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Abstract

A large subset of corneal pathologies involves the formation of new blood vessels, 
leading to compromised visual acuity. Additionally, neovascularization of the cornea 
worsens the prognosis of subsequent penetrating keratoplasty, keeping the patient in 
a vicious circle of poor prognosis. Ocular angiogenesis results from the upregulation 
of proangiogenic and downregulation of antiangiogenic factors. There is a tremendous 
need for developing effective measures to prevent and/or treat corneal neovasculariza‐
tion. Topical steroid medication, cautery, argon and yellow dye laser, and fine needle 
diathermy have all been advocated with varying degrees of success. The process of cor‐
neal neovascularization is primarily mediated by the vascular endothelial growth factor 
family of proteins, and current therapies are aimed at disrupting the various steps in this 
pathway. This article aims to review the clinical causes and presentations of corneal neo‐
vascularization caused by different etiologies. Moreover, this chapter reviews different 
complications caused by corneal neovascularization and summarizes the most relevant 
treatments available so far.

Keywords: cornea, angiogenesis, etiologies, complications, management

1. Introduction

A normal cornea is necessary to protect the eye against structural damage to the deeper ocu‐

lar components as well as to provide a proper anterior refractive surface. Optimal vision and 

corneal clarity entail an avascular cornea, and maintaining the stromal avascularity is an 

important feature of the corneal pathophysiology. Corneal vascularization, which is a sign 

of corneal disease processes than a diagnosis, results from an imbalance between angiogenic 

and antiangiogenic factors [1]. The angiogenic factors stimulate the proliferation and migra‐

tion of vascular endothelial cells, resulting in the formation of a capillary tube [2, 3]. Corneal 
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 neovascularization is part of the natural healing processes, which are triggered by exposure of 

the cornea to trauma or pathogens, and is not necessarily ‘harmful.’ In the long‐term and under 

certain circumstances, however, corneal neovascularization can surpass a threshold, invading 

the cornea, reducing visual acuity, and, in case of lamellar keratoplasty or penetrating kerato‐

plasty, endangering corneal graft survival [4–7]. These complications have prompted clinicians 

to devise means to shut vessels. Topical steroid medication, cautery, argon and yellow dye laser, 

and fine needle diathermy (FND) have all been advocated with varying degrees of success. The 
advent of anti‐vascular endothelial growth factor (VEGF) antibodies has resulted in a surge of 
interest in using these agents to treat corneal neovascularization. These approaches, however, 

have a limited clinical efficacy and can result in a multitude of undesirable complications. This 
chapter aims to review the causes, pathogenesis, and clinical presentations of corneal neovascu‐

larization caused by different etiologies, such as contact lens–induced keratitis, corneal ulcers, 
and herpes simplex stromal keratitis. Moreover, it reviews different complications caused by 
corneal neovascularization and summarizes the most relevant treatments available so far.

2. Etiologies

Corneal vascularization occurs as a nonspecific response to different clinical insults. Diseases 
associated with corneal neovascularization include corneal graft rejection, inflammatory dis‐

orders, chemical burns, contact lens–related hypoxia, stromal ulceration, infectious keratitis, 

limbal stem cell deficiency, and congenital disease (Table 1) [8–10].

Categories Cause

Infectious keratitis Parasitic

Viral

Bacterial

Fungal

Hypoxia Contact lens wearing

Conjunctival/corneal degeneration Pterygium

Inflammatory disorder Stevens‐Johnson syndrome

Mucous membrane pemphigoid

Corneal graft rejection

Rosacea

Atopic conjunctivitis

Ocular surface neoplasia Conjunctival or corneal intraepithelial neoplasia

Conjunctival or corneal squamous cell carcinoma

Papilloma

Loss of limbal barrier function Congenital (e.g., aniridia)

Thermal burn, chemical burn, or other injury

Table 1. Causes of corneal neovascularization.
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Hypoxia related to contact lens wear is a common cause where corneal neovascularization is 

usually superficial and involves only the corneal periphery [11, 12]. However, if contact lens 

wear is not discontinued, deep stromal and central corneal invasion can take place.

