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1. Introduction 

The problem of investigation of time delay systems has been exploited over many years. 
Time delay is very often encountered in various technical systems, such as electric, 
pneumatic and hydraulic networks, chemical processes, long transmission lines, etc. The 
existence of pure time lag, regardless if it is present in the control or/and the state, may 
cause undesirable system transient response, or even instability.  
During the last three decades, the problem of stability analysis of time delay systems has 
received considerable attention and many papers dealing with this problem have appeared 
(Hale & Lunel, 1993). In the literature, various stability analysis techniques have been utilized 
to derive stability criteria for asymptotic stability of the time delay systems by many 
researchers (Yan, 2001; Su, 1994; Wu & Muzukami, 1995; Xu, 1994; Oucheriah, 1995; Kim, 2001).  
The developed stability criteria are classified often into two categories according to their 
dependence on the size of the delay: delay-dependent and delay-independent stability 
criteria (Hale, 1997; Li & de Souza, 1997; Xu et al., 2001). It has been shown that delay-
dependent stability conditions that take into account the size of delays, are generally less 
conservative than delay-independent ones which do not include any information on the size 
of delays.  
Further, the delay-dependent stability conditions can be classified into two classes: 
frequency-domain (which are suitable for systems with a small number of heterogeneous 
delays) and time-domain approaches (for systems with a many heterogeneous delays).  
In the first approach, we can include the two or several variable polynomials (Kamen 1982; 
Hertz et al. 1984; Hale et al. 1985) or the small gain theorem based approach (Chen & 
Latchman 1994).  
In the second approach, we have the comparison principle based techniques 
(Lakshmikantam & Leela 1969) for functional differential equations (Niculescu et al. 1995a; 
Goubet-Bartholomeus et al. 1997; Richard et al. 1997) and respectively the Lyapunov 
stability approach with the Krasovskii and Razumikhin based methods (Hale & Lunel 1993; 
Kolmanovskii & Nosov 1986). The stability problem is thus reduced to one of finding 
solutions to Lyapunov (Su 1994) or Riccati equations (Niculescu et al., 1994), solving linear 
matrix inequalities (LMIs) (Boyd et al. 1994; Li & de Souza, 1995; Niculescu et al., 1995b; Gu 
1997) or analyzing eigenvalue distribution of appropriate finite-dimensional matrices (Su 
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1995) or matrix pencils (Chen et al., 1994). For further remarks on the methods see also the 
guided tours proposed by (Niculescu et al., 1997a; Niculescu et al., 1997b; Kharitonov, 1998; 
Richard, 1998; Niculescu & Richard, 2002; Richard, 2003).  
It is well-known (Kolmanovskii & Richard, 1999) that the choice of an appropriate 
Lyapunov–Krasovskii functional is crucial for deriving stability conditions. The general 
form of this functional leads to a complicated system of partial differential equations 
(Malek-Zavareiand & Jamshidi, 1987). Special forms of Lyapunov–Krasovskii functionals 
lead to simpler delay-independent (Boyd et al., 1994; Verriest & Niculescu, 1998; 
Kolmanovskii & Richard, 1999) and (less conservative) delay-dependent conditions (Li & de 
Souza, 1997; Kolmanovskii et al., 1999; Kolmanovskii & Richard, 1999; Park, 1999; Lien et al., 
2000; Niculescu, 2001). Note that the latter simpler conditions are appropriate in the case of 
unknown delay, either unbounded (delay-independent conditions) or bounded by a known 
upper bound (delay-dependent conditions).  
In the delay-dependent stability case, special attention has been focused on the first delay 
interval guaranteeing the stability property, under some appropriate assumptions on the 
system free of delay. Thus, algorithms for computing optimal (or suboptimal) bounds on the 
delay size are proposed in (Chiasson, 1988; Chen et al., 1994) (frequency-based approach), in 
(Fu et al., 1997) (integral quadratic constraints interpretations), in (Li & de Souza, 1995; 
Niculescu et al., 1995b; Su, 1994) (Lyapunov-Razumikhin function approach) or in (Gu, 
1997) (discretization schemes for some Lyapunov- Krasovskii functionals). For computing 
general delay intervals, see, for instance, the frequency based approaches proposed in 
(Chen, 1995). 
In the past few years, there have been various approaches to reduce the conservatism of 
delay-dependent conditions by using new bounding for cross terms or choosing new 
Lyapunov–Krasovskii functional and model transformation. The delay-dependent stability 
criterion of (Park et al., 1998; Park, 1999) is based on a so-called Park’s inequality for 
bounding cross terms. However, major drawback in using the bounding of (Park et al., 1998) 
and (Park, 1999) is that some matrix variables should be limited to a certain structure to 
obtain controller synthesis conditions in terms of LMIs. This limitation introduces some 
conservatism. In (Moon et al., 2001) a new inequality, which is more general than the Park’s 
inequality, was introduced for bounding cross terms and controller synthesis conditions 
were presented in terms of nonlinear matrix inequalities in order to reduce the 
conservatism. It has been shown that the bounding technique in (Moon et al., 2001) is less 
conservative than earlier ones. An iterative algorithm was developed to solve the nonlinear 
matrix inequalities (Moon et al., 2001). 
Further, in order to reduce the conservatism of these stability conditions, various model 
transformations have been proposed. However, the model transformation may introduce 
additional dynamics. In (Fridman & Shaked, 2003) the sources for the conservatism of the 
delay-dependent methods under four model transformations, which transform a system 
with discrete delays into one with distributed delays are analyzed. It has been demonstrated 
that descriptor transformation, that has been proposed in (Fridman & Shaked, 2002a), leads 
to a system which is equivalent to the original one, does not depend on additional 
assumptions for stability of the transformed system and requires bounding of fewer cross-
terms. In order to reduce the conservatism, (Han, 2005a; Han, 2005b) proposed some new 
methods to avoid using model transformation and bounding technique for cross terms. 
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In (Fridman & Shaked, 2002b) both the descriptor system approach and the bounding 
technique using by (Moon et al., 2001) are utilized and the delay-dependent stability results 
are performed. The derived stability criteria have been demonstrated to be less conservative 
than existing ones in the literature.  
Delay-dependent stability conditions in terms of linear matrix inequalities (LMIs) have been 
obtained for retarded and neutral type systems. These conditions are based on four main 
model transformations of the original system and application mentioned inequalities. 
The majority of stability conditions in the literature available, of both continual and discrete 
time delay systems, are sufficient conditions. Only a small number of works provide both 
necessary and sufficient conditions, (Lee & Diant, 1981; Xu et al., 2001; Boutayeb & 
Darouach, 2001), which are in their nature mainly dependent of time delay. These 
conditions do not possess conservatism but often require more complex numerical 
computations. In our paper we represent some necessary and sufficient stability conditions. 
Less attention has been drawn to the corresponding results for discrete-time delay systems 
(Verriest & Ivanov, 1995; Kapila & Haddad, 1998; Song et al., 1999; Mahmoud, 2000; Lee & 
Kwon, 2002; Fridman & Shaked, 2005; Gao et al., 2004; Shi et al., 2000). This is mainly due to 
the fact that such systems can be transformed into augmented high dimensional systems 
(equivalent systems) without delay (Malek-Zavarei & Jamshidi, 1987; Gorecki et al., 1989). 
This augmentation of the systems is, however, inappropriate for systems with unknown 
delays or systems with time varying delays. Moreover, for systems with large known delay 
amounts, this augmentation leads to large-dimensional systems. Therefore, in these cases 
the stability analysis of discrete time delay systems can not be to reduce on stability of 
discrete systems without delay. 
In our paper we present delay-dependent stability criteria for particular classes of time 
delay systems: continuous and discrete time delay systems and continuous and discrete 
time delay large-scale systems. Thereat, these stability criteria are express in form necessary 
and sufficient conditions. 
The organization of this chapter is as follows. In section 2 we present necessary and 
sufficient conditions for delay-dependent asymptotic stability of particular class of 
continuous and discrete time delay systems. Moreover, we show that in the paper of (Lee & 
Diant, 1981) there are some mistakes in formulation of particular theorems. We correct these 
errors and extend derived results on discrete time delay systems. Further extensions of these 
results to the class of continuous and discrete large scale time delay systems are presented in 
the section 3. All theoretical results are supported by suitable chosen numerical examples. 
And section 4 discuss and summarizes contributions. 

2. Time delay systems 

Throughout this chapter we use the following notation. \  and ^ denote real (complex) 

vector space or the set of real (complex) numbers, T+ denotes the set of all non-negative 

integers, *λ  means conjugate of λ ∈^  and F∗ conjugate transpose of matrix n nF ×∈^ .  

