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Abstract

The aim of this study is to explore the usage of statistical learning methods on  wearable 
devices and realize an experimental study for recognition of human activities by using 
smartwatch sensor data. To achieve this objective, mobile applications that run on smart‐
watch and smartphone were developed to gain training data and detect human activity 
momentarily; 500 pattern data were obtained with 4‐second intervals for each activity 
(walking, typing, stationary, running, standing, writing on board, brushing teeth, clean‐
ing and writing). Created dataset was tested with five different statistical learning meth‐
ods (Naive Bayes, k nearest neighbour (kNN), logistic regression, Bayesian network and 
multilayer perceptron) and their performances were compared.

Keywords: statistical learning, activity recognition, wearable devices, smartwatch, 
Bayesian networks

1. Introduction

The usage of wearable technology is increasing rapidly, and the effects of user healthcare 
are enormous. Today's smart devices have more built‐in sensors than before. Wearable sen‐

sors are small devices which are carried by people, while they are performing daily activi‐

ties. These sensors such as an accelerometer, microphone, GPS and barometer record the 

physical condition of person such as location change, moving direction and moving speed. 

Latest smartphones and smartwatches have many wearable sensors as built‐in [1, 2]. Because 

of equipped with various on‐board sensors, smartphones and wrist‐worn devices such as 

smartwatches are being extensively used for activity recognition in recent studies [3]. With 

the popularity of the smartwatches, wrist‐worn sensor devices will become an increasingly 

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
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important tool in personal health monitoring [4]. Statistical learning methods are generally 

used in activity recognition studies. Statistical learning refers to a set of tools for modelling 

and understanding complex datasets. It is a recently developed area in statistics and blends 

with parallel developments in computer science and, in particular, machine learning [5].

The aim of this chapter is to investigate the usage of statistical learning methods on wearable 

devices and carry out a case study for recognition of human activities with accelerometer data 

of smartwatch by using statistical learning methods. This chapter is organized as follows: 

related works are described in detail in Section 2. Then, overview of statistical methods is 

mentioned in Section 3. Next, human activity recognition with smartwatches is explained in 

Section 4. Finally, Section 5 concludes the chapter.

2. Related works

When examining the literature, various studies are found statistical learning methods with 

wearable devices. Wang et al. [6] imagined a user typing on a laptop keyboard while wearing 

a smartwatch. The accelerometer and gyroscope data, which obtained from Samsung Galaxy 

Live, were used as training data, and processed through a sequence of steps, including key‐

press detection, hand‐motion tracking, character point cloud computation and Bayesian mod‐

elling and inference. Shoaib et al. [3] carried out to recognize of different living activities by 
using a smartphone and a smartwatch simultaneously and evaluated their effectiveness in 
recognizing human activities. They used J48, kNN and SVM (support vector machines) to 
recognize 13 various activities. da Silva and Galeazzo [7] presented the development of a sys‐

tem based on computational intelligence techniques and on an accelerometer to perform, in a 

comfortable and non‐intrusive manner, the recognition of basic movements of a person’s rou‐

tine. Three different computational intelligence techniques were evaluated in order to search 
for the best performance of the recognition of the movements executed by the watch user. 

Chernbumroong et al. [8] studied classification of five human activities by using only acceler‐

ometer data and two learning algorithms: Artificial Neural Networks and Decision Tree C4.5. 
Scholl and van Laerhoven [9] presented a feasibility study with smokers wearing an acceler‐

ometer device on their wrist over the course of a week to detect their smoking habits based on 

detecting typical gestures carried out while smoking a cigarette. The Gaussian method was 
used as a classifier. Dong et al. [10] described a new method that uses a watch‐like configu‐

ration of sensors to continuously track wrist motion throughout the day and automatically 

detect periods of eating. Accelerometer and gyroscope sensor data were used in this study. 