Infections can result in corneal neovascularization with the patterns of response being different. 
Herpes simplex virus (HSV) keratitis is likely to cause extensive vascularization and lipid kera‐

topathy, while, in Acanthamoeba keratitis, vascularization tends to develop late in the course 

of the disease (Figure 1). The continued presence of HSV‐DNA and HSV‐immune complexes 

contributes to inflammation and angiogenesis in HSV stromal keratitis through increased lev‐

els of matrix metalloproteinase (MMP)‐9 and vascular endothelial growth factor (VEGF) [13, 

14]. There is a close link between extent (i.e., superficial or stromal) and location (i.e., central or 
peripheral) of infections, and the location and extent of corneal neovascularization.

Limbal stem cell deficiency (LSCD) occurs in a variety of ocular pathologies both congenital 
(e.g., aniridia) and acquired (e.g., contact lens use, drugs, chemical burns, etc.), which lead to 
partial or total loss of limbal stem cells [15, 16]. Chemical (acidic and alkaline) substances can 
penetrate and damage the cornea and anterior chamber, with alkali burns being more severe 

[17]. Conjunctivalization of the cornea with massive neovascularization may develop, lead‐

ing to severe reductions in corneal clarity and visual acuity through the pannus formation 

on the cornea and an unstable and irregular epithelium [17, 18]. Deep vascularization may 
develop in the late healing phase following severe chemical burns (Figure 2).

Degenerative conditions such as pterygium are associated with corneal neovascularization 
that usually is accompanied with a fibrovascular pannus located on, rather than in, the 
 corneal stroma. Long‐standing irritation of the ocular surface such as in vernal keratocon‐

junctivitis can lead to aggressive corneal neovascularization (Figure 3).

Figure 1. Acanthamoeba keratitis. Corneal opacity and vascularization (arrows) developed four months after corneal 
ulcer caused by Acanthamoeba in a contact lens wearer.
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Ocular surface neoplasia, including papilloma and conjunctival/corneal intraepithelial neopla‐

sia, can cause corneal neovascularization as part of the tumor angiogenic response. Initially, 

the vessels can be limited to the tumor but eventually invade the entire cornea. Other specific 
etiologies of corneal neovascularization include persistent corneal edema as in chronic hydrops 

of keratoconus and bullous keratopathy as well as corneal allograft rejection. Less common 

causes of corneal neovascularization are corneal foreign bodies and exposure to chemical tox‐

ins including mustard gas, radiation, or sun [19–21]. Intrastromal corneal ring implants, loose 

sutures, suture knots, and broken sutures seem to provide a stimulus for corneal vascularization 

Figure 3. Corneal vascularization (asterisk) in a patient with vernal keratoconjunctivitis.

Figure 2. Limbal stem cell deficiency after alkali burn. The Figure demonstrates invasion of conjunctival vessels into the 
cornea (conjunctivalization) along with corneal stromal opacification and vascularization (asterisk).
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(Figure 4). The mucus that collects around loose and broken sutures can trap polymorphonu‐

clear cells and microbes inciting localized inflammation/infection, thus attracting vessels.

3. Pathogenesis

The upstream molecular pathway mechanisms resulting in corneal neovascularization differ 
in the different underlying pathologies. Nonetheless, core molecular pathways governing the 
processes of corneal hemangiogenesis seem to be shared among various conditions leading to 

the active stage of corneal neovascularization. The normally avascular cornea may vascularize 

in circumstances in which a disequilibrium between angiogenic and antiangiogenic stimuli 

results in a surplus of proangiogenic factors, such as VEGF, basic fibroblast growth factor 
(bFGF), interleukin‐1 (IL‐1), and MMP, and a deficiency in antiangiogenic agents, such as 
endostatin, angiostatin, and pigment epithelium‐derived factor (PEDF) [22].

The so‐called VEGF family consists of VEGF‐A, VEGF‐B, VEGF‐C, VEGF‐D, and placental 
growth factor [23]. VEGF‐A is the most important member of this family, especially relat‐
ing to pathologic hemangiogenesis through VEGF receptor (VEGFR)‐2. VEGF‐C and VEGF‐D 
can stimulate lymphangiogenesis through VEGFR‐2 and VEGFR‐3, respectively [24, 25]. 

Macrophages, activated by injury or inflammation, can also produce VEGF‐A, VEGF‐C, and 
VEGF‐D in corneal stroma [26]. VEGF‐A sustains various steps of hemangiogenesis including 
vascular endothelial cell proliferation and migration, capillary lumen formation, and pro‐

teolytic activity [1]. The importance of VEGF‐A in corneal neovascularization was exhibited 
experimentally on animal studies by inhibiting angiogenesis following stromal application of 

an anti‐VEGF‐A antibody [27].

