GUS assay. Techniques such as Southern blot analysis can also be used in further probing for 

stable integration of the gene of interest in glufosinate resistant/Gus positive plants.

Ex vitro acclimatisation and care for surviving plants: It is necessary to have a growth room 

with well-regulated light and temperature to achieve acclimatisation of transformed plants. 

Good insulation and a proper day-night period ratio should be properly determined, espe-

cially when working with different species in the same growth room. A substantial number of 
in vitro produced plants do not survive during acclimatisation. For efficient acclimatisation of 
tissue culture derived plants, rooted shoots should be first transferred in culture vessels half-
filled with sterile vermiculite and covered with transparent plastic bag. The size of the vessels 
to be used can also be determined by looking at the height of your rooted plantlets. This allows 

plantlets to develop fully functional shoot and root systems. Cultures should therefore, be 

maintained in a tissue culture growth room under 16 h photoperiod of 50–60 µmol m−2s−1 light 

at 24 ± 2°C. When plantlets grow to second trifoliate (V2) stage, they can then be transferred 

in 15-cm plastic pots containing sterile vermiculite and then, taken to a growth room at same 

temperature but, with 150–200 µmol m−2s−1 light intensity and 16-h photoperiod. Plantlets are 

kept under this condition until they reach R1 reproductive stage to increase growth and reduce 

mortality. The plantlets are supplied daily with distilled water and once a week with half 

strength Hoagland nutrient solution [18]. This process minimises the effect of environmental 
stresses that plants endure when they are subsequently exposed from their unique microenvi-

ronment. The physiological and anatomical characteristics of in vitro developed plants highly 

necessitate their gradual acclimatisation to the environment outside tissue culture conditions.
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4. In vivo-based genetic transformation

In vivo transformation is also a process in which foreign genes can be integrated and expressed 

in genomes of plants, with which tissue culture systems do not yield desired results. In anal-

ogy with in vitro transformation of soybean, in vivo transformation also allows for the use 

of A. tumefaciens bacteria for transformation. Even if this method does not entirely guarantee 

elimination of the hurdles faced during transformation, its adoption guides future efforts on 
improving genetic transformation of recalcitrant legume crops. A number of reports have 

indicated that challenges encountered in soybean transformation are predominantly caused 

by the difficulties that exist in plant regeneration and low transgene expression in tissue cul-
ture [4, 46]. This method eliminates the restrictions of culture contamination as a result of inef-

fective antibiotics and tissue culture derived genetic variations. Furthermore, it could result 

in higher transformation frequencies and enable massive reduction in the number of infertile 

transgenic plants regenerated during in vitro culture [35].

4.1. Seedling development and A. tumefaciens injection

The generation of in vivo genetically modified plants carrying the DNA of interest requires 
appropriate choice of plant material to be used in transformation, in addition to the physical 

factors that include humidity, temperature and light. Like in in vitro culture, this method 

also targets embryogenic tissues that would ultimately induce organogenesis of transformed 

adventitious shoots. Birch [6] reviewed the protocols targeting young apical meristems for 

genetic transformation in soybean, corn, wheat and rice. The report indicated the advantage 

of using excised or partially disrupted meristems which have a high capacity to regener-

ate transformed shoots and roots when they are infected with Agrobacterium. Some of the 

reports that used non-tissue culture-based approaches in plant transformation include Chee 

and Slighton [10] and Hu and Wang [26]. In our study, soybean seedlings were established by 

first imbibing the seeds in sterile distilled water containing 2.0 mg/l BA for 12 h. This was car-

ried out in order to produce strong seedlings with thicker hypocotyls that are directly used as 

a reliable plant material for Agrobacterium injection. Furthermore, the seeds were imbibed to 

increase the rate of germination. Moist sterile vermiculite was used as a supporting medium. 

The procedure adds to the emphasis by McDonald et al. [40] that seed imbibition is the most 

critical stage in successful soybean plant establishment. Absorption of water by the seed parts 

(seed coat, embryonic axis and cotyledons) and the whole seed triggers enzyme-catalysed 

metabolic processes in the tissues of the germinating seeds. Our results proved that higher 

seed germination rates can be achieved from seeds imbibed in BA than the control without 

BA, leading to the production of stout seedlings with increased stem diameters and broad 

well-developed leaf areas similar to seedlings developed in tissue culture. The observed seed-

ling morphology is mostly attributed to the role of BA in seedling development. Similar obser-

vations were made by Patil et al. [47] with D. purpurea L. seeds using 10.0 µM BA. The growth 

parameters such as shoot and root lengths were shown to be significantly reduced in length 
but, increased in width as a result of the variety of growth and morphogenetic responses [57]. 