Ramos‐Garcia and Hoover [11] developed a Hidden Markov model (HMM) and compared its 
recognition performance against a non‐sequential classifier (kNN), using a set of four actions 
(rest, utensiling, bite and drink). Trost et al. [12] compared the activity recognition rates of 

an activity classifier trained on acceleration signal collected on the wrist and hip. Features 
were extracted from 10 seconds windows and inputted into a regularized logistic regres‐

sion model. Guiry et al. [1] investigated the role of smart devices including smartphones and 

smartwatches which can play in identifying activities of daily living. The activities examined 

include walking, running, cycling, standing, sitting, elevator ascents, elevator descents, stair 
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ascents and stair descents. Data from this study were used to train and test five well‐known 
statistical machine learning algorithms: C4.5, CART, naïve Bayes, multilayer perceptrons and 
finally support vector machines. Mortazavi et al. [4] introduced a framework for platform 

creation (e.g. accelerometer only system versus accelerometer and gyroscope) and machine 

learning of some activities, which can be especially useful in the emerging market of smart‐

watches. Random forests, decision trees, Naive Bayes and SVM methods were compared. 
Khan et al. [13] implemented a smartphone‐based HAR scheme in accordance with these 

requirements. Time domain features were extracted from only three smartphone sensors, and 

a nonlinear discriminatory approach was employed to recognize 15 activities with a high 

accuracy. Evaluations were performed in both offline and online settings. Dadashi et al. [14] 

carried out detection of important breaststroke swimming events automatically by using 

Hidden Markov model (HMM) and wearable sensors. Parkka et al. [15] used accelerometers 

and gyroscopes attached to ankle, wrist and hip to estimate intensity of physical activity. 
Data from common everyday tasks and exercise were collected with 11 subjects. Shen et al. 
[16] tracked the 3D posture of the entire arm—both wrist and elbow—using the motion and 
magnetic sensors on smartwatches. Bieber and Peter [17] studied behaviour analysis using 

3D sensor data and learning techniques and obtained sufficient results. Bao and Intille [18] 

developed an algorithm and evaluated to detect physical activities from data acquired using 

five small biaxial accelerometers worn simultaneously on different parts of the body. Kim 
et al. [19] developed an application by using sensor signals from smartphone and smartwatch. 

Summary of the literature is given in Table 1.

Ref No. Author Year Detection Device Sensors Methods

[16] Shen et al. 2016 Arm posture Smartwatch Accelerometer, 

gyroscope, 

compass

Hidden Markov 
model

[6] Wang et al. 2015 Typing on a laptop keyboard Samsung Gear 

Live

Accelerometer 

gyroscope

Bayessian 

Inference

[3] Shoaib et al. 2015 Smoking, eating, typing, 

writing, drinking coffee, 
talking, walking, jogging, 

biking, walking upstairs and 

downstairs, sitting, standing

Smartphone and 

smartwatch

Accelerometer 

gyroscope

Support vector 

machine, 

k nearest 

neighbour, J48 
decision trees

[12] Trost et al. 2014 Lying down, sitting, standing, 
walking, running, basketball 

and dancing

ActiGraph  

GT3X+

Accelerometer Logistic 

regression

[1] Guiry et al. 2014 Walking, running, cycling, 

standing, sitting, elevator 
ascents, elevator descents,  

stair ascents, stair descents

Samsung 

Galaxy Nexus 

smartphone, 

Motorola 
MotoActv 
smartwatch

Accelerometer, 

magnetometer, 

gyroscope, GPS, 

light, pressure. 

Smartwatch only 

accelerometer

C4.5, CART, 
Naive Bayes, 

multilayer 

perceptron and 

support vector 

machine

[4] Mortazavi et al. 2014 Bicep Curls, crunches,  

jumping jacks, push‐ups, 

shoulder lateral raises

Samsung Galaxy 

Gear

Accelerometer, 

gyroscope

Random 

forests, decision 

Trees, SVM and 
Naive Bayes
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3. Overview of statistical learning

Statistical learning contains a large number of unsupervised and supervised tools for infer‐

encing from data. In general terms, supervised statistical learning is employed as a statistical 

model to estimate or predict an output using relevant inputs in various areas such as pub‐

lic policy, medicine, astrophysics and business. In unsupervised statistical learning, learning 

of relationships and structure of data is possible without supervising the output [5]. In this 