Platelet‐derived growth factors (PDGFs) are involved in cell division, growth, tissue 
remodeling, and angiogenesis. Receptors, such as PDGFR‐a and PDGFR‐b, and ligands, 
such as PDGF‐A and PDGF‐B, can be found in cornea and are associated with corneal 

Figure 4. Intrastromal corneal ring segment implants complicated by corneal neovascularization. (A) Active young 
vessels (arrows) emanating from the limbus invade to the site of segment implantation. (B) The vessels have regressed 
after intrastromal corneal ring segment implants were removed. Partially regressed vessels are present in the inferior 

cornea (arrow).
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neovascularization [28, 29]. Improved understanding of the molecular mechanisms of 

vascularization has enabled identification of specific factors that suppress angiogenesis to 
maintain the avascularity of the cornea. Because several molecules are involved in corneal 

neovascularization, a multipronged approach is desirable.

4. Clinical presentations

Corneal neovascularization which arises from the limbus, conjunctiva, and iris can lead to a 

reduction in the clarity of the cornea and visual acuity because of edema, scarring, intracorneal 

lipid and protein deposition, and persistent inflammation. Additionally, there is a robust associa‐

tion between the presence of corneal neovascularization and corneal graft rejection with the risk 

increasing as more quadrants are affected by vessels (Figure 5) [4–7]. The presence of corneal neo‐

vascularization can also cause intraoperative bleeding, which can be associated with hyphema.

Abnormal vessels may invade the cornea at different planes depending on the location and 
nature of the inflammatory stimulus. Corneal neovascularization has three clinical patterns, 
based on the depth of involvement. The first type, superficial vascularization, results from 
ocular surface disease (Figure 6). The second type is stromal vessels, which results from 
alkaline injury or stromal keratitis (Figure 7). The third is deep vessels overlying Descemet's 
membrane, which can be associated with interstitial keratitis or HSV keratitis, or after deep 
anterior lamellar keratoplasty (Figure 8) [1, 8, 9, 22]. Mixed patterns are often observed clini‐

Figure 5. Endothelial corneal graft rejection in a high‐risk graft. Active old corneal vessels (arrow) arising from the 
limbus sharply dip into a deep suture track and continue to the graft in an eye that underwent penetrating keratoplasty. 

The presence of keratic precipitates (asterisk) indicates an episode of endothelial graft rejection.
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Figure 7. Deep stromal vascularization in an eye with recurrent herpes simplex stromal keratitis. Active young, bright 
red, brush‐like vessels (asterisks) invade in to the corneal stroma.

Figure 6. Phlyctenular keratitis. Superficial corneal vascularization (arrow) is evident in an eye with severe blepharitis. 
Adjacent stroma shows edema and infiltration.
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cally. The level of vascularization is chiefly related to the level of pathology rather than to the 
etiology. Superficial corneal pathology results in superficial vascularization, and deep pathol‐
ogy results in deep vessels. Often when the disease process extends through the thickness of 

the cornea, superficial and deep vessels are seen in the same cornea.

A detailed clinical evaluation of corneal neovascularization, including extension (the num‐

ber of quadrants involved) and depth, is crucial for treatment planning. In addition to the 
extent and level of corneal vascularization, the state of vessel activity is also important [30]. 

Clinically, corneal vascularization can be classified as active young, active old, mature, par‐

tially regressed, and regressed. This often corresponds with the stage of activity or chronicity 

of the disease. Active young vessels are freshly formed vessels that are full of blood, appear 

bright red in color, have minimal surrounding fibrous tissue sheathing, and are actively 
progressing in the cornea with a well‐defined arborizing network of fine (capillary) vessels 
(Figures 4A and 7). The corneal stroma surrounding the vessels shows signs of leakage and 
edema. Active old vessels appear less bright and maintain a brisk circulation (Figure 5). This 
represents the stage when the vessels have reached and surrounded or covered the offending 
lesion in the cornea. Their progression ceases but consolidation continues. Mature vessels 
are relatively large vessels, with minimal arborization and regressed or absent capillary net‐

works, seen to persist in scar tissue or in the corneal stroma after the corneal pathology has 

healed. These vessels contain blood and maintain a circulation (Figure 9). Partially regressed 
vessels are seen when the corneal pathology has abated in response to therapy or the arrival 