Re(s) is the real part of s∈^ . The superscript T denotes transposition. For real matrix F  the 

notation F 0>  means that the matrix F  is positive definite. ( )i Fλ  is the eigenvalue of 

matrix  F . Spectrum of matrix F  is denoted with ( )Fσ  and spectral radius with ( )Fρ .  
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2.1 Continuous time delay systems 

For the sake of completeness, we present the following result (Lee & Diant, 1981). Considers 
class of continuous time-delay systems described by 

 ( ) ( ) ( ) ( ) ( )0 1x t A x t A x t , x t t , t 0= + − τ = − τ ≤ <� ϕ  (1) 

Theorem 2.1.1 (Lee & Diant, 1981) Let the system be described by (1). If for any given matrix 
*Q Q 0= >  there exist matrix *P P 0= > , such that  

 ( )( ) ( )( )T

0 0P A T 0 A T 0 P Q+ + + = −  (2) 

where ( )T t is continuous and differentiable matrix function which satisfies 

 ( )
( )( ) ( ) ( )0 1A T 0 T t , 0 t , T A

T t
0 , t

⎧ + ≤ ≤ τ τ =⎪
= ⎨

> τ⎪⎩
�  (3) 

then the system (1) is asymptotically stable.   
In paper (Lee & Diant, 1981) it is emphasized that the key to the success in the construction 
of a Lyapunov function corresponding to the system (1) is the existence of at least one 

solution ( )T t  of (3) with boundary condition ( ) 1T Aτ = . In other words, it is required that 

the nonlinear algebraic matrix equation 

 
( )( ) ( )0A T 0

1e T 0 A
+ τ

=  (4) 

has at least one solution for ( )T 0 . It is asserted, there, that asymptotic stability of the system 

(Theorem 2.1.1) can be determined based on the knowledge of only one or any, solution of the 
particular nonlinear matrix equation.  
We now demonstrate that Theorem 2.1.1 should be improved since it does not take into 
account all possible solutions for (4). The counterexample, based on our approach and 
supported by the Lambert function application, is given in (Stojanovic & Debeljkovic, 2006).  
Conclusion 2.1.1 (Stojanovic & Debeljkovic, 2006) If we introduce a new matrix,  

 ( )1R A T 0+�  (5) 

then condition (2) reads  

 *PR R P Q+ = −  (6) 

which presents a well-known Lyapunov’s equation for the system without time delay.  
This condition will be fulfilled if and only if R is a stable matrix i.e. if  

 ( )Re R 0iλ <  (7) 

holds. 

Let TΩ  and RΩ  denote sets of all solutions of eq. (4) per T(0) and (6) per R, respectively.  
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Conclusion 2.1.2 (Stojanovic & Debeljkovic, 2006) Eq. (4) expressed through matrix R can be 
written in a different form as follows, 

 R
0 1R A e A 0− τ− − =  (8) 

and there follows 

 ( )R
0 1det R A e A 0− τ− − =  (9) 

Substituting a matrix variable R by scalar variable s in (7), the characteristic equation of the 
system (1) is obtained as 

 ( ) ( )s
0 1f s det sI A e A 0− τ= − − =  (10) 

Let us denote 

 ( ){ }s|f s 0Σ =�  (11) 

a set of all characteristic roots of the system (1). The necessity for the correctness of desired 
results, forced us to propose new formulations of Theorem 2.1.1. 
Theorem 2.1.2 (Stojanovic & Debeljkovic, 2006) Suppose that there exist(s) the solution(s) 

( ) TT 0 ∈Ω  of (4). Then, the system (1) is asymptotically stable if and only if any of the two 

following statements holds: 

1. For any matrix *Q Q 0= >  there exists matrix *
0 0P P 0= >  such that (2) holds for all 

solutions ( ) TT 0 ∈Ω  of (4). 

2. The condition (7) holds for all solutions ( )1 RR A T 0= + ∈Ω  of (8).  

Conclusion 2.1.3 (Stojanovic & Debeljkovic, 2006) Statement Theorem 2.1.2 require that 

condition (2) is fulfilled for all solutions  ( ) TT 0 ∈Ω  of (4).  In other words, it is requested 

that condition (7) holds for all solution R of (8) (especially for maxR R= , where the matrix 

m RR ∈Ω  is maximal solvent of (8) that contains eigenvalue with a maximal real part 

∈Σ
λ ∈Σ λ =m m

s
: Re max Re s ). Therefore, from (7) follows condition ( )i mRe R 0λ < . These 

matrix condition is analogous to the following known scalar condition of asymptotic 

stability: System (1) is asymptotically stable if and only if the condition Res 0<  holds for all 

solutions s of (10) (especially for ms = λ ).  

On the basis of Conclusion 2.1.3, it is possible to reformulate Theorem 2.1.2 in the following 
way.  
Theorem 2.1.3 (Stojanovic & Debeljkovic, 2006) Suppose that there exists maximal solvent 

mR  of (8). Then, the system (1) is asymptotically stable if and only if any of the two 

following equivalent statements holds: 

1. For any matrix *Q Q 0= >  there exists matrix *
0 0P P 0= >  such that (6) holds for 

the solution mR R=  of (8). 

2. ( )i mRe R 0λ < .  
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2.2 Discrete time delay systems 

2.2.1 Introduction 

Basic inspiration for our investigation in this section is based on paper (Lee & Diant, 1981), 
however, the stability of discrete time delay systems is considered herein.  
We propose necessary and sufficient conditions for delay dependent stability of discrete 
linear time delay system, which as distinguished from the criterion based on eigenvalues of 
the matrix of equivalent system (Gantmacher, 1960), use matrices of considerably lower 
dimension. The time-dependent criteria are derived by Lyapunov’s direct method and are 
exclusively based on the maximal and dominant solvents of particular matrix polynomial 
equation. Obtained stability conditions do not possess conservatism but require complex 
numerical computations. However, if the dominant solvent can be computed by Traub’s or 
Bernoulli’s algorithm, it has been demonstrated that smaller number of computations are to 
be expected compared with a traditional stability procedure based on eigenvalues of matrix 
Aeq  of equivalent (augmented) system (see (14)). 

2.2.2. Preliminaries  

A linear, discrete time-delay system can be represented by the difference equation 

  ( ) ( ) ( )0 1x k 1 A x k A x k h+ = + −  (12) 

with an associated function of initial state 

  ( ) ( ) { }x ψ , h, h 1, ... , 0θ = θ θ∈ − − +  (13) 

The equation (12) is referred to as homogenous or the unforced state equation.  

Vector ( ) nx k ∈\  is a state vector and n n
0 1A , A ×∈\  are constant matrices of appropriate 

dimensions, and pure system time delay is expressed by integers h ∈T+ . System (12) can be 

expressed with the following representation without delay, (Malek-Zavarei & Jamshidi, 
1987; Gorecki et al., 1989).  

  

( ) ( ) ( ) ( )

( ) ( )

T T T N
eq

N N
eq eq eq eq

0 I 0n

0 0 In
A 0 A1 0

x k x k h x k h 1 x k , N ˆ n(h 1)

x k 1 A x k , A ×

⎡ ⎤= − − + ∈ = +⎢ ⎥⎣ ⎦
⎡ ⎤
⎢ ⎥

+ = = ∈⎢ ⎥
⎢ ⎥
⎣ ⎦

"
# # % #

"
"

" \

\
 (14) 

The system defined by (14) is called the equivalent (augmented) system, while matrix Aeq, 
the matrix of equivalent (augmented) system. Characteristic polynomial of system (12) is 
given with: 

  ( ) ( ) ( )
n(h 1)

j h 1 h
j j n 0 1

j 0

f ˆ detM a , a ,      M I A A
+

+

=

λ = λ = λ ∈ λ = λ − λ −∑ \  (15) 

Denote with 

  ( ){ } ( )eqˆ |f 0 AΩ = λ λ = = λ  (16) 
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the set of all characteristic roots of system (12). The number of these roots amounts to 

n(h 1)+ . A root mλ  of Ω with maximal module: 

  ( )m m eq: max Aλ ∈Ω λ = λ  (17) 

let us call maximal root (eigenvalue). If scalar variable λ in the characteristic polynomial is 

replaced by matrix n nX ×∈^  the two following monic matrix polynomials are obtained 

  ( ) h 1 h
0 1M X X A X A+= − −  (18) 

  ( ) h 1 h
0 1F X X X A A+= − −  (19) 

It is obvious that ( ) ( )F Mλ = λ . For matrix polynomial ( )M X , the matrix of equivalent 

system Aeq represents block companion matrix. 

A matrix n nS ×∈^  is a right solvent of ( )M X if 

  M(S) 0=  (20) 

If  

  F(R) 0=   (21) 

then n nR ×∈^  is a left solvent of ( )M X , (Dennis et al., 1976).  

We will further use matrix S to denote right solvent and matrix R to denote left solvent of 

( )M X . 

In the present paper the majority of presented results start from left solvents of ( )M X . In 

contrast, in the existing literature right solvents of ( )M X were mainly studied. The 

mentioned discrepancy can be overcome by the following Lemma. 
Lemma 2.2.1 (Stojanovic & Debeljkovic, 2008.b).  Conjugate transpose value of left solvent of 

( )M X  is also, at the same time, right solvent of the following matrix polynomial 

  ( ) h 1 T h T
0 1X X A X A+= − −M   (22) 

Conclusion 2.2.1 Based on Lemma 2.2.1, all characteristics of left solvents of ( )M X  can be 

obtained by the analysis of conjugate transpose value of right solvents of ( )XM .  