Ref No. Author Year Detection Device Sensors Methods

[13] Khan et al. 2014 16 different subject LG Nexus 4 
Smartphone

Accelerometer, 

pressure, 

microphone

Artificial neural 
network, 

Support vector 

machines 

and Gaussian 

mixture model

[10] Dong et al. 2014 Period of Eating iPhone 4 Accelerometer 

gyroscope

Naive Bayes

[11] Ramos‐Garcia 

and Hoover

2013 Gesture recognition Wrist‐worn 

accelerometer 

and gyroscope

Accelerometer 

gyroscope

Hidden 

Markov model, 
k Nearest 

neighbour

[14] Dadashi et al. 2013 Breaststroke swimming 

temporal phases

IMU wearable 
sensor

Accelerometer, 

gyroscope

Hidden Markov 
model

[7] da Silva and 

Galeazzo

2013 Walking, running, sitting, 
standing, lying, climbing 

stairs, coming down stairs and 

working on computer

Ez‐430 Choronos Accelerometer Multilayer 
perceptron, 

k nearest 

neighbour, 

support vector 

machine

[9] Scholl and van 

Laerhoven

2012 Cigarette smoking Hedgehog Accelerometer Gaussian 

classifier

[8] Chernbumroong 

et al.

2011 Sitting, standing, lying, 
walking, running

Ez‐430 Choronos Accelerometer Artificial neural 
network, 

decision tree

[17] Bieber and Peter 2008 Walking, running, cycling, and 

resting

Bosch 3D‐
acceleration 

sensor

Accelerometer SVM, Bayesian 
nets and 

decision trees, 

J48

[15] Parkka et al. 2007 ironing, vacuuming, walking, 

running, cycling on exercise 

bicycle

Kionix 

accelerometer, 

XV‐3500 
gyroscope

Accelerometer, 

gyroscope

Pearson linear 

correlation

[18] Bao and Intille 2004 20 different subject ADXL210E 
accelerometers 

(On Body)

Accelerometer Decision table, 
IBL, C4.5, naïve 
Bayes

Table 1. Summary of the studies.
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chapter, supervised statistical learning methods (Naive Bayes, logistic regression, Bayesian net‐

work, k nearest neighbour (kNN) and multilayer Perceptron) are used for activity recognition.

The Naive Bayes method is applied to learn and represent probabilistic information from 

data with clear and easy understanding by using supervised learning tasks in which classes 

are known in training phase, in which prediction of classes is realized in the test phase [20]. 

Multilayer perceptron is a feedforward structure of artificial neural networks because the out‐
put of the input layer and all intermediate layers is submitted only to the higher layer. Here 
‘layer’ means a layer of perceptrons. The number of hidden layers and the number of percep‐

trons at each hidden layer are not limited [21]. In kNN, the whole of the calibration data set 

is used as a classification model. In other words, kNN does not create a different model from 
calibration data set due to its non‐parametric construction. In the same multidimensional 

hyperspace, a test set is used as the calibration set for classification. From the new test set 
object to the calibration objects, the K nearest neighbours are computed. The smallest length 

using a chosen norm is called as ‘nearest’ [22]. Logistic regression is used to describe and test 

suppositions about associations between class variable and other related predictor variables 

by estimating probabilities using a logistic function. Logistic regression can be binomial, ordi‐

nal or multinomial [23]. One of the probabilistic graphical models is Bayesian networks. In 

Bayesian networks, the knowledge about a vague subject is showed as graphical structures. In 

particular, variables are represented as nodes in the graph, whereas probabilistic dependen‐

cies among the variables are represented as the edges. The values of the edges in the graph 

can be calculated by using known computational and statistical methods [24]. The model 

 structure of the Bayesian Network used for the research in the case study is shown in Figure 1. 

Variables are standard deviations and averages of x‐, y‐ and z‐axis of accelerometer sensor.

Figure 1. The model structure of the Bayesian network.
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4. Case study: activity recognition on smartwatches using statistical 

learning methods

In this study, activity recognition is performed by using accelerometer sensor data. 

Accelerometer measures the acceleration force in m/s2 that is applied to a device on all three 

physical axes (x, y and z) given in Figure 2, including the force of gravity [25, 26].

Figure 3 shows amplitude change of accelerometer x‐axis for nine different daily activities (typing, 
writing, writing on board, walking, running, cleaning, standing, brushing teeth and stationary).