Figure 8. Partially regressed vessels with lipid keratopathy (asterisk) at the donor‐recipient interface in a patient who 
underwent deep anterior lamellar keratoplasty (DALK). Vessels arising from the limbus sharply dip into a deep suture 
track and continue to the deep lamellar plane created by the DALK procedure, before fanning out. The vessels are dull 
red with a slow circulation, and some parts of the complex are less visible or have undergone attrition.
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of corneal vessels. The circulation in the vascular complex is relatively slow, the vessels are 

less engorged, and some parts of the complex have become less visible or undergo attrition 
(Figures 4B and 8). Regressed (ghost) vessels present as fine white lines mirroring the mor‐

phology of the original vessels. These do not have an active circulation, and the cornea where 

they are located is not edematous. Although clinically undetectable, lymphangiogenesis 

almost always accompanies hemangiogenesis in the cornea [31].

5. Paraclinical evaluation of corneal vascularization

Accurate evaluation and documentation of corneal neovascularization are essential to moni‐

tor the effect of any treatment modality employed. Case note entries can be used to assess the 
extent of corneal vascularization, and the depth of penetration and the centripetal progression 

of vessels, which allows a semiquantitative measurement of corneal neovascularization. It is 

neither time efficient nor practical, however, to manually trace the corneal vessels in each fol‐
low‐up examination. Furthermore, the reproducibility is questionable, and the opportunity 
for variability and human error is very high.

The need to measure corneal neovascularization motivated researchers to explore measurement 

tools. An ideal measurement tool should allow rapid, reproducible, accurate, and objective mea‐

surement of corneal neovascularization. Digitized photographs with good contrast can be ana‐

lyzed, based on the grayscale values, to evaluate the progression of vascularization [32]. Corneal 

vessels can be quantified on the basis of contrast enhancement, density threshold identification 

Figure 9. Mature vessels in the corneal stroma after the improvement of corneal ulcer (asterisk). The vessels are relatively 
large, with minimal arborization and regressed or absent capillary networks. These vessels which persist in scar tissue 

contain blood and maintain a circulation.
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for the blood vessels, and pixel measurement [33]. A more novel automatic approach on the basis 

of gray filter sampling and threshold analyses of digital photographs using an image analysis 
software has also been investigated [34, 35]. Despite the recent progress in the graphic editing 
software, automated methods have some limitations. First, the optimization and validation of 
any automated quantitative tool are questionable [36–38]. Second, it does not allow sufficient 
appreciation of details on vessel extent, localization, leakage, origin, and differentiation of the 
afferent and efferent systems. This information is of importance for guidance of clinical judg‐

ment and treatment [39].

Corneal angiography, using fluorescein and indocyanine green, provides excellent details of 
the neovascular complexes, thus enabling an enhanced clinical assessment and decision‐mak‐

ing even in patients with complex corneal neovascularization [39]. The required technological 

equipment for corneal angiography is readily available in most ophthalmologic centers, as 

angiography is widely used to diagnose vascular disorders of the retina of various origin. It 

is a relatively inexpensive and safe diagnostic intervention, and serious adverse events like 

anaphylaxis to the intravenous dye are extremely rare [40, 41].

Fluorescein angiography gives an indication of the vessel maturity and leakage activity, whereas 
indocyanine green angiography allows better depiction of capillaries and deeper corneal neo‐

vascularization, particularly in the presence of vessel obscuration because of corneal haze and 

scarring [39]. It is possible to calculate the area of corneal neovascularization, the time to first 
detection of fluorescein dye leakage, corneal neovascular vessel diameter, and vascular tortuos‐

ity and activity. These parameters reliably quantify changes in corneal neovascularization over 

time [39]. Therefore, it allows monitoring of the natural course and treatment success [42].

6. Treatments

The treatment for corneal neovascularization aims at the occlusion of afferent corneal blood 
vessels to reduce exudative lipid keratopathy, and stromal edema and inflammation or as a 
preoperative conditioning intervention before keratoplasty to increase chances of graft sur‐

vival [17, 43]. Current treatments for corneal neovascularization consist of topical nonste‐

roid anti‐inflammatory and corticosteroid medications [44], photodynamic therapy [45], laser 

photocoagulation [46, 47], fine needle diathermy [48], and limbal, conjunctival, and amniotic 

membrane transplantation (AMT) [49]. More recently, manipulation of VEGF activity and 
manipulation of proangiogenic mediators like interleukin have been under investigation [50, 51].  