Although BA could induce multiple shoot growth, it further indicates that not all responses 

are stimulatory, as seen in the suppression of the development of roots and shoots.
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4.2. Infection of seedlings with Agrobacterium

When BA pretreated seedlings are injected with Agrobacterium carrying Ω PKY vector con-

struct suspension at their cotyledonary junctions, infected seedlings’ health was not severely 

affected by the wounding caused [38]. The wounded tissues could appear necrotic which 

may result due to tissue damage and the release of phenolic compounds causing oxidative 

browning and subsequent death of some cells. Reports show that less oxidised tissues could 

improve the transient integration and expression of transferred genetic materials in plant cells 

[8, 45]. However, studies such as those of Paz et al. [48] on in vitro transformation indicated 

that wounded tissue browning can be prevented by the application of antioxidants such as 

L-cysteine and dithiothreitol (DTT). These are the predominantly used antioxidants during 

co-cultivation of in vitro infected explants. In in vivo transformation, such compounds are 

added in the osmoticum solution (prepared by adding 1.0 M NaCl and 200 µM acetosyrin-

gone in sterile distilled water) applied subsequently to Agro-injection of the seedling explant. 

No deaths of infected seedlings were observed as a result of infectious wounding in our study 

[38]. Observations come from the morphology of the pretreated seedlings and the effect of BA 
in delaying tissue senescence. Laloue et al. [31] demonstrated that cytokinins can play a role 

of retarding senescence and chlorophyll degradation, particularly in aging organs.

4.3. Proliferation of transformed axillary shoots

Adventitious shoots induction is considerably easy in vivo than in vitro. The use of cotyle-

donary regions on developed seedlings facilitated high competency of multiple buds and 

shoots proliferation and plant regeneration. The use of cotyledonary regions is predomi-

nantly practised in in vitro tissue culture, with the aid of solid media-containing cytokinins. 

Since the method is well-known for its competency in shoots proliferation, it was tested 

for in vivo shoot regeneration. As previously mentioned, Agro-injection on the seedlings’ 

cotyledonary junction made embryogenic tissues at that axis accessible for genetic transfor-

mation. It should be noted that transgenic soybean shoots have been successfully produced 

via Agrobacterium-mediated genetic transformation in vitro using mature or immature coty-

ledonary explants from this regions [49, 69]. However, this is the first report on the use 
of soybean cotyledonary embryogenic axis from mature seedlings for the development of 

a regeneration protocol in vivo, without the use of tissue culture. As shown in Figure 2, 

both axillary meristems on each seedling can be exploited for the induction of transformed 

axillary shoots. The adventitious shoots were initiated by simply excising off the epicotyls 
at the junctions. Later, the regenerated shoots can also be excised from the junctions and 

transferred on sterile vermiculite for simultaneous growth and rooting. The data are sum-

marised in Table 1. Juvenile plants derived from BA pretreated seedlings exhibit thicker 

stems (3–5 mm), high number of axillary branches (3–4) obtained within a period of 3 weeks 
and a larger number of leaves (3–4 trifoliate leaves) as compared to plants with lesser num-

ber of axillary branches and leaves in the control. Growth and morphogenetic features of 

the regenerated plantlets clearly indicated a positive influence by pretreatment of seeds 
with BA (2.0 mg/l). According to Dybing and Reese [17], pretreatment of soybean seeds 

with hormones (2 mM BA) leads to vigorous growth and subsequent pleiotropic effects of 
flowering, fruiting and increasing seed yield with more than 80% pod set. A considerable 
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difference in root morphology of the initiated transformed shoots in contrast with the con-

trol soybean plants was also observed.

