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Abstract

The upgrading of unconventional oil using methane, the principal component of natural 
gas, is a promising alternative method to the conventional hydrotreating process, which 
consumes naturally unavailable H

2
 at high pressures. Methanotreating is an economi-

cally attractive process with abundant and readily available raw materials to accomplish 
the upgrading of bio-oil and to attain improved oil quality. The application of methane 
as the H donor avoids the energy consumption and CO

2
 rejection during the reform-

ing of methane to produce H
2
. More product oil is also obtained through the incorpo-

ration of methane into the product oil. Ag/ZSM-5, Zn/ZSM-5 and Ag-Zn/ZSM-5 have 
been employed to upgrade bio-oil under methane environment to achieve increased oil 
yield and H/C molar ratio, suppressed total acid number and unsaturation degree of the 
product oil. Ag-Zn/ZSM-5 is used to catalyze the methanotreating of heavy oil to attain 
lower viscosity accompanied with good stability and compatibility, which are critical 
for the pipeline transportation of heavy oil to downstream refineries. Higher gasoline 
and diesel fractions, increased H/C molar ratio, lower total acid number are witnessed 
upon the upgrading in the presence of Ag-Zn/ZSM-5 under methane environment. The 
mechanism studies practiced in the literature using methods including solid-state NMR 
and FTIR have revealed at least two reaction pathways, i.e., carbenium pathway and 
alkyl pathway, to accomplish the activation of methane, which is crucial for the involve-
ment of methane in the following upgrading reaction steps. The reaction thermodynam-
ics and reaction intermediates have also been explored by computational approaches by 
researchers. These observations and achievements will encourage more researchers to 
develop more catalyst systems and attain improved catalytic performance in the uncon-
ventional oil upgrading using natural gas.

Keywords: natural gas, unconventional oil, methane activation, bio-oil, biomass, heavy oil, 
zeolite, catalytic upgrading, mechanism study, theoretical calculation
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1. Introduction

The utilization of unconventional oil is attracting attention as the energy demand is grow-

ing rapidly driven by the urbanization all over the world, while the reserve of conventional 

petroleum is decreasing. The past decade has witnessed a dramatic change brought by uncon-

ventional oil to the petroleum industry. For instance, the technology breakthrough in the 

extraction of shale oil is one of the dominating factors that drive the crude oil price to drop 

from above 100 USD per barrel in 2014 to below 30 USD per barrel in 2016. Besides shale oil, 

other unconventional oil resources such as bio-oil and heavy oil could also be the alternative 

energy source of the conventional petroleum and meet the ever surging demand of human 

society due to their huge scale of potential reserves.

Bio-oil is receiving increasing attention since it is the only renewable source of hydrocarbon 
that can be used for liquid fuel [1] and chemical production [2–6] owing to its low cost, ready 

availability, resource abundance and environment-friendliness [7]. It is often produced from 

the pyrolysis of biomass, which destructs biomass in the absence of air/oxygen generating 

liquid bio-oil, syngas and biochar [8]. However, the obtained bio-oil often faces problems 

such as hydrogen deficit, high oxygen content and the presence of contaminants including 
sulfur, chlorine and trace metals. The low H/C molar ratio is closely related to the high con-

centration of unsaturated contents in the bio-oil, resulting in the instability when exposed to 

light, oxygen or heat above 80°C, rendering stability issues while storage and transportation 

[9]. The high oxygen content in the bio-oil makes the produced bio-oil of low heating value, 

impeding its application as substituent for traditional liquid fuel to power the world. In order 
to deal with these drawbacks, various processes have been explored to remove or chemically 

modify the undesired components to obtain upgraded bio-oil [10–14], among which hydro-

deoxygenation is most widely employed [10–12] to improve the quality of bio-oil in terms of 
higher energy dense, enhanced stability and suppressed causticity. The process, however, has 

to consume expensive H
2
 at high pressures (typically 70–140 atm and even above 200 atm) [15, 

16]. The involvement of naturally unavailable H
2
, and the stricter requirements of the reaction 

units to tolerate high pressure, will eventually escalate the operating cost [15]. The upgrad-

ing of bio-oil by catalytic cracking on zeolites at atmosphere pressure without hydrogen has 

also been explored to produce aromatics [14, 17], which still suffers from the low yield and 
high coke deposition due to the low H/C molar ratio [18]. Co-feeding with some hydrogen-

rich feedstocks such as waste oil, plastics and alcohols can provide hydrogen to the reaction 

system and improve the quality of bio-oil [19–22]. These co-fed materials, however, are not 

naturally available on a large scale. Therefore, an economically attractive method with abun-

dant and readily available raw materials to accomplish the upgrading of bio-oil and to attain 
improved quality is greatly desired.

Another unconventional oil with sufficient potential availability is heavy oil, such as bitu-

men extracted from Canadian oil sand. There are an estimated 174 billion barrels of bitumen 

reserves in Canada. In Alberta alone, the bitumen production reached 2.3 million barrels per 

day in 2014. Compared with conventional petroleum, the deficiency of heavy oil is owing 
to the low H/C molar ratio, high impurity content, high viscosity, high asphaltene content 
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and high density [23]. Heavy oil was formed from conventional oil, degraded by bacteria 

upon the migration towards the surface region. Some light hydrocarbons were consumed 

during the biology reaction process. As a result, heavy oil is deficient in hydrogen and has 
high asphaltene content. For instance, the hydrogen to carbon molar ratio is often below 1.5 

versus a value close to 2.0 in conventional reservoirs [24]. The heavy oil reservoirs are rich 

in several countries such as Canada and Venezuela, while the downstream refineries are in 
other countries including the United States. Therefore, the transportation of heavy oil from 

the oil fields to refineries is critical for its further upgrading and application in industry. The 
extracted bitumen from steam-assisted gravity drainage (SAGD) processes in Canada has 

an average density of 1.0077 g/cm3, API gravity of 8.9, and a dynamic viscosity of 2 × 105 to 

2 × 106 cP at atmospheric conditions [25]. Such a high viscosity makes it challenging to trans-

port heavy oil, especially through pipelines. Dilution of heavy oil is widely practiced to meet 

pipeline specifications for transport to refineries. Solvents such as naphtha or gas conden-

sates (1:2 ratio of diluent:bitumen, known as dilbit) and synthetic crude oil (SCO) (1:1 ratio of 

SCO:bitumen, known as synbit) are used to increase the API gravity of the diluted bitumen 

to 22. Pipeline transport requires a fluid density of <0.940 g/cm3 and dynamic viscosity of 

<330 cP (at 7.5–17°C) [25, 26]. Therefore, the complete elimination or significant reduction in 
diluent usage is highly desired from a financial and operating standpoint as well as from an 
environmental perspective.