The following proposed factorization of the matrix ( )M λ  will help us to better understand 

the relationship between eigenvalues of left and right solvents and roots of the system.  

Lemma 2.2.2 (Stojanovic & Debeljkovic, 2008.b).  The matrix ( )M λ  can be factorized in the 

following way 

  ( ) ( ) ( ) ( ) ( )
h h

h h i i 1 h h i i 1
n 0 n n n 0

i 1 i 1

M I S A S I S I R I R R A− − − −

= =

⎛ ⎞ ⎛ ⎞
λ = λ + − λ λ − = λ − λ + λ −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑  (23) 
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Conclusion 2.2.2 From (15) and (23) follows ( ) ( )f S f R 0= = , e.g. the characteristic 

polynomial ( )f λ  is annihilating polynomial for right and left solvents of M(X) . Therefore, 

( )Sλ ⊂ Ω  and ( )Rλ ⊂ Ω  hold. 

Eigenvalues and eigenvectors of the matrix have a crucial influence on the existence, 
enumeration and characterization of solvents of the matrix equation (20), (Dennis et al., 
1976; Pereira, 2003). 

Definition 2.2.1 (Dennis et al., 1976; Pereira, 2003). Let ( )M λ  be a matrix polynomial in λ. If 

iλ ∈^  is such that ( )idetM 0λ = , then we say that λi is a latent root or an eigenvalue of 

( )M λ . If a nonzero n
iv ∈^  is such that ( )i iM v 0λ =  then we say that vi is a (right) latent 

vector or a (right) eigenvector of ( )M λ , corresponding to the eigenvalue λi.  

Eigenvalues of matrix ( )M λ  correspond to the characteristic roots of the system, i.e. 

eigenvalues of its block companion matrix Aeq, (Dennis et al., 1976). Their number is 

( )n h 1⋅ + . Since ( ) ( )* *F λ = λM  holds, it is not difficult to show that matrices ( )M λ  and 

( )λM  have the same spectrum. 

In papers (Dennis et al., 1976, Dennis et al., 1978; Kim, 2000; Pereira, 2003) some sufficient 
conditions for the existence, enumeration and characterization of right solvents of 

( )M X were derived. They show that the number of solvents can be zero, finite or infinite.  

For the needs of system stability (12) only the so called maximal solvents are usable, whose 

spectrums contain maximal eigenvalue mλ . A special case of maximal solvent is the so 

called dominant solvent, (Dennis et al., 1976; Kim, 2000), which, unlike maximal solvents, 
can be computed in a simple way. 

Definition 2.2.2 Every solvent mS  of ( )M X , whose spectrum ( )mSσ  contains maximal 

eigenvalue mλ  of Ω is a maximal solvent. 

Definition 2.2.3 (Dennis et al., 1976; Kim, 2000). Matrix A dominates matrix B if all the 

eigenvalues of A are greater, in modulus, then those of B. In particular, if the solvent 1S  of 

( )M X  dominates the solvents 2 lS , ,S…  we say it is a dominant solvent.  

Conclusion 2.2.3 The number of maximal solvents can be greater than one. Dominant 

solvent is at the same time maximal solvent, too. The dominant solvent 1S  of ( )M X , under 

certain conditions, can be determined by the Traub, (Dennis et al., 1978) and Bernoulli 
iteration (Dennis et al., 1978; Kim, 2000). 

Conclusion 2.2.4 Similar to the definition of right solvents Sm and S1 of ( )M X , the 

definitions of both maximal left solvent, Rm, and dominant left solvent, R1, of ( )M X can be 

provided. These left solvents of ( )M X  are used in a number of theorems to follow. Owing 

to Lemma 2.2.1, they can be determined by proper right solvents of ( )XM . 
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2.2.3. Main results 

Theorem 2.2.1 (Stojanovic & Debeljkovic, 2008.b).  Suppose that there exists at least one left 

solvent of ( )M X and let mR  denote one of them. Then, linear discrete time delay system 

(12) is asymptotically stable if and only if for any matrix *Q Q 0= >  there exists matrix 

*P P 0= >  such that  

  *
m mR PR P Q− = −   (24) 

Proof. Sufficient condition. Define the following vector discrete functions 

  ( ) { } ( ) ( ) ( ) ( )
h

k k
j 1

x x k , h, h 1, ... , 0 , z x x k T j x k j
=

= + θ θ∈ − − + = + −∑  (25) 

where, ( ) n nT k ×∈^  is, in general, some time varying discrete matrix function. The 

conclusion of the theorem follows immediately by defining Lyapunov functional for the 
system (12)  as 

  ( ) ( ) ( )* *
k k kV x z x Pz x , P P 0= = >   (26) 

It is obvious that ( )kz x 0=  if and only if kx 0= , so it follows that ( )kV x 0>  for kx 0∀ ≠ . 

The forward difference of (26), along the solutions of system (12)  is  

  ( ) ( ) ( ) ( ) ( ) ( ) ( )* * *
k k k k k kV x z x Pz k z x P z x z x P z x∆ = ∆ + ∆ + ∆ ∆   (27) 

A difference of ( )kz x∆ can be determined in the following manner 

  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )( ) ( )
( ) ( )( ) ( )

h

k 0 n 1
j 1

h

j 1

z x x k T j x k j , x k A I x k A x k h

T j x k j T 1 x k x k 1 T h x k h 1 x k h

T 1 x k T h x k h T 2 T 1 x k 1

T h T h 1 x k h 1

=

=

∆ = ∆ + ∆ − ∆ = − + −

∆ − = ⎡ − − ⎤ + + ⎡ − + − − ⎤⎣ ⎦ ⎣ ⎦

= − − + − − +

+ − − − +

∑

∑ "

"

 (28) 

Define a new matrix R by  

  ( )0R A T 1= +  (29) 

If 

  ( ) ( )1T h A T h∆ = −   (30) 

then ( )kz x∆ has a form 

  ( ) ( ) ( ) ( ) ( )
h

k n
j 1

z x R I x k T j x k j
=

⎡ ⎤∆ = − + ∆ ⋅ −⎣ ⎦∑  (31) 

www.intechopen.com



Systems, Structure and Control 

 

38 

If one adopts 

  ( ) ( ) ( )nT j R I T j , j 1,2, ... , h∆ = − =  (32) 

then (27) becomes 

  ( ) ( )( ) ( )* *
k k kV x z x R PR P z x∆ = −   (33) 

It is obvious that if the following equation is satisfied  

  * *R PR P Q, Q Q 0− = − = >    (34) 

then ( )k kV x 0, x 0∆ < ≠ . 

In the Lyapunov matrix equation (34), of all possible solvents R of ( )M X , only one of 

maximal solvents is of importance, for it is the only one that contains maximal eigenvalue 

mλ ∈Ω , which has dominant influence on the stability of the system. So, (24) represent 

stability sufficient condition for system given by (12). 

Matrix ( )T 1  can be determined in the following way. From (32), follows 

  ( ) ( )hT h 1 R T 1+ =   (35) 

and using (29)-(30) one can get (21), and for the sake of brevity, instead of matrix T(1) , one 

introduces simple notation T. 
If solvent which is not maximal is integrated into Lyapunov equation, it may happen that 
there will exist positive definite solution of Lyapunov matrix equation (24), although the 
system is not stable. 

Necessary condition. If the system (12) is asymptotically stable then all roots iλ ∈Ω  are 

located within unit circle. Since ( )mRσ ⊂ Ω , follows ( )mR 1ρ < , so the positive definite 

solution of Lyapunov matrix equation (24) exists. 

Corollary 2.2.1 Suppose that there exists at least one maximal left solvent of ( )M X  and let 

mR  denote one of them. Then, system (12) is asymptotically stable if and only if ( )mR 1ρ < , 

(Stojanovic & Debeljkovic, 2008.b). 
Proof. Follows directly from Theorem 2.2.1. 
Corollary 2.2.2 (Stojanovic & Debeljkovic, 2008.b) Suppose that there exists dominant left 

solvent 1R  of ( )M X . Then, system (12) is asymptotically stable if and only if ( )1R 1ρ < . 

 Proof. Follows directly from Corollary 2.2.1, since dominant solution is, at the same time, 
maximal solvent. 

Conclusion 2.2.5 In the case when dominant solvent 1R  may be deduced by Traub’s or 

Bernoulli’s algorithm, Corollary 2.2.2 represents a quite simple method. If aforementioned 
algorithms are not convergent but still there exists at least one of maximal solvents Rm, then 
one should use Corollary 2.2.1. The maximal solvents may be found, for example, using the 
concept of eigenpars, Pereira (2003). If there is no maximal solvent Rm, then proposed 
necessary and sufficient conditions can not be used for system stability investigation. 
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Conclusion 2.2.6 For some time delay systems it holds  

( ) ( ) ( ) ( ) ( )1 m i eqdim R dim R dim A n dim A n h 1= = = = +�  

For example, if time delay amounts to h 100= , and the row of matrices of the system is 

n 2= , then: 2 2
1 mR , R ×∈^  and 202 202

eqA ×∈^ .  