Unfortunately, all of these approaches have a limited clinical efficacy, especially when the 
vessels are large because large vessels are difficult to occlude and easily recanalized. In addi‐
tion, a multitude of undesirable side effects can occur after the treatment of corneal neovas‐

cularization. The following section reviews the available treatment approaches for corneal 

neovascularization and their limitations.

6.1. Corticosteroid therapy

Inflammation is a potent driver for corneal neovascularization. When inflammation set‐
tles, spontaneous regression of corneal neovascularization can occur and lead to gradual 
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resolution of lipid keratopathy if present. Topical and periocular steroids have been popu‐

lar and can effectively reduce inflammation and consequently corneal neovascularization 
in various disease conditions. However, the risks of superinfection, glaucoma, and cata‐

ract associated with the long‐term use of corticosteroids have been a limiting factor [44]. 

Additionally, steroids have only limited antiangiogenic effects [52]. Cyclosporine A and 

nonsteroidal anti‐inflammatory agents were reported to be largely ineffective in controlling 
or limiting corneal angiogenesis [53].

6.2. Laser photocoagulation

Photocoagulation of vessels has been shown to be an effective method to obliterate corneal vas‐

cularization [46, 47]. The argon laser [46] and the 577 nm yellow dye lasers [47] have been used 

effectively for treating vascularization in lipid keratopathy and graft rejection. Laser obliteration 
of corneal efferent vessels is comparatively easy as they are wider and have a relatively slower 
blood flow. Conversely, the afferent vessels are narrower and deeper, have a rapid blood flow, 
and are more difficult to obliterate. Consequently, reopening of the afferent vessels takes place 
in a high proportion of patients. In such cases, the procedure can be repeated more than once. 

Laser photocoagulation may not be effective in cases with extensive corneal neovascularization 
[46]. Other drawbacks include damage to iris and accidental suture lysis, which has a signifi‐

cant implication for grafts with running sutures. Furthermore, the expense of this equipment 
and the lack of availability in most centers make the treatment inaccessible to most surgeons.

6.3. Fine needle diathermy

Fine needle diathermy (FND) is an inexpensive and useful procedure that can serve as an 
adjunct or alternative to laser photocoagulation for the management of established corneal 

vessels. FND is simple and inexpensive and can be performed under topical anesthesia by any 
ophthalmologist. It can be applied at any depth to obliterate both afferent and efferent ves‐

sels with equal efficacy. However, it may have to be repeated to obtain the desired result [48]. 

Corneal microperforation is a potentially serious adverse event that can occur during passage 

of the needle. This is particularly so when the vascularized cornea is thin [48]. Other adverse 

events, such as striae, whitening, and intracorneal hemorrhages, are reversible [48]. Transient 

opacification of the cornea is observed in the stroma immediately surrounding the needle 
in all patients and persists for 24–48 h, with complete resolution. Intracorneal  hemorrhage 
occurring intraoperatively or immediately postoperatively is the commonest adverse event. 

Though dramatic in appearance, intracorneal hemorrhages all resolve over a week or two. 

Sometimes, crystalline deposits can develop in the site of hemorrhage [48].

6.4. Corneal anti‐angiogenesis target therapies

The advent of anti‐VEGF agents has introduced a new dimension to the management of cor‐

neal vessels [54]. Active young vessels which usually indicate an underlying ongoing pathol‐

ogy continuing to induce further vascularization are probably best treated with anti‐VEGF 
drops or subconjunctival injections. There is a growing list of therapeutic agents that target 

corneal angiogenesis (Table 2). Currently, only limited experience using anti‐VEGFs on the 
cornea and only in an off‐label setting is available [54].
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Targets Mechanisms Therapeutics

Vascular endothelial growth  
factor

Anti–VEGF‐A antibodies Bevacizumab

Ranibizumab

Soluble or modified VEGF  
receptors

VEGFR‐2‐Fc

sVEGFR‐3 overexpression gene therapy

VEGFR‐1 morpholino

Recombinant dimeric

sVEGFR‐1 overexpression gene therapy

VEGFR intraceptor gene therapy 
(Flt23k, Flt24k)

Aflibercept/VEGF‐Trap(R1R2)

VEGF‐A aptamer Pegaptanib

Pigment epithelium‐derived  

factor

PEDF direct effect PEDF

PEDF gene therapy

PEDF‐derived peptide

Angiostatin Angiostatin direct effect Angiostatin pump

Platelet‐derived growth factor Multitargeted receptor tyrosine  
kinase inhibitor