In order to reduce the viscosity, thermal cracking is widely carried out to break down the 

carbon chains into short ones. Despite the reduced viscosity due to the carbon chain breakage 

into smaller molecules, the olefin content of the product oil will inevitably be lifted. Olefins 
contained in the produced oil are oxidatively and thermally unstable and may gradually form 

polymeric deposit during storage and transportation [27]. Therefore, hydrotreating processes 

are used to remove the olefin contents and reduce the sulfur and nitrogen content of the oil. 
But similar to hydrogen oxygenation process on bio-oil, such process is faced by the cost 

brought by the consumption of naturally unavailable hydrogen as well as the high pressure 

during the operation.

In industry, more than 50% hydrogen is obtained through the reforming of methane, the 

principal component of natural gas, such as steam methane reforming of methane. The 

reforming of methane is a highly endothermic reaction and often requires high operating 
temperatures (>800°C) and pressures (1.5–3.0 MPa) to attain high equilibrium conversion 
of CH

4
 towards H

2
. The involvement of such a naturally unavailable hydrogen source will 

inevitably result in a significant cost for hydrotreating process. Another drawback of this 
process is that the carbon from methane has to be ejected as CO

2
 to recover H

2
, resulting 

in more greenhouse emission. If CH
4
 could be used as the hydrogen source directly in the 

hydrocracking processes, the operating cost could be lowered, since the cost of methane 

reforming is saved. In this scenario, rather than ejected as CO
2
, the carbon from methane will 

be incorporated into the product oil to produce more synthetic oil and attain more profit. If 
the upgrading under CH

4
 atmosphere could be achieved at a lowered pressure, the cost of 

this process would again be reduced since the cost owing to the materials and connections of 

the reaction units is decreased.
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One of the obstacles of the application of methane in oil upgrading is its inert structure. The 

energy of the C–H bond in methane is the highest among all hydrocarbons. In order to acti-

vate the C–H bond of methane for successive upgrading steps, catalysts with high activity and 

stability should be formulated. Over the past decades, these catalysts that have been inten-

sively studied under variable conditions including oxidation and non-oxidation conditions, 

shedding light on the oil upgrading using methane. Among them, MIF-type zeolite (ZSM-5)-

based catalysts exhibit outstanding methane activation capability under non-oxidation con-

dition, which is more feasible for oil upgrading compared with oxidation condition. These 

catalysts are prepared by loading active metal species on ZSM-5 framework with variable 

acidity. At a temperature range of 350–400°C and pressure range of 10–50 bar, these catalysts 

can catalyze methane to upgrade unconventional oil to achieve the olefin saturation, deoxy-

genation, desulfurization, denitrogenation and demetallization. These studies open a door for 

upgrading unconventional oil with natural gas under fairly mild operating conditions instead 

of expensive hydrogen under rather stringent ones.

2. Production technology overview

2.1. Upgrading technology of bio-oil

Bio-oil is often collected from the pyrolysis of biomass, such as canola straw [28], saw dust 

[29] and agricultural residues [6], due to the convenient apparatus set up and relatively low 

capital cost [9]. Bio-oil is produced by heating up the biomass rapidly to a high temperature, 

typically 450–550°C, for a short period of residence time in the absence of oxygen, followed by 

the liquid product collection upon condensation [8, 30]. Such a fast pyrolysis process would 

significantly augment the liquid product yield and suppress the formation of gas product 
and char [8]. As a sustainable hydrocarbon resource with abundant availability and carbon-

neutral nature, bio-oil has drawn attention to be the potential reservoir that provides fuels 
and chemical feedstocks. The obtained bio-oil is a complex mixture composed of acetic acid, 

acetaldehyde, water, furfurals and phenolics [31]. The low energy density due to the large 

amount of oxygenated functional groups and the complex of the product matrix impedes the 

application of bio-oil as fuels or chemical feedstocks directly. Therefore, lots of efforts have 
been made to improve the quality of bio-oil in terms of product yield, suitable selectivity, 
stability, compatibility with conventional fuels, reduced corrosivity and so on.

Nowadays, there are mainly three processes for bio-oil upgrading [30]. In the first one, bio-
oil is first produced then upgraded by catalytic cracking, hydrotreating, steam reforming, 
etc [32]. For instance, the liquefaction oil can undergo the conventional petroleum catalytic 
hydrotreating method to attain higher yield of hydrocarbons upon deoxygenation [33–35]. 

Some researchers also put efforts on the catalytic conversion over certain fractions of bio-
oil, which is separated from bio-oil by methods rather than distillation of oils. For example, 

the pyrolysis can be conducted at multiple stages with specific temperatures, resulting in 
several batches of bio-oil product with different compositions [32]. Upon the fractionation 

of bio-oil, each fraction can be upgraded more efficiently comparing with the upgrading of 
bio-oil. Upgrading through reactions such as ketonization of small carboxylic acids [36], aldol 
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 condensation of furfurals followed by hydrogenation [37], alkylation [31] and hydrodeoxy-

genation [38] of phenolics can be carried out with corresponding high activity catalyst sys-

tems, respectively.

The other two processes, called in-bed and in situ pyrolysis, respectively, were divided based 

on the position of the catalyst within the reactor, while the bio-oil produced by pyrolysis is 

upgraded in vapor phase at high temperatures [30]. Compared with upgrading after condensa-

tion, such vapor phase upgrading is more feasible for industrial application due to the reduced 

number of operating units. During the in-bed catalytic pyrolysis, biomass and catalyst are 

mixed together, so the pyrolysis and upgrading are carried out simultaneously. The inorganic 

components of biomass such as silica, Na, K, Mg and Ca ions might contribute to the upgrad-

ing of bio-oil [9]. In the in situ process, the biomass is first cracked to produce pyrolytic vapors, 
and then the vapors pass through catalyst beds for upgrading. Compared with in-bed process, 

in this process, the produced bio-char and spent catalyst can be easily separated. Many catalyst 

systems have been developed to upgrade bio-oil. The co-fed H
2
 can enhance the quality of 

bio-oil by removing the oxygenated function groups via H
2
O and CO

2
. Many catalyst systems 

have been developed to achieve desired quality of the bio-oil. Hydrotreating catalysts similar 
to those used in petroleum industry such as Ni, Co and Mo loaded on silica and alumina sup-

ports have been used for the upgrading of bio-oil [9, 39, 40]. Catalysts based on neutral support 

materials including Ru/C, Pd/C and Pt/C are also used to suppress the coke formation [39, 41]. 