Accelerometer signals of smartwatch are utilized for activity detection by using statistical 

learning methods. Figure 4 represents the flowchart of activity recognition which includes 
collecting data, feature selection, classification and development of smartwatch application 
steps. Information about these steps is given in the following sub‐sections.

4.1. Collecting data and feature selection

Hardware: Motorola Moto 360 [27] smartwatch (Figure 5) is used. This device has quad core 

1.2 GHz processor, 512 MB RAM and built‐in accelerometer, pedometer ambient light and 
optical heart rate monitor sensors. In this chapter, only accelerometer sensor is used to detect 

Figure 2. Smartwatch accelerometer axes.
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human activities. While coding the smartwatch application, SENSOR_DELAY_UI is set as 
sampling rate which allows the sampling rate of 50 Hz. This device is capable of tracing daily 

life activities about all day long with 400 mAh battery. It has Android wear operating system.

Figure 3. Amplitude change of accelerometer x‐axis.
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Software: For collecting dataset, two Android‐based applications are developed by using Java 
programming language. One of these applications runs on smartwatch (Figure 6b) and the 

other one runs on smartphone (Figure 6a) that connected smartwatch. Because collected sen‐

sor data are sent to smartphone to keep in internal storage.

Figure 4. Flowchart of activity recognition.

Figure 5. Smartwatch that used in this case study.
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Smartwatch application has only one push button. This button serves to begin and end col‐
lecting the sensor data. Figure 7 shows structure of storing sensor data to smartphone internal 

storage. The collected sensor data are transferred to the connected smartphone and stored in 

smartphone internal memory as CSV format with the desired label name. In order to start the 
data collection process, the user writes performing activity name to mobile phone application 

and press the ‘Begin’ button on smartwatch application. During the data collection, smart‐
watch must be located on the wrist.

Figure 6. (a) Smartphone dataset application, (b) smartwatch dataset application.

Figure 7. Structure of dataset application.
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For training statistical methods, raw sensor data are collected on nine different human activi‐
ties viz running, walking, typing, writing, standing, writing on board, stationary, cleaning 

and teeth brushing which consists 900.000 lines (100.000 samples for each activity). Then data 

are split into parts of 200 lines (4‐second intervals) to form a pattern. Thus, each activity has 
500 patterns. Features are extracted from raw accelerometer data. These features are standard 
deviations and average values of x‐, y‐ and z‐axes of accelerometer data given in Figure 1.

4.2. Classification with statistical learning methods

Experimental study: Extracted features are tested by five different statistical learning meth‐

ods (Naive Bayes, kNN, logistic regression, Bayesian network and multilayer perceptron) 

using WEKA Toolkit [28] comprising these methods. Half of the data is used for training 

and remaining to test. For training and testing data are split randomly. Table 2 displays the 

comparison of evaluation metrics such as accuracy rates, F‐measure, ROC area, root mean 

squared error (RMSE) of statistical learning methods. F‐measure is a measure of a test’s accu‐

racy. Formulation of F‐measure is given in Eq. (1). FN, FP, TP and TN represents the number 
of false negatives, the number of false positives, the number of true positives and the number 

of true negatives, respectively [29].

  F − measure =   
2x   TN ______ 
TP + FP

   x   TP ______ 
TP + FN

  
  _____________  

  TP ______ 
TP + FN

   +   TN ______ 
TP + FP

  
    (1)

The RMSE of a model prediction with respect to the estimated variable X
model

 is defined as the 
square root of the mean squared error given in Eq. (2):

  RMSE =  √ 

___________________

    1 __ n   x   ∑  
i=1

  
n

    ( X  
obs,i

   −  X  
model,i

   )   2     (2)

where X
obs

 is observed values and X
model

 is modelled values at time/place i [30].

ROC (receiver operating characteristic) area is also known as area under curve (AUC) is 
 calculated as in Eq. (3).