Sunitinib

PDGF receptor inhibitor AG 1296

12‐Hydroxyeicosatrienoic acid siRNA for cytochrome P450 
mono‐oxygenase

CYP4B1 siRNA gene therapy

Hypoxia‐inducible factors shRNA for hypoxia‐inducible  
factors

HIF‐1a shRNA gene therapy (HIF‐1a 
RNAi‐A)

Decorin Decorin direct effect Decorin gene therapy

Vascular adhesion protein VAP‐1/SSAO inhibitor U‐V002

LJP1207

Cannabinoid receptor CB1 CB1 antagonist Rimonabant

Vasohibin‐1 Vasohibin‐1 directly effect Vasohibin‐1 gene therapy

HIF‐1a: hypoxia‐inducible factor 1a, CYP: cytochrome P450 mono‐oxygenase, PDGF: platelet‐derived growth factor, 
SSAO: semicarbazide‐sensitive amine oxidase, PEDF: pigment epithelium‐derived factor, VAP‐1: vascular adhesive 
protein‐1, sVEGFR: soluble form of vascular endothelial growth factor receptor, VEGF: vascular endothelial growth 
factor, VEGFR: vascular endothelial growth factor receptor.

Table 2. Corneal antiangiogenesis target therapies.
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6.4.1. Anti‐VEGF antibody

Inhibition of VEGF activity by a specific neutralizing anti‐VEGF antibody is one possible 
strategy for treating corneal angiogenesis. VEGF inhibitors such as pegaptanib sodium 
(Macugen™, OSI/Eyetech), off‐label bevacizumab (Avastin™, Genentech), and ranibizumab 
(Lucentis™, Genentech) are currently used for the treatment of different retinal pathologies 
including wet‐type age‐related macular degeneration [55]. Both animal models and clinical 

trials have demonstrated that these agents are effective in reducing corneal neovasculariza‐

tion. Both ranibizumab and bevacizumab use the same mechanisms and nonspecifically 
inhibit the VEGF‐A isoforms [56]. Nevertheless, differently from ranibizumab and bevaci‐
zumab, pegaptanib specifically binds to VEGF‐A165 and does not inhibit all of the VEGF iso‐

forms. Subconjunctival ranibizumab, pegaptanib sodium, and bevacizumab are effective with 
no epitheliopathy in reducing corneal angiogenesis. Repeated subconjunctival injections with 

higher doses and concentrations and combination therapy with other antiangiogenic agents 

may be valid options to improve the effectiveness of treatments [57].

Treating corneal new vessel with the anti‐VEGF antibody has some limitations. In contrast to 
superficial and active vascularization, in which clear regression is observed, anti‐VEGF agents 
have a lower effect on deep vascularization. The effect of the anti‐VEGF antibodies depends 
on the time of the treatment after the onset of neovascularization. In contrast to newly formed 

vessels, stable vessels are less affected by VEGF blockade [58]. The vessels mature in chronic 

neovascularization, and pericytes are recruited to the area around the region of corneal neo‐

vascularization [59]. Such coverage may reduce the influence of anti‐VEGF agents on the 
regression of newly formed immature vessels. Anti‐VEGF therapy is only a symptomatic 
treatment of corneal neovascularization that does not cure the underlying pathology, mak‐

ing it necessary to repeat the treatment to maintain its positive effect over a span of time [27].

Bevacizumab, which is FDA approved for intravenous administration in the treatment of 
various cancers, is a full‐length, humanized murine monoclonal antibody with a molecular 

weight of 149 kD. Bevacizumab recognizes all isoforms of VEGF and is in widespread use, off‐
label, as an intravitreal injection to treat different retinal diseases [60]. Additionally, studies 

have demonstrated that topical, subconjunctival, and intraocular application of  bevacizumab 

can partially reduce corneal angiogenesis and inflammatory response, resulting in an increase 
in corneal transparency [61, 62]. Bevacizumab can inhibit macrophage migration to the cor‐

neal stroma in early but not late treatment. Macrophages are known to trigger neovascu‐

larization in ischemic or inflamed corneas [63]. There is a concern about the interference of 

the topical form but not subconjunctival form of bevacizumab with nerve regeneration and 

delayed wound healing [54, 64, 65].