Other support materials such as ZrO
2
, CeO

2
, zeolites such as USY [42] and MSU [43] are also 

used to upgrade bio-oil to increase the product yield and formation of hydrocarbons. Among 

the catalysts employed, ZSM-5-based catalysts have been widely employed to upgrade bio-oil 

[12, 30], which might be due to the aromatization capability of ZSM-5 [44].

The in situ pyrolysis apparatus can be modified to execute the bio-oil upgrading using meth-

ane, i.e., methanotreating, by replacing H
2
 with CH

4
, and charging the corresponding cata-

lysts. The flow diagram of a typical reactor system [29] is displayed in Figure 1. The biomass, 

such as saw dust and flex straw, is grounded and sieved into small particles, and then put into 
the reactor. The biomass particle and the catalyst bed are sandwiched between three layers of 

quartz wool in the vertically oriented reactor. The feed gas is introduced downstream to react 
with the vapor product from pyrolysis. The product is then condensed and collected.

It is reported that when Ag/ZSM-5 is charged as the catalyst and sawdust are used as the bio-

mass feedstock, the introduction of CH
4
 to the feed gas increases the oil yield from 4.07 to 4.85 

wt%. As is displayed in Table 1, the quality of the collected oil is also improved. For instance, 
the H/C molar ratio is increased from 1.29 to 1.76. The contribution due to introduction dem-

onstrates the synergistic effect among methane, biomass pyrolysis and the Ag/ZSM-5 catalyst. 
When CH

4
 is fed without biomass, however, no significant conversion is observed, implying 

that the presence of biomass is critical to trigger the upgrading process, which relies on the 

synergetic effect between biomass, methane and the catalyst. It is worth noting that when 
ZSM-5 is modified by phosphorous and cerium, the oil yield is boosted along with a high 
H/C molar ratio of 2.26. The improved oil quality might be attributed to the suppressed crack-

ing capability of the catalyst, which reveals a potential direction to optimize the catalyst and 

achieve a better catalytic performance.
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Besides modifying ZSM-5 by silver, the methane catalyzed bio-oil upgrading is also realized 

by low cost metals [45]. Among Fe, Co, Cu, Mn, Zr, Ni, Ce and Zn, Zn shows the best catalytic 

performance on bio-oil upgrading when loaded on ZSM-5, in terms of H/C molar ratio, O/C 

molar ratio and acidity of the product oils. When 5%Zn/ZSM-5 is engaged as the catalyst, 

the H/C molar ratio of the product oil is increased from 1.92 to 2.20, which is obtained under 

Trials Oilayield (%) Water formed 

(mg/g)

Oil quality

H/C molar ratio O content O/C molar ratio

Inert 5.47 97.0 1.62 5.25 0.226

Inert, Ag/ZSM-5 4.07 135.6 1.29 0.18 0.009

30% H
2

4.17 73.4 1.46 3.41 0.145

30% H
2
, Ag/ZSM-5 3.42 100.2 1.45 0.45 0.024

30% CH
4

4.68 119.0 1.38 0.22 0.009

sole 30% CH
4
, Ag/ZSM-5 4.85 128.3 1.76 0.07 0.003

30% CH
4
,Ag/P-Ce-ZSM-5 6.89 110.9 2.26 7.35 0.356

30% CH
4
, Ag/ZSM-5 0 0 — — —

Adapted with permission from Ref. [29]. Copyright 2014 American Chemical Society.
a Moisture-free liquid collections with boiling point <150°C.

Table 1. Saw dust pyrolysis performance under various environments.

Figure 1. Process flow diagram of a typical multifunctional reactor system. Adapted with permission from Ref. [29]. 

Copyright 2014 American Chemical Society.
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CH
4
 environment without catalyst, indicating the incorporation of methane molecules into 

the product oil. A relatively low total acid number (TAN) of 30.63 mg KOH/g is witnessed 

along with a low O/C atomic ratio of 0.10, compared with 61.31 mg KOH/g and 0.16 when no 

catalyst is used under CH
4
 environment. The reduced acidity is attributed to the removal of 

the carboxylic acid groups during the methanotreating. The influence of Zn loading on the 
catalytic performance is evaluated by varying the loading amount of Zn at 1, 2, 5, 10 and 20 

wt%. As is shown in Figure 2, the liquid yield increases as the Zn loading is increased to 5%, 
but start to decrease at 10 and 20%. The H/C molar ratio, on the other hand, reaches the maxi-

mum value when the Zn loading is 10%.

By analyzing the products obtained using HZSM-5 and Zn/ZSM-5 with variable metal loading 

amount, it is concluded that during the reaction ZSM-5 framework promotes the deoxygen-

ation and improves the quality of bio-oil, while the Zn species dispersed on the framework 
facilitate CH

4
 activation and allow it to be incorporated into the carbon chain of the bio-oil, 

rendering an enhanced quantity of bio-oil.

The upgrading process can also be extended to other fields. For example, the expanding 
municipal solid waste (MSW) generated during the urbanization all over the work is caus-

ing growing environmental risk and management costs. The utilization of MSW in a similar 

manner as biomass not only disposes of the waste but also supplies the hydrocarbon fuel and 

chemicals. Therefore, the conversion of MSW into bio-oil upon upgrading under methane 

environment is drawing attention [28]. When MSW is used as the feedstock, the product oil 

collected over 1%Ag-5%Zn/ZSM-5 sees an oil yield of 12.73% in the presence of methane. 

The successful application of the catalytic conversion of MSW into fuels and chemicals under 

methane might change the landscape of waste management, leading to environmental and 

economic benefit. It is also worth noting that when MSW is engaged as the feedstock, the pres-

ence of 1%Ag-5%Zn/ZSM-5 would enhance the quality of bio-oil compared with 1%Ag/ZSM-5 
and 5%Zn/ZSM-5. Transmission electron microscopy (TEM) images (Figure 3) coupled with 

energy dispersive X-ray spectroscopy (EDX) analysis collected over the 1%Ag-5%Zn/ZSM-5 

catalyst demonstrate that Ag
2
O particles with bigger sizes (about 10–20 nm) are  surrounded 

Figure 2. Influence of Zn loading amount on catalytic performance of Zn/ZSM-5. Reprinted from Ref. [45]. Copyright 

2015, with permission of Springer.
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by the smaller ZnO particles (<10 nm). The synergetic effect due to the two metal species 
should contribute to the improved catalytic performance.