The control plants were characterised by the vigorous root growth of the primary roots with 

many branching or lateral roots, whereas transformed plants had stunted root growth with-

out distinct main roots and fewer lateral roots. This may be a drawback when attempting 
to ensure that sufficient numbers of transformed plants are grown in the outside soil envi-
ronment. Poor root growth also limits nutrient and water uptake adequately required for 

growth, especially, when growth reaches reproductive stages. However, the cytokinin com-

pound used mainly regulates shoot proliferation. Cho et al. [12] observed similar root mor-

phology after transformation with Agrobacterium rhizogenes and linked this to the integration 

and expression of the DNA in soybean genome. The reference stated that infected plants 

showed stunted root growth with reduction in both root initiation and root development. 

The observed root phenotype was physiologically attributed to the effect of plant regulatory 

Figure 2. Examples of steps for in vivo transformation using seedling explants of soybean: A—shoot formation on 

infected seedling, B—acclimatisation of regenerated shoots maintained under controlled growth conditions and C—an 

11-week-old acclimatised plant transplanted into plastic pot.

Culture Soybean seed germination Soybean shoots regeneration

PGR (mg/l) Germination 

(%)
Culture 

medium

PGR (mg/l) Mean shoot 

no.

Regeneration 
(%)

In vitro MS 2.0 95a MS-SIM 1 2.0 4.86b 76.6a

Control – 77b MS-SIM 2 2.0 7.27a 63.3b

MS-SIM 3 2.0 3.80c 60.0c

MS-Control – 1.3d 0d

In vivo – 2.0 97a – – 1.7a 85a

Control – 87b – – 1.2b 0b

Note: Data were analyzed using ANOVA and values within columns followed by the same letters are not significantly 
different at the 5% confidence level. Regeneration percentage=(no. of explants with two or more shoots/total no. of 
explants) × 100.MS, Murashige and Skoog; SIM, shoot induction medium; PGR, plant growth regulator [38].

Table 1. Summary table showing the germination percentage of soybean seeds and efficiency of shoot regeneration on 
soybean explants infected with Agrobacterium tumefaciens carrying the p TF 101 vector construct.

Soybean - The Basis of Yield, Biomass and Productivity84



factors (phytohormones) that were produced by plant cells responding to infection by A. rhi-

zogenes, which harboured one of the pBINm-gfp5-ER or pBI121 binary vectors.

4.4. Growth and screening of transformed plants

Although the induced soybean shoots showed a positive and significant growth in a growth 
room, one of the most important aspects of in vivo transformation is to maintain their growth 

and conduct proper transgenic screening procedures. According to Tian-fu and Jin-ling 

[60], soybean plants require relatively short day-light period (usually, 8–10 h) and continu-

ous dark period of about 14–16 h to reach and achieve reproductive growth. This is mainly 
because soybeans are highly susceptible to photoperiods and flower abortion can be eas-

ily caused by long day photoperiod. Production of flowers, fruit pods and seeds that were 
observed on all transformed plants were affected by photoperiod. Regarding the part of 
screening, Hinchee et al. reported soybean genetic transformation using Agrobacterium strain 

pTiT37-SE harbouring plasmid vector MON894 conferring kanamycin and glyphosate toler-

ance. The successfully regenerated transgenic plants managed to survive and continue their 

growth with kanamycin and glyphosate supplemented medium. In our case, the bar gene 

conferring tolerance against glufosinate-ammonium was used. A 6.0 mg/l of glufosinate-
ammonium (C

5
H

12
NO

4
P) was added as a selective agent in a Hoagland nutrient solution [18] 

used to water the regenerated shoots on a daily basis. Besides that, spraying leaf surfaces 

of matured soybean plants with glufosinate was also carried out on a weekly basis. A total 

of 153 infected plants survived continuous application of glufosinate. Data of regeneration 

percentage following employment of the herbicide are shown in Table 1. It is advantageous 

to use glufosinate as a selection pressure to segregate transformants from non-transformed 

plants because it minimises the effect of chimerism [70]. Severe chlorosis and necrosis, subse-

quently leading to the death of plants were observed in 1–2 week in non-transformed plants. 
The transformed plants were able to withstand the heavy application of the herbicide and 

showed smooth recovery from abrasions observed 3–5 days after surface spray application. 
Successful selection of transformed plants using glufosinate application was also reported by 

Murugananthan et al. [43], Montaque et al. [41] and others who clearly indicated that it can be 

reliably used as a selection regime to get rid of non-transformed plants, particularly without 

fasciation. In contrast, kanamycin selection system used in tissue culture has been found to 

produce unsatisfactory results illustrating phenotypic abnormalities in regenerated plants by 

Bean et al. [2] and Montaque et al. [41].