To check the stability by eigenvalues of matrix Aeq, it is necessary to determine 202 
eigenvalues, which is not numerically simple. On the other hand, if dominant solvent can be 
computed by Traub’s or Bernoulli’s algorithm, Corollary 2.2.2 requires a relatively small 
number of additions, subtractions, multiplications and inversions of the matrix format of 

only 2×2. 
So, in the case of great time delay in the system, by applying Corollary 2.2.2, a smaller 
number of computations are to be expected compared with a traditional procedure of 
examining the stability by eigenvalues of companion matrix Aeq. An accurate number of 
computations for each of the mentioned method require additional analysis, which is not the 
subject-matter of our considerations herein. 

2.2.4. Numerical examples  

Example 2.2.1 (Stojanovic & Debeljkovic, 2008.b). Let us consider linear discrete systems 
with delayed state (12) with 

0 1

7 /10 1 /2 1 /75 1 /3
A , A

1 /2 17 /10 1 /3 49 /75

−⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

,  

A. For h 1=  there are two left solvents of matrix polynomial equation (21) 

( 2
0 1R RA A 0− − = ): 

1 2

19 /30 1 /6 1 /15 1 /3
R , R

1 /6 29 /30 1 /3 11 /15

− −⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

,  

Since ( ) { }1R 4 5 ,4 5λ = , ( ) { }2R 2 5,2 5λ = , dominant solvent is 1R . As we have 

( )1 2V R ,R  nonsingular, Traub’s or Bernoulli’s algorithm may be used. Only after 

( )4 3+  iterations for Traub’s algorithm (Dennis et al., 1978) and 17 iterations for 

Bernoulli algorithm (Dennis et al., 1978), dominant solvent can be found with accuracy 

of 410− . Since ( )1R 4 5 1ρ = < , based on Corollary 2.2.2, it follows that the system under 

consideration is asymptotically stable. 

B. For h 20=  applying Bernoulli or Traub’s algorithm for computation the dominant 

solvent 1R  of matrix polynomial equation  (21) ( 21 20
0 1R R A A 0− − = ) , we obtain 

1

0.6034 0.5868
R

0.5868 1.7769

−⎡ ⎤
= ⎢ ⎥
⎣ ⎦
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Based on Corollary 2.2.2, the system is not asymptotically stable because 

( )1R 1.1902>1ρ = .  

Finally, let us check stability properties of the system using his maximal eigenvalue: 

{ } 40x2 40x40
max eq max

0 2x2 2x2 1

0 I
A 1.1902 1

A 0  ... 0  A  

⎡ ⎤
λ = λ = >⎢ ⎥

⎢ ⎥⎣ ⎦
 

Evidently, the same result is obtained as above. 

3. Large scale time delay systems 

3.1 Continuous large scale time delay systems 

3.1.1 Introduction 

There exist many real-world systems that can be modeled as large-scale systems: examples 
are power systems, communication systems, social systems, transportation systems, rolling 
mill systems, economic systems, biological systems and so on. It is also well known that the 
control and analysis of large-scale systems can become very complicated owing to the high 
dimensionality of the system equation, uncertainties, and time-delays. During the last two 
decades, the stabilization of uncertain large-scale systems becomes a very important 
problem and has been studied extensively (Siljak, 1978; Mahmoud et al., 1985). Especially, 
many researchers have considered the problem of stability analysis and control of various 
large-scale systems with time-delays (Wu, 1999; Park, 2002 and references therein). 
Recently, the stabilization problem of large-scale systems with delays has been considered 
by (Lee & Radovic, 1988; Hu, 1994; Trihn & Aldeen 1995a; Xu, 1995). However, the results in 
(Lee & Radovic, 1988; Hu, 1994) apply only to a very restrictive class of systems for which 
the number of inputs and outputs is equal to or greater than the number of states. Also, 
since the sufficient conditions of (Trinh & Aldeen 1995a; Xu, 1995) are expressed in terms of 
the matrix norm of the system matrices, usually the matrix norm operation makes the 
criteria more conservative.  
The paper (Xu, 1995) provides a new criterion for delay-independent stability of linear large 
scale time delay systems by employing an improved Razumikhin-type theorem and M-
matrix properties. In (Trinh & Aldeen, 1997), by employing a Razumikhin-type theorem, a 
robust stability criterion for a class of linear system subject to delayed time-varying 
nonlinear perturbations is given.  
The basic aim of the above mentioned works was to obtain only sufficient conditions for 
stability of large scale time delay systems. It is notorious that those conditions of stability are 
more or less conservative. 
In contrast, the major results of our investigations are necessary and sufficient conditions of 
asymptotic stability of continuous large scale time delay autonomous systems. The obtained 
conditions are expressed by nonlinear system of matrix equations and the Lyapunov matrix 
equation for an ordinary linear continuous system without delay. Those conditions of 
stability are delay-dependent and do not possess conservatism. Unfortunately, viewed 
mathematically, they require somewhat more complex numerical computations. 
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3.1.2 Main Results  

Consider a linear continuous large scale time delay autonomous systems composed of N  

interconnected subsystems. Each subsystem is described as: 

  ( ) ( ) ( )
N

i i i ij j ij
j 1

x t A x t A x t
=

= + − τ∑� , 1 i N≤ ≤  (36) 

with an associated function of initial state ( ) ( )i ix θ = ϕ θ , 
im , 0 , 1 i N⎡ ⎤θ∈ −τ ≤ ≤⎣ ⎦ . 

( ) in
ix t ∈\  is state vector, i in n

iA
×

∈\  denote the system matrix, i jn n
ijA R

×
∈  represents 

the interconnection matrix between the i -th and the j -th subsystems, and ijτ  is constant 

delay. For the sake of brevity, we first observe system (36) made up of two subsystems 

( N 2= ). For this system, we derive new necessary and sufficient delay-dependent 

conditions for stability, by Lyapunov's direct method. The derived results are then extended 
to the linear continuous large scale time delay systems with multiple subsystems. 
a) Large scale systems with two subsystems 

Theorem 3.1.1. (Stojanovic & Debeljkovic, 2005). Given the following system of matrix 
equations (SME) 

  
 

1 11 1 21
1 1 11 2 21A e A e S A 0− τ − τ− − − =R RR  (37) 

  
 

1 12 1 22
1 2 2 2 12 2 22S S A e A e S A 0− τ − τ− − − =R RR  (38) 

where 1A , 2A , 12A , 21A  and 22A  are matrices of system (36) for N 2= , in  subsystem 

orders and ijτ  pure time delays of the system. If there exists solution of SME (37)-(38) upon 

unknown matrices 
 

1 1n n
1 C ×∈R  and 1 2n n

2S C ×∈ , then the eigenvalues of matrix 
 1R  

belong to a set of roots of the characteristic equation of system (36)  for N 2= . 

Proof. By introducing the time delay operator se−τ , the system (36)  can be expressed in the 

form 

  ( ) ( ) ( ) ( ) ( ) ( ) ( )
11 12

21 22

s s T1 11 12 T T
1 2s s

21 2 22

A A e A e
x t x t A s x t , x t x t x te

A e A A e

−τ −τ

−τ −τ

⎡ ⎤+ ⎡ ⎤⎢ ⎥= = = ⎣ ⎦⎢ ⎥+⎣ ⎦
� (39) 

Let us form the following matrix 

  ( ) ( )
11 12

1

1 2 21 22
2

s s
n 1 11 12

ij n n s s
21 n 2 22

sI A A e A e
F s F (s) sI A se

A e sI A A s

−τ −τ

+ −τ −τ

⎡ ⎤− − −
⎢ ⎥⎡ ⎤= = − =⎣ ⎦ ⎢ ⎥− − −⎣ ⎦

 (40) 

Its determinant is 

  

( )
( ) ( )
( ) ( )

( ) ( ) ( ) ( )
( ) ( )

( ) ( )
( ) ( )

( )

11 12 11 2 21 12 2 22

21 22 21 22

11 2 12 2
2

21 22

F s F s F s S F s F s S F s
detF s det det

F s F s F s F s

G s,S G s,S
det detG s,S

G s G s

⎡ ⎤ ⎡ ⎤+ +
= =⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦

⎡ ⎤
= =⎢ ⎥

⎣ ⎦

 (41) 
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  ( ) 11 21s s
11 2 n1 1 11 2 21G s,S sI A A e S A e−τ −τ= − − −   (42) 

  ( ) 12 22s s
12 2 2 2 2 12 2 22G s,S sS S A A e S A e−τ −τ= − − −  (43) 

Transformational matrix 2S  is unknown for the time being, but condition determining this 

matrix will be derived in a further text. 