2.2. Upgrading technology of heavy oil

Hydrotreating is commonly performed to upgrade heavy oil in petroleum industry while 

hydrodesulfurization, hydrodenitrogenation, hydrodeoxydation and hydrodemetallization 

take place simultaneously in the presence of catalysts and substantial hydrogen supply. The 

catalytic hydrotreating capacity in the US is as large as 17.3 million barrels per day in January, 

2015, according to the statistics released by the US Energy Information Administration. 

Olefins, generated during the breaking down of the large molecules in the previous ther-

mal cracking step, are eliminated as hydrogen is added to the unsaturated bonds of olefins 
[46]. Among the hydrotreating catalysts, catalysts based on Mo

2
S promoted with Co or Ni 

have been intensively investigated for decades due to their good catalytic activity in the 

hydrotreating processes [47–50]. For instance, the reactivity of the Co-promoted Mo
2
S cata-

lyst is believed to be closely related to the Co-Mo-S structure, where the promoter atoms are 

located on the edge of the MoS
2
 clusters [51]. However, MoS

2
 promoted hydrotreating process 

would consume a large amount of hydrogen, which is not naturally available. As is discussed 

in the previous section, if methane, the principal component of natural gas, can be employed 

as the H-donor to accomplish methanotreating of heavy oil, the upgrading process can be 

more profitable and environmental friendly.

Methanotreating of heavy oil has been explored to produce partial upgraded heavy oil, i.e., 

a product oil with reduced viscosity accompanied along with higher H/C molar ratio, sup-

pressed acidity, improved stability and compatibility, by engaging Ag-Zn/ZSM-5 as the cata-

lyst [52]. As is displayed in Table 2, when Ag-Zn/ZSM-5 is charged as the catalyst under an 

Figure 3. TEM image of 5%Zn–1%Ag/ZSM-5. Reprinted from Ref. [28]. Copyright 2016, with permission of Elsevier.
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initial CH
4
 pressure of 5 MPa, the viscosity of the product oil is remarkably reduced from 

848,080 mPa (cP) to 413.7 cP, approaching the pipeline transportation requirements [53]. 

Despite a lower viscosity is witnessed when H
2
 is employed in the reaction, the liquid product 

yield is higher when CH
4
 is used, which is assigned to the incorporation of methane mole-

cules into the product. The stability and compatibility of the collected product oil are evalu-

ated through spot test. The obtained spot test images (Figure 4) show that the oil product 

collected under CH
4
 environment with the Ag-Zn/ZSM-5 charged (Figure 4e) exhibits the best 

stability and compatibility which approach those of the product from the H
2
 run (Figure 4f) 

making it more suitable for pipeline transportation.

Besides viscosity and stability, gasoline and diesel fractions of the oil samples also get signifi-

cantly improved upon the methanotreating. Because the heavy oil will eventually be converted 

to gasoline and diesel in downstream refineries, an increased gasoline and diesel fraction in the 

Trial Atmosphere Coke yield (wt.%) Liquid yield (wt.%) Viscosity (cP at 25°C)

Bitumen — — — 848,080

– N
2

0.60 94.5 1718.3

– CH
4

0.55 96.5 1617.1

HZSM-5 CH
4

0.80 93.8 1374.4

Ag-Zn/ZSM-5 N
2

0.86 92.9 1276.0

Ag-Zn/ZSM-5 CH
4

0.75 97.8 413.7

Ag-Zn/ZSM-5 H
2

0.62 93.1 280.2

Adapted from Ref. [52] with permission from the Royal Society of Chemistry.

Table 2. Performance of bitumen upgrading under various environments at 5.0 MPa and 380 °C for 150 min.

Figure 4. Stability test of (a) heavy oil feedstock and oil products collected under (b) N
2
, (c) CH

4
, (d) CH

4
 with ZSM-5,  

(e) CH
4
 with the Ag-Zn/ZSM-5 catalyst, and (f) H

2
 with the Ag-Zn/ZSM-5 catalyst. Adapted from Ref. [52] with 

permission from the Royal Society of Chemistry.
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product oil would lessen the burden of downstream refineries and make the partial upgrading 
more profitable. The gasoline and diesel fractions of the bitumen feedstock and the product oils 
gained under variable conditions are presented in Table 3. In the bitumen feedstock, there is lit-

ter gasoline and a small fraction of diesel (11.96%). After upgrading under various conditions, 

such as thermocracking under N
2
 or CH

4
, and catalytic upgrading under N

2
 or CH

4
, the fraction 

of gasoline and diesel is increased. However, among the oils in comparison, the highest total 

gasoline and diesel fraction of 36.77% and the highest gasoline fraction of 13.38% are achieved 

upon the upgrading in the presence of methane and the catalyst Ag-Zn/ZSM-5, demonstrating 

the carbon chain breakage and rearrangement capability of the catalyst under CH
4
.

Other properties of the oil including density, total acid number (TAN), water content, aver-

aged molecular weight and asphaltene content are critical for the pipeline transportation. 

Therefore, they are also important criteria for the industry application of the partial upgrad-

ing. These parameters of the bitumen feedstock and product oils are summarized in Table 4. 

After upgrading in the presence of methane and Ag-Zn/ZSM-5, the density is lowered from 

1.0275 to 0.9668 g/cm30, corresponding to an API of 14.7. The reduced density is consistent 

with the increased gasoline and diesel fraction. These improved parameters can be attributed 
to the cracking capacity of the catalyst under CH

4
, which is further evidenced by the aver-

aged molecular weight of the product oil. The lowest molecular weight (330 g mol−1) belongs 

to the oil product obtained under CH
4
 with the Ag-Zn/ZSM-5 present. Among the product 

oil samples in comparison, the increased water content is accompanied by the reduced TAN. 

When upgrading occurs under the environment of methane with the facilitation of the cata-

lyst, TAN is dramatically scaled down from 2.59 to 0.03 mg KOH/g, which results from the 

hydrodeoxygenation reactions that consume carboxylic and hydroxyl groups during metha-

notreating. The content of asphaltenes, the major contributor to the high viscosity of bitumen 

and the most difficult component in bitumen to be upgraded, of the various oil products is 
also compiled in Table 4. The methanotreatment witnesses a profound effect on the asphal-
tene content from 22.04 to 12.32%, which is a 44.1% reduction with respect to that of bitumen 

feedstock. This phenomenon is one important factor that contributes to the viscosity reduc-

tion in the product oil.

Trial Atmosphere Gasoline (wt.%) Diesel (wt.%) Total gasoline and 

diesel (wt.%)

Bitumen – 0.19 11.96 12.15

– N
2

6.88 20.81 27.69

– CH
4

6.95 23.74 30.69

HZSM-5 CH
4

6.47 25.26 31.73

Ag-Zn/ZSM-5 N
2

6.28 26.57 32.85

Ag-Zn/ZSM-5 CH
4

13.38 23.39 36.77

Adapted from Ref. [52] with permission from the Royal Society of Chemistry.