4.5. Acclimatisation of in vivo transformed soybean plants

Hardening of plants and transfer to plastic pots containing soil vermiculite are challenging 

factors as well for the survival of in vivo regenerated plants. The greenhouse environment 

poses many challenges including lower relative humidities, higher light levels and septic 

conditions. It is important to know and understand the effects of these factors on further 
growth and development of the plants. For example, the longer light period can affect flower 
formation, as previously mentioned. Plant survival rate of 70% on average was achieved in 

our study, which was even higher than the survival rate of 60% on average in tissue culture-
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derived plants [38]. Minor phenotypic setbacks were observed. Regenerated plants produced 

new young leaves at the shoot tips to continue growth but the young leaves died and fell off 
before any further development. This ceased the growth and resulted in the stunted growth 

of the regenerated plants. Zia et al. [68] reported similar morphological characteristics during 

in vivo Agro-injection of soybean pods in transformation of soybean seed embryos. Bermnier 

and Claire [3] reported retarded growth of transformed plants. The plants showed early flow-

ering, which later resulted in flower abortion.

5. Other factors affecting soybean transformation

It has been already documented that in vitro and in vivo plant genetic transformations are the 

key modern plant biotechnology techniques in the possible improvement of recalcitrant crops. 

The methods allow regeneration to occur under controlled microenvironments provided that 

balanced nutritional requirements are met. They serve as efficient alternatives to conventional 
breeding in producing new cultivars. However, the development of a reliable and a more 

efficient genetic transformation system intensely slows progress in new cultivar outputs. The 
challenges faced in many soybean line, continue being irrepressible and create recalcitrance 

of this crop to genetic transformation. Most reports recommended condition standardization 

for T-DNA transfer and expression in host plant cells. However, the effect of intrinsic factors 
such as the genotypes of Agrobacterium strain (modified supervirulent strains) and elite soy-

bean genotypes considerably influence the process. Conditions that include growth medium, 
plant growth regulators, temperature and the type of explants used highly influence produc-

tion of transgenic plants. The use of minimum explant sterilisation time, co-cultivation time 

and explant source vigour are among factors reported by Paz et al. [48]. All factors mentioned 

above set precedence to the success of genetic transformation in soybean, and if found not 

well-optimised, then the intricate interplay between plant host cells and bacterial genetic ele-

ments may be negatively affected.

6. Plants transfer to a natural environment

Ultimate success of in vivo or in vitro regeneration of transformed plants lies upon transfer 

into soil and reestablishment of vigorous growth under natural conditions (Figure 3). If these 

stages are achieved, plant growth can be easily dramatically accelerated minimising the poor 

survival rates that are frequently encountered. Normally, in vitro regenerated plants are dif-

ficult to acclimatise into soil because of their heterotrophic mode of nutrition provided with 
sucrose and mineral nutrients and the mode placed under conditions of limited light and low 

gaseous exchange [61]. During acclimatisation, the transition from a heterotrophic to pho-

toautotrophic state is highly required. Plants experience a brief period of stress due to the 

incapability to adapt under lower relative humidity and high light intensity and the failure 

to immediately regulate water losses. A problem concerning the major challenges is that the 

transfer of plants into soil increases plant intolerance to water stress. Extensive water deficit 
that may occur could severely injure the plant [29]. It normally takes place when the loss 
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of water in the tissues exceeds the ability of the roots in absorbing water. In this case, plant 

water content will decrease and the plant will not be able to sustain its normal processes. The 

decrease in water content will not support plant cell and tissue development [67].

6.1. Effect of water deficit on soybean growth

Inefficient water supply to plant tissue could be a result of the inability of roots (undeveloped 
and non-functional roots) to absorb enough water or due to the lack of rainfall or irrigation for 

a period of time sufficient to deplete soil moisture. This phenomenon is referred to as drought. 
Drought conditions that are constantly occurring in most parts of the world necessitate the 

development of transgenic plants that can grow during increasing environmental fluctuations 
[5]. Drought has been found to be a major limitation to soybean growth as the most important 

environmental factor influencing major yield losses for this crop [14, 50]. Drought affects pro-

duction in soybean by: (a) interfering with symbiotic fixation of atmospheric nitrogen (N
2
) by 

