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Abstract

Periodic pattern mining is the task of discovering patterns that periodically appear in
transactions. Typically, periodic pattern mining algorithms will discard a pattern as
being nonperiodic if it has a single period greater than a maximal periodicity threshold,
defined by the user. A major drawback of this approach is that it is not flexible, as a
pattern can be discarded based on only one of its periods. In this chapter, we present a
solution to this issue by proposing to discover periodic patterns using three measures:
the minimum periodicity, the maximum periodicity, and the average periodicity. The
combination of these measures has the advantage of being more flexible. Properties of
these measures are studied. Moreover, an efficient algorithm named PFPM (Periodic
Frequent Pattern Miner) is proposed to discover all frequent periodic patterns using
these measures. An experimental evaluation on real data sets shows that the proposed
PFPM algorithm is efficient and can filter a huge number of nonperiodic patterns to
reveal only the desired periodic patterns.

Keywords: frequent pattern mining, periodic patterns, periodicity measures

1. Introduction

In the field of data mining, frequent itemset mining (FIM) [1–3] is widely viewed as a funda-

mental task for discovering knowledge in databases. Given a transaction database, it consists

of discovering sets of items frequently purchased by customers. Besides market basket analy-

sis, FIM has many applications in other fields. Although numerous algorithms have been

proposed for FIM [1–3], an inherent limitation of traditional FIM algorithms is that they are

not designed to discover patterns that periodically appear in a database. Discovering periodic

patterns has many applications such as to discover recurring customer purchase behavior.

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Several algorithms have been proposed to discover periodic frequent patterns (PFP) [4–9] in a

transaction database (a sequence of transactions). Typically, periodic pattern mining algo-

rithms will discard a pattern as being nonperiodic if it has a single period greater than a

maximal periodicity threshold, defined by the user. A major drawback of this approach is that

it is not flexible, as a pattern can be discarded based on only one of its periods. In this chapter,

we propose a solution to this problem by discovering periodic patterns using three measures:

the minimum periodicity, the maximum periodicity, and the average periodicity. This chapter

has three main contributions. First, novel measures named average periodicity and minimum

periodicity are proposed to assess the periodicity of patterns. Second, a fast algorithm named

PFPM (Periodic Frequent Pattern Miner) is proposed to efficiently discover frequent periodic

patterns using these measures. Third, we have conducted several experiments on real-life data

sets to evaluate the efficiency of PFPM, and the usage of the novel periodicity measures.

Experimental results show that the PFPM algorithm is efficient, and can filter a huge number

of nonperiodic patterns to reveal only the desired periodic itemsets. The rest of this chapter is

organized as follows. Sections 2, 3, 4, 5, and 6, respectively, present preliminaries related to

FIM related work, the novel periodicity measures, the PFPM algorithm, the experimental

evaluation, and the conclusion.

2. Related work

The problem of frequent itemset mining is defined as follows. Let I be a set of items (symbols).

A transaction database is a set of transactionsD ¼ {T1;T2; :::;Tn} such that for each transaction Tc,

Tc∈I, and Tc has a unique identifier c called its Tid. For example, consider the database of

Table 1, which will be used as running example. This database contains seven transactions

(T1;T2;…;T7). Transaction T3 indicates that items a, b, c, d and e appear in this transaction. The

support of an itemset X in a database D is denoted as s(X) and defined as j{tj t∈D ∧ X ⊆t}j. In

other words, sðXÞ ¼ jgðXÞj, where g(X) is defined as the set of transactions containing X. Let

there be any total order ≻ on items in I. The extensions of an itemset X are the itemsets that can

be obtained by appending an item y to X such that y≻i, ∀i∈X. The problem of frequent itemset

mining consists of discovering the frequent itemsets [1]. An itemset X is a frequent itemset if its

support s(X) is no less than a user-specified minimum support threshold minsup given by the

user. For example, consider that minsup ¼ 4 transactions. The set of frequent itemsets is {a},

{a;c}, {e}, {c;e}, and {c}, having respectively a support of 4, 4, 5, 4, and 6.