Table 3. Gasoline and diesel fractions of the oil samples collected before and after bitumen upgrading under various 

environments at 5.0 MPa and 380°C for 150 min.
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The element composition of the product oils are listed in Table 5 for comparison. When Ag-Zn/

ZSM-5 is present with CH
4
, the highest H/C molar ratio of the product oil is obtained at 1.65, 

compared with 1.52 in bitumen feedstock. The increased H/C obtained over this reaction condi-

tion verifies the participation of methane in the reaction and implies its incorporation into the 
product oils. Besides, the H/C molar ratio is closely related to the saturation degree of the product 

oil, which plays an important role in its stability. Therefore, a high H/C molar ratio is favorable 

for the storage and transportation of the product oil. The increased H/C molar ratio is also accom-

panied with decreased nitrogen and sulfur content, indicating a spontaneous denitrogenation 

and desulfurization, which will ease the work load of oil upgrading in downstream refineries.

3. Catalyst structure and optimization

The key to upgrade unconventional oils lies on the catalyst that can effectively activate meth-

ane. The catalyst should possess the capacity to rearrange carbon chains. Several catalysts 

have been successfully employed to upgrade bio-oil and heavy oil using methane, such as 

Oil sample Liquid product properties

Density (g/cm3) TAN (mg KOH/g) Water content 

(wt.%)

Molecular weight 

(g/mol)

Asphaltene 

content (wt.%)

Bitumen 1.0275 2.59 0.159 700 22.04

N
2

0.9957 0.51 0.147 527 16.81

CH
4

0.9871 0.24 0.162 541 16.12

CH
4
+ZSM-5 0.9762 0.26 0.171 524 14.84

N
2
+ Ag-Zn/ZSM5 0.9755 0.39 0.158 458 14.43

CH
4
+ Ag-Zn/ZSM5 0.9668 0.03 0.185 330 12.32

Adapted from Ref. [52] with permission from the Royal Society of Chemistry.

Table 4. Properties of the oil samples collected before and after bitumen upgrading under various environments at 5.0 

MPa and 380°C for 150 min.

Oil sample Carbon (wt.%) Hydrogen (wt.%) H/C molar ratio Nitrogen (wt.%) Sulfur (wt.%)

Bitumen 81.09 10.29 1.52 1.85 6.48

N
2

81.96 10.44 1.53 1.74 5.58

CH
4

81.88 10.28 1.51 1.78 5.81

CH
4
+ZSM-5 81.93 10.19 1.49 1.84 5.74

N
2
+Ag-Zn/ZSM5 81.66 10.48 1.54 1.73 5.89

CH
4
+Ag-Zn/ZSM5 81.34 11.18 1.65 1.72 5.58

Adapted from Ref. [52] with permission from the Royal Society of Chemistry.

Table 5. Elemental analysis of oil samples collected before and after bitumen upgrading under various environments at 

5.0 MPa and 380°C for 150 min.
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Ag/ZSM-5, Zn/ZSM-5 and Ag-Zn/ZSM-5. Their catalytic performance, which has been dis-

cussed in the previous section, is closely associated with their unique structures. Therefore, 
the structure characterization is fundamental to get a better understanding of the reaction 
mechanisms, leading to a rational design of the catalyst formula to achieve improved catalytic 

performance.

3.1. 1%Ag/ZSM-5

1%Ag/ZSM-5 has been used to upgrade the bio-oil generated by the fast pyrolysis of 

biomass in vapor phase [29]. It is prepared by the incipient wetness impregnation of 

HZSM-5 with AgNO
3
 solution, followed by calcination at high temperatures for 3 h [29]. 

One structure parameter that has profound influence on the catalytic performance is 

the dispersion of the active metal, which can be promoted by optimizing the precur-

sor solution concentration (Figure 5a) and calcination temperature (Figure 5b). When 

the precursor concentration is 0.1 mol/L and the calcination temperature is 600°C, the  

magnitude of Ag dispersion is maximized. The Ag particles are widely dispersed 

throughout the catalyst surface with an averaged diameter of 13 nm (Figure 6a). Another 

approach to improve the catalytic performance of the catalyst is by introducing pro-

moters to the catalyst. When the support is modified by phosphorous and cerium, the 

morphology of the catalyst is changed dramatically (Figure 6b). The irregularly shaped 

zeolite support is surrounded by many needle-shaped rods agglomerated into small 

clusters, which are mainly composed of cerium oxide with small decoration of phos-

phorus oxide,  accompanied by the presence of silver species. As a result, significantly 

enhanced H/C ratio as well as oil yield is witnessed upon the structure modification 

(Table 1).

Figure 5. The Ag dispersion and H/C atomic ratio as a function of (a) AgNO
3
 concentration (calcination temperature is 

600°C) and (b) calcination temperature (AgNO
3
 precursor concentration is 0.1 M) used for Ag/ZSM-5 synthesis. Adapted 

with permission from Ref. [29]. Copyright 2014 American Chemical Society.
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3.2. 5%Zn/ZSM-5

Besides 1%Ag/ZSM-5, 5%Zn/ZSM-5 is also used to upgrade the bio-oil [45]. As is discussed 

in the previous section, the loading amount of Zn is selected to be 5wt% based on the oil 

yield and H/C molar ratio of the product oil (Figure 2). The XRD patterns of HZSM-5 and 
the catalysts are displayed in Figure 7. When Zn loading is 1, 2 and 5%, no additional peak is 

observed, indicating the Zn species is well-dispersed. When Zn loading is increased to 10%, 

the diffraction peaks due to ZnO crystalline start to appear and become noticeable when the 
loading is increased to 20%. The averaged particle sizes of ZnO are calculated to be 15.9 and 

38.4 nm, respectively. The TEM image of 5%Zn/ZSM-5 (Figure 8) shows that the ZnO particle 

size is below 10 nm. The smaller particle size and better dispersion should benefit and contrib-

ute to the outstanding performance of 5%Zn/ZSM-5.

Figure 6. TEM images of the fresh catalysts of Ag/ZSM-5 (a) and Ag/P-Ce-ZSM-5 (b). Adapted with permission from Ref. 

[29]. Copyright 2014 American Chemical Society.