Ranibizumab, which has VEGF‐binding characteristics similar to bevacizumab, is a recombi‐
nant humanized monoclonal antibody fragment that binds and inhibits all VEGF‐A isoforms. 
Bevacizumab and ranibizumab are related to each other, but ranibizumab is the Fab fragment 
from the same antibody used to create bevacizumab. Therefore, ranibizumab has a molecular 

weight of 48 kD, making it approximately one‐third the size of bevacizumab and theoretically 
allowing a better corneal penetration. In addition, it has been affinity matured to optimize 
the VEGF‐A binding potential. These characteristics may enable ranibizumab to reduce cor‐
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neal angiogenesis more effectively than bevacizumab [66]. Subconjunctival ranibizumab sig‐

nificantly reduces VEGF levels not only in the bulbar conjunctiva and cornea but also in the 
iris and aqueous humor [67]. Clinically, stable corneal neovascularization can be effectively 
treated by topical ranibizumab 1% as evidenced by a significant reduction in vessel caliber 
and neovascular area with no significant change in invasion area. These findings suggest that 
the main outcome of ranibizumab treatment for stable corneal neovascularization is to induce 

the narrowing of vessels more than a reduction in their length.

6.4.2. Pigment epithelium‐derived factor

PEDF is a glycoprotein with neurotrophic, antitumorigenic, and antiangiogenic functions. 
PEDF can inhibit FGF, VEGF, and interlukin‐8 (IL‐8/CXCL8)‐mediated angiogenesis by 
inducing the cells’ apoptosis and reducing endothelial cell migration simultaneously [68, 69]. 

It is also found to play an important role in the antiangiogenic effect of AMT [70]. Topical 

PEDF or PEDF‐derived (P5‐2 and P5‐3) peptides can downregulate VEGF expression and 
inhibit corneal neovascularization in a chemical‐induced corneal model [71].

6.4.3. Tyrosine kinase inhibitors

Anti‐VEGF antibodies block the effect of VEGF before it attaches to the endothelial recep‐

tors. Tyrosine kinase with immunoglobulin and epidermal growth factor homology domain 

2 (TIE2) that is predominantly or exclusively expressed in endothelial cells is an important 
regulator of angiogenesis. Tyrosine kinase inhibitors inhibit the activity of VEGF by block‐

ing tyrosine kinase in the intracellular part of the VEGF cell membrane receptor. This may 
offer a different opportunity for the management of the angiogenesis process in corneal dis‐

eases. Regorafenib is a multikinase inhibitor that targets various kinases, including PDGF 
β, VEGFR1, VEGFR2, and VEGFR3, mutant oncogenic kinases, TIE2, and the FGF receptor, 
which are involved in neovascularization. The inhibitory effects of topical regorafenib are 
comparable to those of topical bevacizumab and dexamethasone [72]. Sunitinib is a multitar‐

geted receptor tyrosine kinase inhibitor that blocks both VEGF and PDGF. Topically adminis‐

tered sunitinib can reduce corneal neovascularization more effectively than bevacizumab [73].

Trastuzumab is a monoclonal antibody that interferes with the HER2/ neu receptor. Lapatinib 
is a dual tyrosine kinase inhibitor, which interrupts the epidermal growth factor receptor 

(EGFR) and HER2/ neu pathways. Lapatinib used in the form of lapatinib ditosylate is an 
orally active drug for solid tumors such as breast cancer. In recent studies, both substances 

were compared for the treatment of experimental corneal angiogenesis. The results suggested 

that systemically administered lapatinib is more effective than systemically administered 
trastuzumab in preventing corneal angiogenesis [74].

7. Conclusion

Corneal neovascularization is a common clinical feature in different corneal diseases includ‐

ing ocular traumatic or chemical injury, autoimmune diseases, chronic contact lens wear, 

infectious keratitis, and keratoplasties. Although corneal neovascularization can serve a 
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beneficial role in arresting stromal melts, wound healing, and the clearing of infections, its 
disadvantages are numerous and it frequently results in edema, tissue scarring, persistent 

inflammation, and lipid deposition that may significantly reduce vision. Furthermore, it 
plays a major role in corneal graft rejection by breaching corneal immune privilege. VEGF, 
which plays a crucial role in angiogenesis and the pathologic neovascularization associated 

with a variety of eye diseases, is the most important target for antiangiogenic therapies. 

Experience indicates that anti‐VEGFs are effective in occluding actively growing corneal 
neovascularization but not established vessels. Surgical procedures, including laser photo‐

coagulation or fine needle diathermy, are useful particularly to obliterate large, established 
corneal vessels.
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