To discover frequent itemsets, various algorithms have been proposed such as Apriori [1], FP-

Growth [10], LCM [2], and Eclat [3]. However, these algorithms are not designed to discover

TID Transaction TID Transaction TID Transaction TID Transaction

T1 {a;c} T3 {a;b;c;d;e} T5 {a;c;d} T7 {b;c;e}

T2 {e} T4 {b;c;d;e} T6 {a;c;e}

Table 1. A transaction database.
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periodic patterns. Inspired by the work on FIM, researchers have designed several algorithms

to discover periodic frequent patterns (PFP) in transaction databases [4–9]. Several applica-

tions of mining periodic frequent patterns have been reported in previous work [9].

A periodic frequent pattern is defined as follows [9]. Let there be a database D ¼ {T1;T2; :::;Tn}

containing n transactions, and an itemset X. The set of transactions containing X is denoted as

gðXÞ ¼ {Tg1
;Tg2

:::;Tgk
}, where 1 ≤g1 < g2 < ::: < gk ≤ n. Two transactions Tx⊃X and Ty⊃X are

said to be consecutive with respect to X if there does not exist a transactionTw∈gðXÞ such that

x < w < y. The period of two consecutive transactions Tx and Ty in gðXÞ is defined as

peðTx;TyÞ ¼ ðy−xÞ, that is, the number of transactions between Tx and Ty (including Tx). The

periods of an itemset X is a list of periods defined as psðXÞ ¼ {g1 − g0; g2 − g1;g3 − g2; ::: gk
− gk−1; gkþ1 − gk}, where g0 and gkþ1 are constants defined as g0 ¼ 0 and gkþ1 ¼ n. Thus,

psðXÞ ¼ ∪1≤z≤kþ1ðgz−gz−1Þ. For example, consider the itemset {a;c}. This itemset appears in trans-

actions T1;T3;T5; and T6, and thus gð{a;c}Þ ¼ {T1;T3;T5;T6}. The periods of this itemset are

psð{a;c}Þ ¼ {1; 2; 2; 1; 1 }. The maximum periodicity of an itemset X is defined as

maxperðXÞ ¼ maxðpsðXÞÞ [9]. An itemset X is a periodic frequent pattern (PFP) if jgðXÞj≥ minsup

and maxperðXÞ≤ maxPer, where minsup and maxPer are user-defined thresholds [9].

The PFP-tree algorithm is the first algorithm that has been proposed for mining PFPs [9]. It

utilizes a tree-based and pattern-growth approach for discovering PFPs, inspired by the FP-

Growth algorithm [10]. Thereafter, an algorithm called MTKPP [4] was designed. It relies on a

depth-first search and a vertical database representation. To use this algorithm, a user needs to

set a parameter k. The algorithm then outputs the k most frequent PFPs in a database. Approx-

imate algorithms for mining periodic patterns have also been developed. Ref. [5] mines PFPs

by considering an approximation of the periodicities of patterns. Another approximate algo-

rithm for PFP mining was recently proposed [8]. Other extensions of the PF-Tree algorithm

named MIS-PF-tree [6] and MaxCPF [7] were respectively proposed to mine PFPs using

multiple minsup thresholds, and multiple minsup and minper thresholds. A drawback of the

maximum periodicity measure used by most PFP algorithms is that an itemset is automatically

discarded if it has a single period of length greater than the maxPer threshold. Thus, this

measure may be viewed as too strict.

3. Novel periodicity measures

To address the above limitation of traditional PFP mining algorithms, and provide a more

flexible way of evaluating the periodicity of patterns, this chapter proposes the concept of

average periodicity.

Definition 1 (Average periodicity of an itemset): The average periodicity of an itemset X is defined

as avgperðXÞ ¼ ∑g∈psðXÞ=jpsðXÞj.

For instance, the periods of the itemsets {a; c} and {e} are psð{a;c}Þ ¼ {1; 2; 2; 1; 1} and psð{e}Þ

¼ {2; 1; 1; 2; 1; 0 }. Thus, their average periodicities are respectively avgperð{a;c}Þ ¼ 1:4 and

avgperð{e}Þ ¼ 1:17.
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Lemma 1 (An alternative definition of the average periodicity): Consider an itemset X. The

average periodicity can also be calculated as avgperðXÞ ¼ jDj=ðjgðXÞj þ 1Þ.

The proof for that proposed lemma is omitted due to space limitations. This lemma is interest-

ing because it shows that there is a relationship between the average periodicity and the

support measure. Moreover, this lemma gives a second method for calculating the average

periodicities of itemsets. An interesting observation is that if the term jDj is precalculated,

calculating the average periodicity of any itemset only requires obtaining jgðXÞj þ 1, to then

divide it by jDj. Using this method, average periodicities are calculated more efficiently than

using Definition 1.