Figure 7. XRD patterns of H-ZSM-5 and Zn/ZSM-5 catalysts. Adapted with permission from Ref. [29]. Copyright 2014 

American Chemical Society.
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3.3. Ag-Zn/ZSM-5

By combining Ag and Zn to modify HZSM-5, Ag-Zn/ZSM-5 has been employed to upgrade 

bio-oil and heavy oil [28, 52]. The XRD pattern of 1%Ag-5%Zn/ZSM-5 is present in Figure 9. 

At this loading amount, no additional peak besides those belonging to the HZSM-5 support is 

observed, indicating that the metal particles are well-dispersed. The averaged particle size of 

Ag and Zn oxide species are determined from the TEM coupled with EDX images (Figure 3). 

The element composition of the particles can be determined by the EDX spectra (Figure 10). 

It is demonstrated that Ag
2
O particles with bigger sizes (about 10–20 nm) are surrounded by 

the ZnO particles with smaller sizes (<10 nm).

Figure 8. TEM image of 5%Zn/ZSM-5 catalyst. Adapted with permission from Ref. [29]. Copyright 2014 American 

Chemical Society.

Figure 9. XRD patterns of the catalyst samples. Reprinted from Ref. [28]. Copyright 2016, with permission of Elsevier.
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Figure 10. TEM–EDX results of different area for 5%Zn–1%Ag/ZSM-5. Reprinted from Ref. [28]. Copyright 2016, with 

permission of Elsevier.

Figure 11. XRD patterns of ZSM-5 and Ag-Zn/ZSM-5 before and after n-butylbenzene upgrading at 3.0 MPa and 380°C 
for 150 min. Adapted from Ref. [52] with permission from the Royal Society of Chemistry.
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XRD patterns and TEM images of the 1%Ag-10%Zn/ZSM-5, which is used to catalyze the 
methanotreating of heavy oil, are also acquired to investigate the behavior of the catalyst dur-

ing the upgrading. Figure 11 shows the XRD spectra of HZSM-5 and Ag-Zn/ZSM-5 acquired 
before and after the reaction with n-butylbenzene, a model compound to represent heavy oil, 

under N
2
 and CH

4
. It is noticed that diffraction peaks of Ag species are not discernible owing 

to its low loading and high dispersion. Also, the patterns of HZSM-5 remain unchanged upon 
metal loading and reaction, indicating that the catalyst structure remains intact after the intro-

duction of metal species and the reaction. The diffraction peaks of ZnO, on the other hand, 
become smaller and wider after reaction, implying the reduction in Zn species and improved 

dispersion during the reaction.

Figure 12. TEM images of spent Ag-Zn/ZSM-5 collected after catalytic n-butylbenzene cracking under the environment 

of (a) N
2
 and (b) CH

4
. Adapted from Ref. [52] with permission from the Royal Society of Chemistry.
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The improved dispersion of ZnO is evidenced on the TEM image (Figure 12) acquired over 
Ag-Zn/SM-5 after the reaction under CH

4
, while significant agglomeration of ZnO is wit-

nessed under N
2
. The improved ZnO dispersion assisted by CH

4
 might be the reason for the 

catalytic upgrading performance under CH
4
 environment.

4. Reaction mechanism study

The mechanism study of the reaction pathway is crucial for the rational design of the catalyst 

formula to achieve improved catalytic performance. Several methods have been carried out 

to probe the reaction pathway and approach the detailed information during the reaction.

Diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy is employed to study the 
heavy oil upgrading mechanism on the surface of 1%Ag-10%Zn/ZSM-5 [52]. The FTIR spectra 

of the surface species on the catalysts at a series of stages of the reaction are collected. By com-

paring the spectra collected with and without methane, the interaction between the catalyst 

and methane are revealed. Considering the complex nature of the heavy oil matrix, styrene 

is chosen as the model compound to represent the reactive compounds in heavy oil during 

the methanotreating. The DRIFT spectra acquired from the styrene temperature-programmed 
desorption (TPD) experiment under N

2
 (blue line) and CH

4
 (red line) environment are dis-

played in Figure 13. The peaks assigned to various bonds are labelled by dots with different 
colors. The blue dot represents C–H stretching at 3015 cm−1 due to the presence of methane in 

the gas phase. The brown dot represents the peaks due to C–O bending derived from styrene 

adsorption on the surface of Ag-Zn/ZSM-5, which decay much faster when CH
4
 is present. 

This phenomenon implies that when CH
4
 is present, the adsorbed styrene surface species 

Figure 13. DRIFT spectra collected at different temperatures during styrene saturation under various gas environments 
over Ag–Zn/ZSM-5. Adapted from Ref. [52] with permission from the Royal Society of Chemistry.
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would react with CH
4
 and leave the catalyst surface. Similarly, the peaks due to the vinyl 

groups and aromatics also get smaller under CH
4 
compared with the N

2
 counterpart. And the 

reduced peak intensity is more significant at higher temperatures, i.e., 400 and 500°C. Such 
observations evidence the interaction between CH

4
 and the styrene surface species on Ag-Zn/

ZSM-5 and show that the reaction is more active at higher temperatures.

The reaction taking placing on the catalyst is also investigated by X-ray photoelectron spec-

troscopy (XPS). The spectra of the fresh and spent Ag-Zn/ZSM-5 obtained after the upgrading 

of n-butylbenzene under CH
4
 and N

2
 environment are presented in Figure 14. On Figure 14a, 

the peaks due to Ag 3d shift towards higher binding energy, indicating the reduction in the 

Ag species, which is one part of the upgrading process. The decreased amount of Ag and Zn 

species upon the reaction is also witnessed in Figure 14a and b. It could be due to the diffu-

sion of the metal species into the inner pores. Nevertheless, higher concentrations of Ag and 

Zn remain on the surface of the catalyst when CH
4
 is present, which might be correlate to the 

better performance under CH
4
 environment. The reduction in O concentration is also seen 

after the loading of metal species (Figure 14c), which might be due to the occupation of oxy-

gen sites by the metals. After the reaction, the remaining oxygen concentration is higher with 

the presence of CH
4
, which can be correlated to its better catalytic performance.

The mechanism is probed by the GC-MS analysis of the product oil obtained by the upgrad-

ing of n-butylbenzene over various conditions. The results are shown in Table 6.