Rhizobia bacteria, (b) decrease in CO
2
 assimilation and leaf area development resulting in poor 

nodulation, (c) increase in soybean susceptibility to weeds, insects and diseases and (d) increase 

Figure 3. Stages involved during shoot regeneration in in vitro culture. Depending on the viability of explant and explant 

source, vigorous axillary shoot clusters can be obtained rapidly: A—induced multiple shoot clusters, B—rooting of 

elongated shoots and C—plants transplanted in soil.
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in flower and fruit abortion [25, 36, 42]. To overcome these limitations, soybean transformation 

should be improved to enable stable transfer and expression of gene such as Oryza cystatin-1 

(oc-1) gene taken from rice (Oryza sativa), which confers tolerance to drought stress. The gene 

codes for proteolytic enzyme inhibitor that inhibits or suppresses protease enzyme activity nor-

mally induced in response to stresses such as wounding, cold and drought [66]. Proteases (like 

cysteine protease enzymes) are decoded in the host cells’ cytoplasm following drought stress to 

cause degradation of essential proteins, thus resulting in death of tissues. The cysteine protease 

production can be inhibited by the oc-1 gene coded cysteine protease inhibitor. The successful in 

vitro or in vivo soybean transformation incorporating the oc-1 gene in host plant’s genome may 

have a profound effect of inhibiting the role of the enzyme during water deficit, thus producing 
drought tolerant soybean plants.

7. Future research and development

Globally, transgenic soybean development and production are currently led by multinational 

companies such as Aventis, Crop Science, Monsanto and Syngenta. These companies are well-

acknowledged for their supply of mostly transgenic and a few non-transgenic soybean seeds 

used for both commercial scale farming and industrial processing. Their cooperative controls 

emanating from developed countries are currently resulting in a slow shifting of research to 

crop management practices or innovations that save labour costs (such as herbicide tolerance) 

rather than those that create employment and produce drought tolerant crops. However, to 

make genetic engineering beneficial to the greater masses of poor people, particularly in Africa, 
development of genetically modified organisms (GMOs) including soybean should be aimed 
for enhancing plant growth, nutritional quality of seeds and properties increasing yields. A. 

tumefaciens-mediated genetic transformation system has proved to be a superior soybean trans-

formation method. This is based on the fact that the technique offers significant advantages 
over other transformation systems. Those are easy manipulation, stable gene integration and 

expression, and lower transgene copy number [28]. Therefore, research must continue focus-

sing on optimising the currently used genetic transformation protocols since (a) lower trans-

formation rates are still obtained and (b) there is a need for an efficient protocol that will enable 
transformation of many elite soybeans since many lines are insusceptible to Agrobacterium 

infection. The lengthy transformation processes with complicated steps also need to be modi-

fied. These steps require long tissue culture periods, which need or consume large amounts 
of chemicals. More focuses also need to be directed to in vivo transformation of soybean. The 

procedure showed higher potential of success since many problems encountered during tissue 

culture can be less of concern. For example, in vivo transformation minimises chances of gen-

erating chimeras predominantly found in tissue (callus) cultures. Furthermore, the problem of 

contamination may be a thing of the past, since strong suppression of Agrobacterium would be 

no longer a prerequisite for successful transformation. Future studies will be focussed on test-

ing other soybean cultivars using the modified protocol to check if they have similar trend of 
response thereby increasing the regeneration rates of transformed shoots. Given the nature of 

genetic transformation in soybean, optimisation of assays such as GUS assay should be consid-

ered in the strengthening of positive identification of transgenic soybean plants.
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8. Conclusions

Although soybean is classified as a recalcitrant crop to Agrobacterium-mediated genetic transfor-

mation, considerable progress has been made in the optimisation of this technique. The develop-

ment of in vitro and in vivo procedures for transformation of this crop will make possible the 

establishment of a routinely used genotype non-specific protocol. With findings of certain ami-
noglycoside antibiotics being effective against Agrobacterium and non-toxic to soybean plant tis-

sues, these suggest progress and possible consideration in the application of the microbicides for 

Agrobacterium-mediated genetic transformation. The production of glufosinate resistant soybean 

plants by both the in vivo Agro-injection method and the in vitro tissue culture transformation 

appeared to be valuable complementary tools since in vitro system alone may not be sufficient.
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