The average periodicity is a very interesting measure since it measures the average period

length of an itemset. However, this measure should always be considered with other measure.

The reason is that the average periodicity does not consider if the period lengths vary widely.

We illustrate this with an example. In the running example, the average periodicity of {b; d} is

2.33. This itemset may seem like a periodic pattern. However, this is not the case. {b; d} actually

only appears in T3 and T4, and its periods psð{T3;T4}Þ ¼ {3; 1; 4} vary widely. To ensure that

such patterns having periods that vary too much are discovered, we propose to use the

average periodicity in combination with other periodicity measure(s), and in particular the

following two measures.

The first measure is the minimum periodicity and it is used to filter out itemsets having short

periods. Let there be an itemset X. The minimum periodicity is defined as

minperðXÞ ¼ minðpsðXÞÞ. However, a problem with this measure is that the first and last

periods of an itemset are respectively equal to 1 or 0 if the itemset respectively appears in the

first or the last transactions of the database. For example, because itemset {e} occurs in T7, its

last period is 0, and thusminperð{e}Þ ¼ 0. To avoid this problem, we have decided to change the

definition of the minimum periodicity of an itemset so that it is calculated by excluding the first

and last periods of the itemset. By ignoring the first and last periods, the set of periods may

however become empty. In this case, we define the minimum periodicity as ∞.

The second measure that we consider is the maximum periodicity, to avoid finding period

patterns that do not occur for very long periods of time. This measure is defined as in Section

2 and is denoted as maxperðXÞ for an itemset X.

In the following, we consider the minimum periodicity, maximum periodicity, and average

periodicity measures to discover frequent periodic patterns as they let the user finely specify

the type of periodic patterns to be found. But another reason for choosing these measures is

that an algorithm can calculate them very efficiently. Consider an itemset X. The three mea-

sures can be calculated by browsing the list of transactions gðXÞ only once, without storing the

periods psðXÞ in memory. This chapter defines the problem of periodic frequent itemsets using

the three measures as follows.

Definition 2 (Periodic frequent itemsets with novel measures): An itemset X is said to be a

periodic frequent itemset if and only if minAvg≤avgperðXÞ≤maxAvg, minperðXÞ≥minPer, and
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maxperðXÞ ≤maxPer, where minAvg, maxAvg, minPer, and maxPer are thresholds (positive num-

bers), set by the user.

As an example, assume that minPer ¼ 1, maxPer ¼ 3, minAvg ¼ 1, and maxAvg ¼ 2. For these

parameters, 11 PFPs are discovered (illustrated in Table 2).

To develop an efficient algorithm for mining PFPs, it is important to design efficient pruning

strategies. To use the periodicity measures for pruning the search space, the following theo-

rems are presented. Proofs are omitted due to space limitations.

Lemma 2 (Monotonicity of the average periodicity): Let X and Y be itemsets such that X⊂Y. It

follows that avgperðYÞ≥ avgperðXÞ.

Lemma 3 (Monotonicity of the minimum periodicity): Let X and Y be itemsets such that X⊂Y. It

follows that minperðYÞ≥ minperðXÞ.

Lemma 4 (Monotonicity of the maximum periodicity): Let X and Y be itemsets such that X⊂Y. It

follows that maxperðYÞ≥ maxperðXÞ [9].

Theorem 1 (Maximum periodicity pruning): Let X be an itemset appearing in a database

D. X and its supersets are not PFPs if maxperðXÞ > maxPer. Thus, if this condition is met,

the search space consisting of X and all its supersets can be discarded. (This follows from

Lemma 4.)

Theorem 2 (Average periodicity pruning): Let X be an itemset appearing in a database D. X is

not a PFP as well as all of its supersets if avgperðXÞ > maxAvg, or equivalently if

jgðXÞj < ðjDj=maxAvgÞ−1. Thus, if this condition is met, the search space consisting of X and

all its supersets can be discarded.