Figure 14. XPS spectra of HZSM-5 and Ag-Zn/ZSM-5 before and after n-butylbenzene upgrading at 3.0 MPa and 380°C 

for 150 min under different environments at (a) Ag 3d, (b) Zn 2p, (c) O 1s, and (d) C 1s regions. Reproduced from Ref. 
[52] with permission from the Royal Society of Chemistry.
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It is clear that the portion of benzene in the product is significantly increased when Ag-Zn/
ZSM-5 is charged in the presence of CH

4
. It can be attributed to the aromatization of methane 

under the non-oxidative environment, which has been studied intensively [54–59]. There are 

at least two possible pathways, i.e.,

and

It is observed that styrene is the primary product of the thermocracking

It is also interesting to note that the ratio between isopropylbenzen and styrene, and that 

between n-propylbenzene and styrene, are 2.5 and 8.4 when the catalyst is charged under N
2
 

environment. The ratios are increased to 11.3 and 45.9 when CH
4
 is present. The higher ratios 

are due to the addition of CH
4
 into the vinyl group of styrene:

Another interesting observation is that ethylbenzene, which is absent under N
2
 environment, 

appears when CH
4
 is present. It can be because that the H

2
 formed during the CH

4 
dissociation 

is added to styrene:
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Based on these observations and interpretations, the overall reaction can be summarized to be

Compound Liquid product distribution/conversion (wt%)

N
2

CH
4

ZSM-5, N
2

ZSM-5,CH
4

Ag-Zn/ZSM-5, N
2

Ag-Zn/ZSM-5, CH
4

Benzene 0.58 0.61 29.50 28.98 37.86 45.88

Methylbenzene 30.34 31.33 1.70 1.28 2.33 2.28

Ethylbenzene 1.36 1.32 2.32 4.10 0 0.82

Styrene 19.59 19.78 0 0 0.71 0.12

Isopropylbenzene 0 0 8.94 9.79 1.74 1.35

N-propylbenzene 0 0 0 0 5.97 5.51

Pentylbenzene 3.05 2.95 1.76 4.00 3.39 2.16

Heptylbenzene 0 0 9.00 7.37 15.56 13.22

Octylbenzene 0 0 3.66 1.74 20.74 16.26

Nonylbenzene 0 0 0 2.75 3.81 2.59

Butylbenzenea 0.89 0.81 88.71 86.43 21.94 25.04

Methanea – 0 – 0 – 10.84

Adapted from Ref. [52] with permission from the Royal Society of Chemistry.
a Conversion.

Table 6. Composition of liquid products and conversions of n-butylbenzene and methane at 5.0 MPa and 380°C for 150 min.

Figure 15. The hypothetical reaction mechanism of methane activation and addition to the broken pieces formed during 

hydrocarbon cracking over Ag–Zn/ZSM-5 (M=Zn2+ or Ag+). Reproduced from Ref. [52] with permission from the Royal 
Society of Chemistry.
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The reaction mechanism is proposed as Figure 15.

The reaction mechanism of oil upgrading using methane is also approached from the per-

spective of methane activation, which is the key step involved. By simplifying the feedstock 

system, the revolution of methane can be tracked more accurately. Among the methods, 

solid-state NMR (SSNMR) has been widely used to probe the reaction intermediates [60–63]. 

For instance, Gabrienko et al. [64] has used 13C-enriched methane and ethylene as the feed-

stock to study the reaction between them. The NMR spectra acquired on upon the reaction 

Figure 16. 13C CP/MAS NMR spectra of methane and ethene adsorbed on Ag/H-ZSM-5 at room temperature and heated 

for 15 min at 673–823 K. Ethene-13C1 was heated at 298 (a), 673 (b), and 823 K (c). Methane and ethene-13C1 were heated 

at 298 (d), 673 (e), and 823 K (f). Methane-13C and ethene were heated at 298 (g), 673 (h), and 823 K (i). Methane and 

ethene were heated at 298 (j), 673 (k), and 823 K (l). Methane was heated at 298 (m), 673 (n), and 823 K (o). Spectra g–o 

were acquired under identical conditions, with 3000 scans and a repetition time of 2 s. Asterisks denote the spinning side 
bands. Adapted with permission from Ref. [64]. Copyright 2013 American Chemical Society.
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between 13CH
4
+CH

2
=CH

2
, 13CH

2
=CH

2
+CH

4
, and CH

4
+CH

2
=CH

2
 are displayed in Figure 16. 

The peak at 109 ppm is assigned to the ethane π-complex while the signal at 128 ppm is due 
to the benzene rings of simple alkyl-substituted aromatics adsorbed on zeolite catalysts. By 

comparing the spectra acquired upon 13CH
2
=CH

2
 adsorption and those obtained in the pres-

ence of CH
4
, it is clear that the introduction creates additional peaks at 623 K (Figure 16e), 

including those belonging to aromatic species. It also significantly enhances the signal inten-

sity due to benzene rings at 823 K (Figure 16f). By comparing the spectra acquired using 
13CH

4
+CH

2
=CH

2
 and CH

4
+CH

2
=CH

2 
(Figure 16i, l), it is worth noting that when 13C-enriched 

methane is present, the signal intensity due to benzene rings is increased dramatically, indi-

cating that a large fraction of benzene product molecules origin from methane. Also, it is 

noticed that when 13CH
4
 is present with ethene, the peak intensity due to aromatics is much 

stronger than that obtained when 13CH
4
 is fed without ethene. Such observation indicates 

that the conversion of methane into aromatics is significantly improved by co-fed ethene.

The authors also propose a possible reaction mechanism (Figure 17) to describe the reaction 

between methane and the catalyst. The hydrogen from methane reacts with H from the brøn-

sted acid sites with the assistance of the Ag active sites.

Similar methods have been practiced on other catalysts that demonstrate outstanding 

methane activation activity including In/ZSM-5 [65]. By elevating the temperature and 

acquire the corresponding SSNRM spectra (Figure 18), the intermediates from the evo-

lution of methane is identified. Accordingly, the reaction pathway is interpreted Figure 

18e. Methane dissociates on the In=O site on the catalyst to form H
3
C-In=O and brønsted 

OH groups. The H
3
C–In=O then reacts with the In=O site to form H

3
C-O-In=O site, which 

results in benzene, toluene and acetic acid molecules.

Figure 17. The mechanism of the H/D exchange between methane and brønsted acid sites on Ag/H-ZSM-5 zeolite. 

Adapted with permission from Ref. [64]. Copyright 2013 American Chemical Society.
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Besides SSNMR, the reaction mechanism is also probed using other methods. For instance, 

Liu et al. [66] employed a variety of characterization methods including FTIR, temperature-

programmed reduction in H
2
 (H

2
-TPR), temperature-programmed desorption of NH

3
 (NH

3
-

TPD) to study the evolution of methane on Zn/ZSM-5. The proposed reaction pathway is 

demonstrated in Figure 19. The dissociation of CH
4
 involves an intermediate of H–CH

3
–O–Zn 

four-member ring (Figure 19a). The bond between H and CH
3
 would be broken, and the 

positively charged CH
3
 group is bonded to the oxygen belonging to the zeolite framework 

(Figure 19b), followed by the aromatization steps (Figure 19c).