  AUC =   1 ___ mn     ∑  
i=1

  
m

     ∑  
j=1

  
n

    1  
 p  
i
  > p  

j
  
    (3)

Methods Accuracy rates F measure ROC area RMSE

Naive Bayes 81.33 0.819 0.974 0.1644

Bayesian network 91.55 0.916 0.993 0.1242

kNN (k = 3) 89.68 0.896 0.971 0.135

Logistic regression 85.55 0.854 0.977 0.1507

Multilayer perceptron 74.57 0.734 0.957 0.1937

Table 2. The accuracy rates, F‐measure, ROC area, Root mean squared error values of statistical methods.
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Here, i runs over all m data points with true label 1, and j runs over all n data points with true 

label 0; p
i
 and p

j
 denote the probability score assigned by the classifier to data point i and j, 

respectively. 1 is the indicator function: it outputs 1 if the condition is satisfied [31].

According to Table 2, the Bayesian network method has the best accuracy rate 91.55% and 

minimum RMSE value. F‐measure is a measure of a test’s accuracy. The best values of both 

ROC area and F‐measure belong to the Bayesian network method. Confusion matrix for 

Bayesian network is given in Table 3 and ROC curves of five different methods (Bayesian 
network, kNN, Naïve Bayes, logistic regression and multilayer perceptron) are given in 
Figures 8–12.

According to Table 3, recognition accuracy for cleaning is about 75%. This activity does not 

have simple characteristics and is easily confused with other activities. For example, 19 of 
235 brushing teeth activity are misclassified as cleaning and 39 of 256 cleaning activity are 
misclassified as brushing teeth. In addition, writing board activities are confused with brush‐

ing teeth and cleaning activities are confused with running and walking. Because cleaning 

activity involves walking.

Development mobile application: According to the results shown in Table 2, the Bayesian 

network method is used in Android wear‐based classification application for recognition 
human activities (Figure 13).

Developed mobile application for smartwatches collects sensor data and converts it as a 
pattern in 4 seconds intervals. Then it classifies the data by using trained Bayesian network 
model and WEKA API and shows detected activity on smartwatch screen (Figure 14b). At this 

step, the smartwatch application does not need the smartphone. Also it is possible to report 

detected activities on smartphone screen via developed application for Android smartphone 

(Figure 14a).

Steps of the algorithm and sample Java codes used in activity detection application are given 

in Figure 15.

Classified as A B C D E F G H I

A = Typing 249 0 0 0 0 0 0 0 0

B = Cleaning 1 185 0 14 13 3 0 1 39

C = Writing 0 1 253 0 0 0 0 0 6

D = Running 0 1 0 253 0 0 0 0 0

E = Walking 0 10 0 0 233 0 0 0 0

F = Writing board 0 9 2 0 0 207 0 0 29

G = Standing 0 9 0 0 2 7 235 0 0

H = Stationary 9 2 2 0 0 0 0 240 0

I = Brushing teeth 1 19 0 0 1 8 0 1 205

Table 3. Confusion matrix of Bayesian network.
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Figure 8. ROC curve for classification by Bayesian network.

Figure 9. ROC curve for classification by kNN.
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Figure 11. ROC curve for classification by logistic regression.

Figure 10. ROC curve for classification by naïve Bayes.
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Figure 12. ROC curve for classification by multilayer perceptron.

Figure 13. Detected human activities.
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Figure 14. (a) Detected activities reporting application for smartphone, (b) activity recognition application for 
smartwatch.

Figure 15. Steps of algorithm and sample Java codes.
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5. Conclusion

In this chapter, human activity recognition on smartwatches by using statistical methods is 

studied. It is found that the Bayesian network method is the best method for the dataset used 

in the study. Through this work, it is possible to understand how to classify the human activi‐

ties by using statistical learning methods and sensor data. Only accelerometer sensor data are 

used for nine different activities. To use different sensors, which smartwatches have (heart 
rate monitor, ambient light, GPS and gyroscope), to detect more activities by increasing the 

number of classes (handshake, smoking, drinking, etc.) or to separate more complex parts of 

activities (e.g. walking hands in pockets, walking hand in hand, etc.) can improve the studies 

for human activity recognition in the future.

Nowadays, smartwatches and wrist‐worn sensors are used in daily activity monitoring and 

healthy lifestyle applications. These devices can also help to warn the user in daily life for cre‐

ating a healthy sportive habit. For example, smartwatch can send a reminder to user to warn 
about staying stationary for a long time. Such devices and applications can give information 

about people such as how much they walk, how long they sleep and how many calories they 

burn. In addition, this kind of work also contributes to virtual reality applications.
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