The characteristic polynomial of system (36) for N 2= , defined by 

  ( ) ( )( ) ( )N 2f s ˆ det sI A s =detG s,Se= −   (44) 

is independent of the choice of matrix 2S , because the determinant of matrix ( )2G s,S  is 

invariant with respect to elementary row operation of type 3. Let us designate a set of roots 

of the characteristic equation of system (36) by ( ){ }ˆ s|f s 0∑ = = . Substituting scalar variable 

s  by matrix X  in ( )2G s,S  we obtain  

  ( )
( ) ( )

( ) ( )
11 2 12 2

2
21 22

G X,S G X,S
G X,S

G X G X

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 (45) 

If there exist transformational matrix 2S  and matrix 
 

1 1n n
1 C ×∈R such 

that ( )
 11 1 2G ,S 0=R and ( )

 12 1 2G ,S 0=R  is satisfied, i.e. if (37)-(38) hold, then 

  ( ) ( ) ( )
   1 11 1 2 22 1f =detG ,S detG 0⋅ =R R R   (46) 

So, the characteristic polynomial (44) of system (36)  is annihilating polynomial (Lancaster & 

Tismenetsky, 1985) for the square matrix
 1R , defined by (37)-(38). In other words, 

( )
 1σ ⊂ ∑R .  

Theorem 3.1.2 (Stojanovic & Debeljkovic, 2005) Given the following SME 

  
 

2 12 2 22
2 2 1 12 22A e S A e A 0− τ − τ− − − =R RR  (47) 

  
 

2 11 2 21
2 1 1 1 1 11 21S S A e S A e A 0− τ − τ− − − =R RR   (48) 

where 1A , 2A , 12A , 21A  and 22A  are matrices of system (36) for N 2= , in  subsystem 

orders and ijτ time delays of the system. If there exists solution of SME (47)-(48) upon 

unknown matrices 
 

2 2n n
2 C ×∈R  and 2 1n n

1S C ×∈ , then the eigenvalues of matrix 
 2R  

belong to a set of roots of the characteristic equation of system (36)  for N 2= . 

Proof. Proof is similarly with the proof of Theorem 3.1.1. 

Corollary 3.1.1 If system (36) is asymptotically stable, then matrices 
 1R  and 

 2R , defined 

by SME (37)-(38) and (47)-(48), respectively, are stable ( ( )
 iRe 0λ <R , 1 i 2≤ ≤ ).  
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Proof. If system (36) is asymptotically stable, then s , Res 0∀ ∈Σ < . Since ( )
 iσ ⊂ ∑R , 

1 i 2≤ ≤ , it follows that ( )
 i , Re 0∀ λ ∈σ λ <R , i.e. matrices 

 1R  and 
 2R  are stable.  

Definition 3.1.1 The matrix 
 1R  (

 2R ) is referred to as solvent of SME  (37)-(38) or (47)-(48). 

Definition 3.1.2 Each root mλ  of the characteristic equation (44) of the system (36) which 

satisfies the following condition: Re maxRes, smλ = ∈Σ  will be referred to as maximal root 

(eigenvalue) of system (36). 

Definition 3.1.3 Each solvent 1mR  ( 2mR ) of SME (37)-(38) or (47)-(48), whose spectrum 

contains maximal eigenvalue mλ  of system (36), is referred to as maximal solvent of SME (37)

-(38)  or (47)-(48). 
Theorem 3.1.3 (Stojanovic & Debeljkovic, 2005) Suppose that there exists at least one 

maximal solvent of SME (47)-(48) and let 1mR  denote one of them. Then, system (36), for 

N 2= , is asymptotically stable if and only if for any matrix *Q Q 0= >  there exists matrix 

*P P 0= >  such that 

  *
1m 1mP P Q+ = −R R  (49) 

Proof. Sufficient condition. Similarly (Lee & Diant, 1981), define the following vector 
continuous functions 

 ( ) ( ) ( ) ( ) ( )
ji

i

2 2

ti i m t1 t2 i i ji i
i 1 j 1 0

x x t , , 0 , z x ,x S x t T x t d

τ

= =

⎛ ⎞
⎜ ⎟⎡ ⎤= + θ θ∈ −τ = + η − η η⎣ ⎦ ⎜ ⎟⎜ ⎟
⎝ ⎠

∑ ∑ ∫  (50) 

where ( ) i in n
jiT t C ×∈ , j 1,2=  are some time varying continuous matrix functions and 

11 nS I= , 1 2n n
2S C ×∈ . 

The proof of the theorem follows immediately by defining Lyapunov functional for system 
(36) as 

  ( ) ( ) ( )* *
t1 t2 t1 t2 t1 t2V x ,x z x ,x Pz x ,x , P P 0= = >  (51) 

Derivative of (51), along the solutions of system (36) is  

  ( ) ( ) ( ) ( ) ( )* *
t1 t2 t1 t2 t1 t2 t1 t2 t1 t2V x ,x z x ,x P z x ,x z x ,x P z x ,x= +� � �   (52) 

  ( ) ( ) ( ) ( )
ji2 2

t1 t2 i i ji i
i 1 j 1 o

d
z x ,x S x t T x t d

dt

τ

= =

⎛ ⎞
⎜ ⎟= + η − η η⎜ ⎟⎜ ⎟
⎝ ⎠

∑ ∑ ∫��   (53) 

  ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
ji ji

'
ji i ji i ji i ji ji i ji

0 0

d
T  x t  d T  x t  d T 0  x t T  x t

dt

τ τ

η − η η = η − η η + − τ − τ∫ ∫  (54) 
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Therefore 

  

( ) ( ) ( )

( )( ) ( ) ( ) ( )
ji

2 2

t1 t2 i i ji i
i 1 j 1

2 2
'

j ji i ji ji i ji i ji i
j 1 j 1 0

z x ,x S A T 0 x t

S A S T x t S T x t d

= =

τ

= =

⎧ ⎛ ⎞⎪ ⎜ ⎟= +⎨ ⎜ ⎟⎪ ⎝ ⎠⎩
⎫
⎪

+ − τ − τ + η − η η ⎬
⎪⎭

∑ ∑

∑ ∑ ∫

�

 (55) 

 If we define new matrices 

  ( )
2

i i ji
j 1

A T 0 , i 1,2
=

= + =∑R  (56) 

and if one adopts 

  ( )i ji ji j jiS T S A , i, j 1,2τ = =   (57) 

  ( ) ( )'
i ji 1 i ji i i 1 iS T S T , S S , i, j 1,2η = η = =R R R   (58) 

then 

  ( ) ( ) ( ) ( )( ) ( )* *
t1 t2 1 t1 t2 t1 t2 t1 t2 1 1 t1 t2z x ,x z x ,x , V x ,x z x ,x P P z x ,x= = +�� R R R   (59) 

It is obvious that if the following equation is satisfied 

  *
1 1P P Q 0+ = − <R R ,  (60) 

then ( )t1 t2V x ,x 0<� , tix 0∀ ≠ .  

In the Lyapunov matrix equation (49), of all possible solvents 1R  only one of maximal 

solvents 1mR  is of importance, because it is containing maximal eigenvalue mλ ∈Σ , which 

has dominant influence on the stability of the system.  
If a solvent, which is not maximal, is integrated into Lyapunov equation (49), it may happen 
that there will exist positive definite solution of this equation, although the system is not 
stable. 

Necessary condition. Let us assume that system (36) for N 2=  is asymptotically stable, i.e. 

s∀ ∈Σ , Res 0<  hold. Since ( )1mσ ⊂ ΣR  follows ( )1mRe 0λ <R  and the positive definite 

solution of Lyapunov matrix equation (49) exists.  
From (57)-(58) follows 

  ( ) 1 ji

1j ji i ji 1 n ,S A e S T 0 , S I i 1,2, j 1,2
τ

= = = =
R

  (61) 

Using (56) and (61), for i 1= , we obtain (37).  

Multiplying (56) (for i 2= ) from the left by matrix 2S  and using (58) and (61) we obtain (38) 
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Taking a solvent with eigenvalue mλ ∈Σ  (if it exists) as a solution of the system of 

equations (37)-(38), we arrive at a maximal solvent 1mR . 

Theorem 3.1.4 (Stojanovic & Debeljkovic 2005) Suppose that there exists at least one 

maximal solvent of SME (47)-(48) and let 2mR  denote one of them. Then, system (36), for 

N 2= , is asymptotically stable if and only if for any matrix *Q Q 0= >  there exists matrix 

*P P 0= >  such that 

  *
2m 2mP P Q+ = −R R  (62) 

Proof. Proof is almost identical to that exposed for Theorem 3.1.3. 
Conclusion 3.1.1 The proposed criteria of stability are expressed in the form of necessary 
and sufficient conditions and as such do not possess conservatism unlike the existing 
sufficient criteria of stability. 
Conclusion 3.1.2 To the authors’ knowledge, in the literature available, there are no 

adequate numerical methods for direct computations of maximal solvents 1mR  or 2mR . 