Figure 18. 13C CP/MAS and 13C MAS NMR spectra of surface species generated from methane-13C on InO+/H-ZSM-5 

zeolite with co-adsorbed benzene: at ambient temperature (a and b) and after heating at 523 K (c and d). Pathways of 

methane transformation on InO+/ HZSM-5 zeolite (e). Adapted with permission from Ref. [65]. Copyright 2014 American 

Chemical Society.
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In addition to the aromatization of methane, other reactions such as the reaction between 

methane and CO
2
 [67] and the one between methane and CO [68] have also been studied 

using SSNMR. The methane activation pathways in these scenarios help reveal the activation 

mechanism of methane. Two methane dissociation pathways, i.e., alkyl and carbenium path-

ways [61], have been revealed. In one scenario, upon the cleavage of C–H bond in CH
4
, the 

negatively charged CH
3
 piece is attached to the active metal, while H is bonded to the oxygen 

on the catalyst. This pathway is denoted “alkyl pathway”. In the other one, CH
3
 is bonded to 

an oxygen atom and positively charged. Therefore, it is denoted “carbenium pathway”.

5. Computational approaches

The theoretical calculation is a powerful tool to understand and interpret the reaction path-

way taking place. The obtained information will guide the rational design of the catalyst to 

achieve better performance on the oil upgrading using methane. As is demonstrated in previ-
ous sections, such feedstock and product matrix are highly complex. Therefore, the theoretical 

calculation is mainly explored over simpler systems such as the evolution of methane alone. 

Xu et al. [63] carried out the calculation using the Gaussian 09 software package. Al
2
Si

6
O

9
H

14
 

is used as the cluster model to represent the structure of ZSM-5. The negative charges of the 

cluster are balanced by the positively charged Zn2+, Zn+ and Zn–O–Zn clusters. The energy 

gaps between each intermediate are displayed in Figure 20. It is noticed that the energy of 

Figure 19. Mechanism of CH
4
 conversion to aromatic compounds over 2Zn/HZSM-5. Adapted with permission from 

Ref. [66]. Copyright 2011 American Chemical Society.
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the structure H3C-O-zeolite is the lowest. Accordingly, this structure is the most stable and 
possibly the key intermediate during the methane activation and dissociation. This observa-
tion also confirms the methane dissociation step in the mechanism proposed by Liu et al. [66] 
displayed in Figure 19.

Mo/ZSM-5 has been intensively studied for methane activation and conversion [69–71]. It has 
been determined that the active sites on the catalyst are closely related to the molybdenum 
carbide species [72]. In order to identify the anchoring sites of Mo carbide nanoparticles that 
catalyze the dehydroaromatization of methane, Gao et al. [73] compared the infrared vibra-
tional spectra for surface OH groups before and after the introduction of Mo species. The 
anchoring modes of Mo carbide nanoparticles, however, cannot be accurately determined 
through the IR spectroscopy. DFT cluster calculations and with hybrid quantum mechanical 
and molecular mechanical (QM/MM) periodic structure calculations are employed to evalu-
ate them. The structures of Mo2Cx (x = 1, 2, 3, 4, and 6) and Mo4Cx (x = 2, 4, 6, and 8) nanopar-
ticles are identified by the calculation results. It is also interesting to note that Mo carbide 
nanoparticles with a C/Mo ratio >1.5 are more stable on external Si sites according to the 
calculation results. They tend to migrate from inner pores of the zeolite to the external surface. 
Therefore, in order to minimize such migration, the researches pointed out that the C/Mo 
ratio for zeolite supported Mo carbide nanoparticles under hydrocarbon reaction conditions 
should be maintained below 1.5.

Computational calculation has also been used by many other researchers to gain a better 
understanding of the reaction thermodynamics [74, 75], reaction intermediates [76–79] and 
select the most active metal species [80]. This approach should be further developed to obtain 
more details of the reaction and guide the rational design of the catalyst.

Figure 20. Homolytic cleavage reaction pathway from DFT calculation for the activation of methane on Zn–O–Zn cluster 
in open shell to produce methoxy intermediates. Calculated energies (kcal mol−1) and selected interatomic distances (Å) 
are indicated. Adapted from Ref. [63] with permission from the Royal Society of Chemistry.
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6. Economic considerations

Natural gas, including its recently largely discovered form (shale gas), is abundant in North 

America. Currently, the utilization of natural gas is often limited to fuels and feedstock used 

in reforming to produce hydrogen. As a fuel, the application of natural gas is impeded by the 

difficulties in the liquefaction process. It is challenging to ship the natural oversea to custom-

ers in Europe and Asia. As a result, the value of natural gas is significantly underestimated 
compared with other hydrocarbon resources. According to the Annual Energy Outlook by 

the US Energy Information Administration in 2015, the price of natural gas is below $3.73 per 

million British thermal units (MBTU), while that of gasoline is above $10.77 per MBTU.

The proposed unconventional oil upgrading using methane, the principal component of 

natural gas, offers an effective approach to increase the value associated with natural gas by 
incorporating methane into the synthetic oil molecules. It not only enhances the  productivity 

of the product oil but also converts the low value added methane into high value added 

 commodities, making the process more profitable.

7. Future development

The key to achieve effective upgrading of unconventional oils using natural gas is to deliver at 
least a catalyst formula that could effectively active methane, crack and rearrange the carbon 
chains oil molecules and incorporate the cleaved methane pieces into the oil molecules under 

a relatively low pressure. To be more specific, the catalyst should be able to catalyze the meth-

ane dissociation, as well as the addition of the CH
x
 and H4−x moieties towards the unsaturated 

bonds of the oil molecules. Olefins in the product oil, which lead to instability issues, could 
also be diminished by the conversion to aromatics, which requires the aromatization capabil-
ity of the catalysts to complete this dehydroaromatization process.

It has been evidenced that the activation of methane is assisted by the presence of higher hydro-

carbons such as ethane and propylene. Therefore, the catalyst should be able to maximize such 

synergetic effect. It is also observed that upon the C–H bond cleavage, the CH
3
 species may 

be bonded to the active metal or the oxygen of the framework, depending on the nature of the 

catalyst. In order to facilitate the activation of methane, the formula of the catalyst should be 

carefully designed to lower the energy of these intermediates. The optimization of the catalyst 

might be achieved by tuning the species and concentration of the active metal, surface acidity, 

as well as the morphology of the support materials including the pore size distribution.
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