Itemset support s(X) minper(X) maxper(X) avgper(X)

{b} 3 1 3 1.75

{b;e} 3 1 3 1.75

{b;c;e} 3 1 3 1.75

{b;c} 3 1 3 1.75

{d} 3 1 3 1.75

{c;d} 3 1 3 1.75

{a} 4 1 2 1.4

{a;c} 4 1 2 1.4

{e} 5 1 2 1.17

{c;e} 4 1 3 1.4

{c} 6 1 2 1.0

Table 2. The set of PFPs for the running example.
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4. The PFPM algorithm

Based on the novel periodicity measures introduced in the previous sections, an efficient

algorithm named PFPM (Periodic Frequent Pattern Miner) is proposed to efficiently discover

periodic patterns using these measures. The proposed PFPM algorithm is a tid-list-based algo-

rithm, inspired by the Eclat algorithm [3]. The tid-list of an itemset X in a database D is defined

as the set of transactions gðXÞ that contains the itemset X. In the proposed algorithm, the tid-list

of an itemset X is further annotated with two values: minperðXÞ and maxperðXÞ. The PFPM

(Algorithm 1) takes as input a transaction database, and the minAvg, maxAvg, minPer, and

maxPer thresholds. The algorithm first scans the database to calculate minperð{i}Þ, maxperð{i}Þ,

and sð{i}Þ for each item i∈I. Then, the algorithm calculates the value γ ¼ ðjDj=maxAvgÞ−1 to be

later used for pruning itemsets using Theorem 2. Then, the algorithm identifies the set I* of all

items having a periodicity no greater than maxPer, and appearing in no less than γ transactions

(other items are ignored since they cannot be part of a PFP by Theorems 1 and 2. Items in I� are

then sorted according to the order ≻ of ascending support values, as suggested in [3]. A

database scan is then performed. During this database scan, items in transactions are reordered

according to the total order ≻, and the tid-list of each item i∈I� is built. Then, the depth-first

search exploration of itemsets starts by calling the recursive procedure Search with the set of

single items I�, γ, minutil, minAvg, minPer, maxPer, and jDj.

The PFPMSearch procedure (Algorithm 2) takes as input extensions of an itemset P (initially

assumed that P ¼ ∅) having the form Pz meaning that Pz was previously obtained by

appending an item z to P, γ, minAvg, minPer, maxPer, and jDj. The search procedure performs

a loop on each extension Px of P. In this loop, the average periodicity of Px is calculated by

dividing jDj by the number of elements in the tid-list of Px plus one (by Lemma 1). Then, if the

average periodicity of Px is in the ½minAvg;maxAvg� interval, the minimum/maximum period-

icity of Px is no less/not greater than minPer=maxPer according to the values stored in its tid-

list, then Px is a PFP and it is output. Then, if the number of elements in the tid-list of Px is no

less than γ, and maxperðPxÞ is no greater than maxPer, it means that extensions of Px should be

explored (by Theorems 1 and 2). This is performed by merging Px with all extensions Py of P
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such that y≻x to form extensions of the form Pxy containing jPxj þ 1 items. The tid-list of Pxy is

then constructed by calling the Intersect procedure (cf. Algorithm 3), to join the tid-lists of P, Px,

and Py. This latter procedure is similar to the join of tid-list described in the Eclat algorithm [3],

with the exception that periods are calculated during tid-list intersection to obtain maxPerðPxyÞ

and minPerðPxyÞ (not shown). Then, a recursive call to the PFPMSearch procedure with Pxy to

explore its extension(s). The PFPMSearch procedure starts from single items, recursively

explores the search space of itemsets by appending single items, and only prunes the search

space using Theorems 1 and 2. Thus, it can be easily seen that this procedure is correct and

complete to discover all PFPs.

In the implementation of PFPM, two additional optimizations are included. The first optimi-

zation is to calculate the support of all pairs of items {x; y} occurring in the database during the

first database scan, and store it in memory. Then, Line 7 of the search procedure is modified to

prune itemset Pxy if sð{x; y}Þ is less than γ by Theorem 2. The second optimization is in the

Intersection procedure. During the loop, if it is found that Pxy cannot have no more than

γ ¼ ðjDj=maxAvgÞ−1 transactions, the loop can be stopped.
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5. Experimental study

To evaluate the performance of the proposed PFPM algorithm, we compared its performance

with Eclat, a state-of-the-art algorithm for frequent itemset mining. The Eclat algorithm was

chosen for comparison as the PFPM algorithm is based on Eclat. The PFPM and Eclat algo-

rithms are implemented in Java. The experiment was carried out on a sixth generation 64 bit

Core i5 processor running Windows 10, and equipped with 12 GB of free RAM. Four bench-

mark data sets were utilized in the experiment, which are commonly used in the FIM literature.