Instead, using various initial values for solvents iR , we determine imR  by applying 

minimization methods based on nonlinear least squares algorithms (see Example 3.1.1). 
b) Large scale system with multiple subsystems 

Theorem 3.1.5. (Stojanovic & Debeljkovic, 2005) Given the following system of matrix 
equations  

  k ji k i
k

N
n n

k i i i j ji i k n
j 1

S S A e S A 0, S C , S I , 1 i N
− τ ×

=

− − = ∈ = ≤ ≤∑ R
R   (63) 

for a given k , 1 k N≤ ≤ , where iA  and jiA , 1 i N≤ ≤ , 1 j N≤ ≤  are matrices of system  (36) 

and jiτ  is time delay in the system. If there is a solvent of (63) upon unknown matrices 

k kn n
k C ×∈R  and iS , 1 i N≤ ≤ , i k≠ , then the eigenvalues of matrix kR  belong to a set of 

roots of the characteristic equation of system (36). 
Proof. Proof of this theorem is a generalization of proof of Theorem 3.1.1 or Theorem 3.1.2.  
Theorem 3.1.6 (Stojanovic & Debeljkovic, 2005) Suppose that there exists at least one 

maximal solvent of (63) for given k , 1 k N≤ ≤  and let kmR  denote one of them. Then, 

linear discrete large scale time delay system (36) is asymptotically stable if and only if for 

any matrix *Q Q 0= >  there exists matrix *P P 0= >  such that 

  *
km kmP P Q+ = −R R  (64) 

Proof. Proof is based on generalization of proof for Theorem 3.1.3 and Theorem 3.1.4.  

It is sufficient to take arbitrary N instead of N 2= .  

3.1.3 Numerical example  

Example 3.1.1 Consider following continuous large scale time delay system with delay 
interconnections 
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( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1 1 12 2 12

2 2 2 21 1 21 23 3 23

3 3 3 31 1 31 32 2 32

x t A x t A x t

x t A x t A x t A x t

x t A x t A x t A x t

= + − τ

= + − τ + − τ

= + − τ + − τ

�

�

�

  (65) 

1 12 2 21,

-6 2 0 3 -2 0 -1.87 4.91 10.30 -1 0 -2

A 0 -7 0 A 0 0 3 , A -2.23 -16.51 -24.11 , A 3 0 5

0 0 -10.9 -2 1 2 1.87 -3.91 -10.30 1 0 2

= = =

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥= ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

, 

23 3 31 32

-1 -1
-18.5 -17.5 4 -2 1 1 2 -1

A 3 2 , A , A , A
-13.5 -18.5 2 0 1 3 2 0

1 1

= = = =

⎡ ⎤
⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

, 

Applying Theorem 3.1.5 to a given system, for k 1= , the following SME is obtained 

  

1 21 1 31

1 12 1 32

1 23

1 1 2 21 3 31

1 2 2 2 12 3 32

1 3 3 3 2 23

A e S A e S A 0

S S A e A e S A 0

S S A e S A 0

  

    

− τ − τ

− τ − τ

− τ

− − − =

− − − =

− − =

R R

R R

R

R

R

R

 (66) 

If for pure system time delays we adopt the following values: 12 5τ = , 21 2τ = , 23 4τ = , 

31 5τ =  and 32 3τ = , by applying the nonlinear least squares algorithms, we obtain a great 

number of solutions upon 1R  which satisfy SME (66): 

Among those solutions is a maximal solution: 

1m

-0.0484 -0.0996 0.0934

0.2789 -0.3123 0.2104

1.1798 -1.1970 -0.3798

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

=R  

The eigenvalues of matrix 1mR  amount to: 1 0.2517λ = − , 2,3 = 0.2444 j 0.3726λ − ± .  

Therefore, for a maximal eigenvalue mλ one of the values from the set { }2 3,λ λ  can be 

adopted. Based on Theorem 3.1.6, it follows that the large scale time delay system is 
asymptotically stable. 

3.2 Discrete large scale time delay systems 

3.2.1 Introduction 

Recently, the stability and stabilization problem of large-scale systems with delays has been 
considered by (Lee & Radovic, 1987, 1988), (Hu, 1994), (Trinh & Aldeen, 1995b), (Xu, 1995), 
(Huang et al., 1995), (Lee & Hsien 1997), (Wang & Mau 1997) and (Park, 2002).  
Most related works treated the stabilization problem in the continuous-time case. Since most 
modern control systems are controlled by a digital computer, it is natural to deal with the 
problem in a discrete-time domain.  
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Based on the Lyapunov stability theorem associated with norm inequality techniques, in 
(Lee & Hsien, 1997) the stability testing problem for discrete large-scale uncertain systems 
with time delays in the interconnections is investigated. Three classes of uncertainties are 
treated: nonlinear, linear unstructured and linear highly structured uncertainties. A criterion 
to guarantee the robust stabilization and the state estimation for perturbed discrete time-
delay large-scale systems is proposed in (Wang & Mau, 1997). This criterion is independent 
of time delay and does not need the solution of a Lyapunov equation or Riccati equation. 
In paper (Park, 2002) the synthesis of robust decentralized controllers for uncertain large-
scale discrete-time systems with time delays in the subsystem interconnections is 
considered. Based on the Lyapunov method, a sufficient condition for robust stability is 
derived in terms of a linear matrix inequality. Further, (Park et al., 2004) was discussed how 
to solve dynamic output feedback controller design problem for decentralized guaranteed 
cost stabilization of large-scale discrete-delay system by convex optimization. The problems 
of robust non-fragile control for uncertain discrete-delay large-scale systems under state 
feedback gain variations are investigated in (Park, 2004). 
In this section the necessary and sufficient conditions for the asymptotic stability of a 
particular class of large-scale linear discrete time-delay systems are considered. The 
obtained conditions of stability are derived by Lyapunov’s direct method and expressed by 
system of matrix polynomial equations. The conditions are not conservative against the 
majority of results reported in the literature available. In the case of great time delays in the 
system and a great number of subsystems, by applying the derived results it has been 
demonstrated that a smaller number of computations are to be expected compared with a 
classical stability criteria based on eigenvalues of matrix of equivalent system. 

3.2.2. Preliminaries 

Consider a large-scale linear discrete time-delay systems composed of N  interconnected 

iS . Each subsystem iS , 1 i N≤ ≤  is described as 

  ( ) ( ) ( )
N

i i i i ij j ij
j 1

:   x k 1 A x k A x k h
=

+ = + −∑S  (67) 

with an associated function of initial state 

  ( ) ( ) { }i ii i m mx ψ , h , h 1  ,  ,  0θ = θ θ∈ − − + …  (68) 

where ( ) in
ix k ∈\  is state vector, i in n

iA
×

∈\  denotes the system matrix, 

i jn n
ijA

×
∈\ represents the interconnection matrix between the i -th and the j -th 

subsystems and the constant delay ijh ∈T+ . 

In the following lemma necessary and sufficient condition for asymptotic stability of system 

(67) has been given, expressed via eigenvalues the so called equivalent matrix A . This 

condition is based upon the fact that the observed system is finite-dimensional. The order of 
this system is very high and time delay dependent. 
Lemma 3.2.1 System (67) will be asymptotically stable if and only if  

  ( ) 1ρ <A   (69) 
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holds, where matrix 

  ( )i i

N
N Ne e

ij i i i m m ji
ji 1

e, N N , N n h 1 , h maxh×

=

⎡ ⎤∈ = = + =⎣ ⎦= ∑\A A  (70) 

is defined in the following way  

  

ii ij

i i i i i

i

 1                 h 1                           1      h 1              

i ii ij

n N N N N
ii ij

n

A 0 A 0 0 0 A 0

I 0 0 0 0 0 0 0
,

0 0 0 I 0 0 0 0

↓ ↓↓ ↓

+ +

× ×

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= ∈ = ∈⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

" "

" " " "
" " " "\ \

# # " # " # # # # # % #
# # " "

A A (71) 

where iA  and ijA , 1 i N≤ ≤ , 1 j N≤ ≤ , are matrices of system (67).  

Proof. It is not difficult to demonstrate that system (67) can be given in the following 
equivalent form 

 
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )i

  TT T T
1 2 N

  T
T T T

i i i i m

ˆ ˆ ˆ ˆ ˆ ˆx k 1 x k , x k x k x k x k  1 i N

x̂ k x k x k 1 x k h

⎡ ⎤+ = = ≤ ≤⎣ ⎦

⎡ ⎤= − −⎣ ⎦

"

"

A

  (72) 

wherefrom a given condition for asymptotic stability follows directly. 

3.2.3. Main results  

Using Lyapunov's direct method, necessary and sufficient conditions for delay-dependent 
stability for system (67), are derived.  
Prior to it, we demonstrate that the spectrum of matrix, which is integrated into Lyapunov 

equation, is a subset of spectrum of matrix A , i.e. a set of characteristic roots of system (67). 