The retail, chainstore, and foodmart data sets contain anonymized customer transactions from

retail stores, while themushroom data set is a dense benchmark data set. The data sets have been

chosen because they represent the main types of data encountered in real-life scenarios (dense,

sparse, and long transactions). Let jIj, jDj, and A represent the number of transactions, distinct

items, and average transaction length of a data set. Characteristics of the four data sets are retail

(jIj ¼ 88; 162;jDj ¼ 16; 470;A ¼ 10:30), mushroom (jIj ¼ 8; 124;jDj ¼ 119;A ¼ 23:0), chainstore

(jIj ¼ 1; 112; 949;jDj ¼ 46; 086;A ¼ 7:26), and foodmart (jIj ¼ 4; 141; jDj ¼ 1; 559;A ¼ 4:4). The

experiment consisted of running the PFPM algorithm on each data set with fixed minPer and

minAvg values, while varying themaxAvg andmaxPer parameters. To be able to compare PFPM

with Eclat, Eclat was run with the γ value calculated by PPFM. Execution times, memory

consumption, and number of patterns found were measured for each algorithm. All memory

measurements were done using the Java API. For each data set, values for the periodicity

thresholds have been found empirically for each data set (as they are data set specific), and

were chosen to show the trade-off between the number of periodic patterns found and the

execution time. Note that results for varying the minPer and minAvg values are not shown

because these parameters have less influence on the number of patterns found than the other

parameters. Thereafter, the notation PFPM V-W-X represents the PFPM algorithm with

minPer ¼ V, maxPer ¼ W , and minAvg ¼ X. Figure 1 compares the execution times of PFPM

for various parameter values and Eclat. Figure 2 compares the number of PFPs found by PFPM

for various parameter values, and the number of frequent itemsets found by Eclat.

It can first be observed that mining PFPs using PFPM is generally much faster than mining

frequent itemsets. On the retail data set, PFPM is up to four times faster than Eclat. On the

mushroom and chainstore data sets, no results are shown for Eclat because it cannot terminate

within 1000 seconds or ran out of memory, while PFPM terminates in less than 10 seconds. The

reason is that the search space is huge for these data sets when the minimum support is set to γ.

The PFPM algorithm still terminates on these data sets because it only searches for periodic

patterns, and thus prunes a large part of the search space containing nonperiodic patterns. On

the foodmart data set, PFPM can be up to five times faster than Eclat depending on the parame-

ters. But it can also be slightly slower in some cases. The reason is that foodmart is a sparse data

set and thus the gain in terms of pruning the search space does not always offset the cost of

calculating the periodicity measures. In general, the more the periodicity thresholds are restric-

tive, the more the gap between the runtime of Eclat and PFPM increases. A second observation is

that the number of PFPs can be much less than the number of frequent itemsets (see Figure 2).

This demonstrates that a huge amount of nonperiodic patterns are found in real-life data sets.

Some of the patterns found are quite interesting as they contain several items. For example, it is

found that items with product ids 32, 48, and 39 are periodically bought with an average
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periodicity of 16.32, a minimum periodicity of 1, and a maximum periodicity of 170. Memory

consumption was also compared, although detailed results are not shown. It was observed that

Figure 1. Execution times.

Figure 2. Number of patterns found.
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PFPM use up to four and five times less memory than Eclat on the retail and foodmart data sets,

depending on parameter values. For example, on retail and maxAvg ¼ 2; 000, Eclat and PFPM 1-

5000-5-500 respectively consumes 900 and 189 MB of memory.

6. Conclusion

In this chapter, an efficient algorithm named PFPM (Periodic Frequent Pattern Miner) was

proposed to efficiently discover all frequent periodic patterns using three periodicity measures

(the minimum, average, and maximum periodicity). An experimental evaluation on real data

sets shows that the proposed PFPM algorithm is efficient and can filter a huge number of

nonperiodic patterns to reveal only the desired periodic patterns. Source code and data sets

will be made available as part of the SPMF open source data mining library [11] http://www.

philippe-fournier-viger.com/spmf/. For future work, we are working on mining correlated

periodic patterns [12], and periodic high-utility itemsets [13].
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