Theorem 3.2.1. (Stojanovic & Debeljkovic, 2008.a) Given the following system of monic 
matrix polynomial equations (SMPE)  

  m jim m ii i i
N

h hh 1 h n n
i i i j ji i n

j 1

S S A S A 0, S , S I
−+ ×

=

− − = ∈ =∑ A
AA A AA ^R R R  (73) 

for a given A , 1 N≤ ≤A , , where iA  and jiA , 1 i N≤ ≤ , 1 j N≤ ≤  are matrices of system (67) 

and jih  is time delay in the system, 
im ji

j
h maxh , 1 i N= ≤ ≤ .  

If there is a solution of SMPE (73) upon unknown matrices 
n n×

∈ A A
A ^R  and iS , 1 i N≤ ≤ , 

i ≠ A , then ( ) ( )
 

λ ⊂ λA AR holds, where matrix A  is defined by (70)-(71). 

Proof. By introducing time-delay operator hz− , system (67) can be expressed in the 
following form 
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( ) ( ) ( ) ( ) ( ) ( ) ( )

( )

1N11

N1 NN

TT T T
1 2 N

hh
1 11 1N

h h
N1 N NN

e

e

x k 1 A z x k , x k x k x k x k

A A z A z

A z

A z A A z

−−

− −

⎡ ⎤+ = = ⎣ ⎦
⎡ ⎤+
⎢ ⎥

= ⎢ ⎥
⎢ ⎥

+⎢ ⎥⎣ ⎦

"

"
# % #

"

 (74) 

Let us form the following matrix. 

  ( ) ( )

1N11
1

e

N1 NN
N

hh
n 1 11 1N

N ij

h h
N1 n N NN

e

zI A A z A z

F z zI A z F (z)

A z zI A A z

−−

− −

⎡ ⎤− − −
⎢ ⎥

⎡ ⎤ ⎢ ⎥= − = =⎣ ⎦ ⎢ ⎥
− − −⎢ ⎥⎣ ⎦

"

# % #

"

 (75) 

If we add to the arbitrarily chosen A  - th block row of this matrix the rest of its block rows 

previously multiplied from the left by the matrices jS 0≠ , 1 j N≤ ≤ , j ≠ A  respectively, we 

obtain 

  ( )

( )

( ) ( )

( )

( )

( ) ( )

( )

11 1N

N N

1 j j1 j jNN
j 1 j 1
j j

N1 NN

F z F z

F z S F z F z S F z
detF z det

F z F z

= =
≠ ≠

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥+ += ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

∑ ∑

"
# " #

" A
A A
# % #

"

 (76) 

After multiplying i -th of the block column, 1 i N≤ ≤ , of the preceding matrix by mi
h

z  and 

after integrating the matrix nS I=
AA , the determinant of matrix ( )F z  equals 

 

( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

( ) { }

N

i mi
i 1

mm N1

mm N1

mm N1

n h

hh
11 1N

11 1N

N N
hh

j j1 j jN 1 N
j 1 j 1

N1 NN
hh

N1 NN

1 N

z det

z F z z F z
G z G z

z S F z z S F zdet det G z,S G z,S

G z G z

z F z z F z

detG z,S , S S , ,S

=

= =

∑

⎡ ⎤
⎢ ⎥ ⎡ ⎤⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦
⎢ ⎥
⎣ ⎦

= =

∑ ∑

"
"# # #

# # #
" "A A

# # #
# % # "

"

"

F z =

= (77) 

The A -th block row of the N N×  block matrix ( )G z,S  is defined by 
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 ( ) m m m jii i i
Nh 1 h h h

i i i j ji ni
j 1

G z,S z S z S A z S A , 1 i N, S I
+ −

=

= − − ≤ ≤ =∑ AA A   (78) 

The relation (76) was obtained by applying a finite sequence of elementary row operations 

of type 3 over matrix ( )F z , (Lancaster & Tismenetsky, 1985). Transformation matrices 

1 NS , ,S" , with the exception of matrix nS I= AA , are unknown for the time being, but in a 

further text a condition will be derived that the unknown matrices are determined upon.  
The characteristic polynomial of system (67), (Gorecki et al., 1989)  

  ( ) ( ) ( )i

N Ne
j

j i m j
j 0 i 1

e eg z ˆ detG z,S a z , N n h 1 , a , 0 j N
= =

= = = + ∈ ≤ ≤∑ ∑ \  (79) 

does not depend on the choice of transformation matrices 1 NS , ,S" ), (Lancaster & 

Tismenetsky, 1985).  
Let us denote 

  ( ){ }ˆ z|g z 0∑ = =   (80) 

a set of all characteristic roots of system (67). This set of roots equals the set ( )λ A . 

Substituting a scalar variable z  by matrix 
n n

X
×

∈ A A^  in ( )G z,S , a new block matrix is 

obtained ( )G X,S . If there exist the transformation matrices Si, 1 i N≤ ≤ , i ≠ A  and solvent 

n n×∈ A AA ^R  such that for the A -th block row of ( )G X,S  holds ( )iG ,S 0, 1 i N= ≤ ≤A AR  

i.e. holds (73), then 

  ( )g 0=AR  (81) 

Therefore, the characteristic polynomial of system (67) is annihilating polynomial for the 

square matrix 
 AR  and ( )

 
λ ⊂ ∑AR  holds. The mentioned assertion holds , 1 N∀ ≤ ≤A A . 

Definition 3.2.1 The matrix AR  is referred to as solvent of equations (73) for the given A , 

1 N≤ ≤A . 

From (73) for the given A , 1 N≤ ≤A , transformation matrices jS  1 j N≤ ≤  and solvent 

AR are computed, the latter being used further for examining the stability of system (67). 

Definition 3.2.2 The characteristic root mλ  of system (67) with maximal module: 

  ( )m m i
i

: max maxλ ∈Σ λ = Σ = λ A  (82) 

will be referred to as maximal root (eigenvalue) of system (67).  

Definition 3.2.3 Each solvent mAR  of SMPE (73), for the given A , 1 N≤ ≤A , whose 

spectrum contains maximal eigenvalue mλ  of system (67), is referred to as maximal solvent 

of (73). 
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Theorem 3.2.2 (Stojanovic & Debeljkovic, 2008.a) Suppose that there exist at least one A , 

1 N≤ ≤A , that there exists at least one maximal solvent of SMPE (73) and let mAR  denote 

one of them. Then, linear discrete large-scale time-delay system (67) is asymptotically stable 

if and only if for any matrix *Q Q 0= >  there exists matrix *P P 0= >  such that 

  *
mm P P Q− = −AAR R . (83) 

Proof. Sufficient condition. Define the following vector discrete functions 

  ( ) ( ) ( ) ( ) ( ) { }
ji

i

hN N

k1 kN i i ji i ki i m
i 1 j 1 l 1

v x , ,x S x k T l x k l , x x k , h , ,0
= = =

⎡ ⎤
⎢ ⎥= + − = + θ θ∈ −
⎢ ⎥
⎣ ⎦

∑ ∑ ∑" …  (84) 

where ( ) i in n
jiT k

×
∈^ , 1 j N≤ ≤ , 1 i N≤ ≤  are, in general, some time-varying discrete 

matrix functions and nS I=
AA , in n

iS
×

∈ A^ , 1 i N≤ ≤ , i ≠ A . The conclusion of the theorem 

follows immediately by defining Lyapunov functional for system (67) as 

  ( ) ( ) ( )* *
k1 kNV x , ,x v , , P v , , , P P 0= ⋅ ⋅ ⋅ ⋅ = >" " "  (85) 

It is obvious that ( )V , , 0⋅ ⋅ >"  for kix 0∀ ≠ , 1 i N≤ ≤ . The forward difference of (85), along 

the solutions of system (67) is  

  ( ) ( ) ( ) ( ) ( ) ( ) ( )* * *V , , v , , P v , , v , , P v , , v , , P v , ,⋅ ⋅ = ⋅ ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅" " " " " " "Δ Δ Δ Δ Δ   (86) 

A difference of ( )v , ,⋅ ⋅"  can be determined in the following manner 

 ( ) ( ) ( ) ( )
jihN N

i i ji i
i 1 j 1 l 1

v , , S x k T l x k l
= = =

⎡ ⎤
⎢ ⎥⋅ ⋅ = + −
⎢ ⎥
⎣ ⎦

∑ ∑ ∑"Δ Δ Δ  (87) 

  ( ) ( ) ( ) ( )i

N

i i n i ij j ij
j 1

x k A I x k A x k h
=

= − + −∑Δ   (88) 

Then 

 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

i

ji

N N N

i i n ji i ji ji i ji
i 1 j 1 j 1

h 1N N

ji i ij j ij
j 1 l 1 j 1

v , , S A I T 1 x k T h x k h

T l x k l A x k h

= = =

−

= = =

⎡⎛ ⎞
⎢⎜ ⎟⋅ ⋅ = − + + −
⎜ ⎟⎢⎝ ⎠⎣

⎤
⎥+ − + −
⎥
⎦

∑ ∑ ∑

∑ ∑ ∑

"Δ

Δ

  (89) 

If we define new matrices 
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  ( )
N

i i ji
j 1

A T 1
=

= +∑R , 1 i N≤ ≤   (90) 

then ( )v , ,⋅ ⋅"Δ  has a form 

  

( ) ( ) ( ) ( )( ) ( )

( ) ( )Δ

i

ji

N N

i i n i j ji i ji ji i ji
i 1 j 1

h 1N

i ji i
j 1 l 1

v , , S I x k S A S T h x k h

S T l x k l

= =

−

= =

⎡
⎢⋅ ⋅ = − + − −
⎢⎣

⎤
⎥+ −
⎥
⎦

∑ ∑

∑ ∑

" RΔ

 (91) 

If 

  ( ) ( )j ji i ji ji i ji jiS A S T h S T h , 1 i N, 1 j N− = ≤ ≤ ≤ ≤Δ   (92) 

  ( ) ( )ii i n n iS I I S , 1 i N− = − ≤ ≤
AAR R   (93) 

  ( ) ( ) ( )i ji n i jiS T l I S T l , 1 i N, 1 j N= − ≤ ≤ ≤ ≤
AARΔ   (94) 

then 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )* *
nv , , I v , , , V , , v , , P P v , ,⋅ ⋅ = − ⋅ ⋅ ⋅ ⋅ = ⋅ ⋅ − ⋅ ⋅
AA A A" " " " "R R RΔ Δ  (95) 

It is obvious that if the following equation is satisfied  

  * *P P Q, Q Q 0− = − = >A AR R  (96) 

then ( )V , , 0⋅ ⋅ <"Δ , kix 0∀ ≠ , 1 i N≤ ≤ . 

In the Lyapunov matrix equation (83), of all possible solvents AR  of (73), only one of 

maximal solvents mAR  is of importance, for it is the only one that contains maximal 

eigenvalue mλ ∈Σ  (Definition 3.2.3), which has dominant influence on the stability of the 

system. If a solvent which is not maximal is integrated into Lyapunov equation (83), it may 
happen that there will exist a positive definite solution of this equation, although the system 
is not stable. Accordingly, condition (83) represents sufficient condition of the stability of 
system (67). 

If it exists, maximal solvent mAR  can be determined in the following way. From (92) and 

(94) we obtain 

  ( )
 

jih
j ji i ji n ,S A S T 1 , S I 1 i N, 1 j N= = ≤ ≤ ≤ ≤

AAAR  (97) 

Multiplying i -th equation of the system of matrix equations (90) from the left by matrix 

  

m i
h

iSAR  and using (93) and (97), we obtain equation (73). Taking solvent with eigenvalue 
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mλ ∈Σ  (if it exists) as a solution of the system of equations (73), we arrive at maximal 

solvent mAR . 

Necessary condition. If system (67) is asymptotically stable, then i∀λ ∈Σ , i 1λ < . Since 

( )mλ ⊂ ΣAR ,it follows that ( )m 1ρ <AR , therefore the positive definite solution of 

Lyapunov matrix equation (67)  exists.  

 Corollary 3.2.1 Suppose that for the given A , 1 N≤ ≤A , there exists matrix AR  being 

solution of SMPE (73). If system (67) is asymptotically stable, then matrix AR  is discrete 

stable ( ( ) 1ρ <AR ). 

Proof. If system (67) is asymptotically stable, then z z 1∀ ∈∑ < . Since ( )λ ⊂ ∑AR , it 

follows that ( ) , 1∀ λ ∈λ λ <AR , i.e. matrix AR  is discrete stable. 

Conclusion 3.2.1 It follows from the aforementioned, that it makes no difference which of 

the matrices mAR , 1 N≤ ≤A  we are using for examining the asymptotic stability of system 

(67). The only condition is that there exists at least one matrix for at least one A . Otherwise, 
it is impossible to apply Theorem 3.2.2. 

Conclusion 3.2.2 The dimension of system (67) amounts to ( )j

N
j mj 1eN n h 1

=
= +∑ . 

Conversely, if there exists a maximal solvent, the dimension of mAR  is multiple times 

smaller and amounts to nA . That is why our method is superior over a traditional 

procedure of examining the stability by eigenvalues of matrix A . 

The disadvantage of this method reflects in the probability that the obtained solution need 
not be a maximal solvent and it can not be known ahead if maximal solvent exists at all. 
Hence the proposed methods are at present of greater theoretical than of practical 
significance. 

3.2.4 Numerical example 

Example 3.2.1 Consider a large-scale linear discrete time-delay systems, consisting of three 
subsystems described by Lee, Radovic (1987) 

( ) ( ) ( ) ( )1 1 1 1 1 1 12 2 12:  x k 1 A x k B u k A x k h+ = + + −S , 

( ) ( ) ( ) ( ) ( ),2 2 2 2 2 2 21 1 21 23 3 23:  x k 1 A x k B u k A x k h A x k h+ = + + − + −S  

( ) ( ) ( ) ( )3 3 3 3 3 3 31 1 31:  x k 1 A x k B u k A x k h+ = + + −S , 

, , ,1 2 1 12 2

0.7 0 0.5 0 0.1
0.8 0.6 0.1 0.1 0 0.1

A A 0.1 6 0.1 B A , B 0.1 0.2
0.4 0.9 0.1 0.1 0 0.1

0.6 1 0.8 0 0.1

− −⎡ ⎤ ⎡ ⎤
⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥= = − − = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

, 

, , ,21 23 3 3 31

0.1 0.2 0.1 0
1 0.1 0.1 0 0.1 0.2

A 0.3 0.1 A 0.2 0.2 , A B A
0.1 0.8 0 0.1 0.1 0.2

0.1 0.2 0.1 0

− − −⎡ ⎤ ⎡ ⎤
⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥= = − = = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ −⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

, 
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The overall system is stabilized by employing a local memory-less state feedback control for 
each subsystem 

( ) ( )i i iu k K x k= , [ ], ,1 2 3

7 45 10 5 1
K 6 7 K K

4 4 4 1 4

− − − −⎡ ⎤ ⎡ ⎤
= − − = =⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦

 

Substituting the inputs into this system, we obtain the equivalent closed loop system 
representations 

( ) ( ) ( )
3

i i i i ij j ij
j 1

ˆ: x k 1 A x k A x k h , 1 i 3
=

+ = + − ≤ ≤∑S ,   i i i iÂ A B K= +  

For time delay in the system, let us adopt: 12h 5= , 21h 2= , 23h 4=  and 31h 5= . Applying 

Theorem 3.2.1 to a given closed loop system, we obtain the following SMPE for 1=A  

   

6 5 3
1 1 1 1 2 21 3 31Â S A S A 0− − − =R R R , 

  

6 5
1 2 1 2 2 12

ˆS S A A 0− − =R R , 

  

5 4
1 3 1 3 3 2 23

ˆS S A S A 0− − =R R . 

Solving this SMPE by minimization methods, we obtain  

,
 1 2 3

0.6001 0.3381 0.0922 1.3475 0.5264 0.6722 -0.3969
, S S

0.6106 0.3276 0.0032 1.3475 0.4374 1.3716 -1.0963

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

R . 

Eigenvalue with maximal module of matrix 
 1R  equals 0.9382. Since eigenvalue mλ  of 

40 40×∈\A  also has the same value, we conclude that solvent 
 1R  is maximal solvent 

(
  1m 1=R R ). Applying Theorem 3.2.2, we arrive at condition ( )

 1m 0.9382<1ρ =R  

wherefrom we conclude that the observed closed loop large-scale time-delay system is 
asymptotically stable. 

The difference in dimensions of matrices 
 

2 2
1

×∈\R  and 40 40×∈\A  is rather high, even 

with relatively small time delays (the greatest time delay in our example is 5). So, in the case 

of great time delays in the system and a great number of subsystems N , by applying the 

derived results, a smaller number of computations are to be expected compared with a 

traditional procedure of examining the stability by eigenvalues of matrix A . 

An accurate number of computations for each of the mentioned method require additional 
analysis, which is not the subject-matter of our considerations herein. 

4. Conclusion  

In this chapter, we have presented new, necessary and sufficient, conditions for the 
asymptotic stability of a particular class of linear continuous and discrete time delay 
systems. Moreover, these results have been extended to the large scale systems covering the 
cases of two and multiple existing subsystems. 
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The time-dependent criteria were derived by Lyapunov’s direct method and are exclusively 
based on the maximal and dominant solvents of particular matrix polynomial equation. It 
can be shown that these solvents exist only under some conditions, which, in a sense, limits 
the applicability of the method proposed. The solvents can be calculated using generalized 
Traub’s or Bernoulli’s algorithms. Both of them possess significantly smaller number of 
computation than the standard algorithm.  
Improving the converging properties of used algorithms for these purposes, may be a 
particular research topic in the future. 
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