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Abstract

Background: 4-Hydropeoxyifosfamide (HOOI) is a hydroperoxy derivative of ifosfamide 
that was developed as an anticancer agent that can penetrate the blood-brain barrier 
(BBB), which can be potentially useful in the management of brain tumors.

Methods: A novel synthetic scheme for HOOI is presented and verified. HOOI and an 
HOOI L-lysine salt were prepared and mice implanted intracranially (IC) and in the 
mammary fat pad with human U251 glioblastoma, D54 glioblastoma, and MX-1 breast 
tumor xenografts and treated with HOOI IP once daily for 1–5 days. The animals were 
monitored for responses, increased long-term survival (ILS) and long-term survival 
(LTS). Mice, rats, and dogs received single IV doses of HOOI in a wide range of concen-
trations and results are compared and presented herein.

Results: HOOI has been synthesized as per a new route in 67% yield. The drug is sta-
ble when frozen in the absence of moisture; however, as a lysine salt the drug is sta-
ble in solution and as a lyophilized product. HOOI produced complete responses with 
improved long-term survival against IC implanted U251 glioblastoma, D54 glioblastoma, 
and MX-1 breast tumor xenografts in mice. The drug was superior to 4-demethyl-4-cho-
lesteryloxycarbonylpenclomedine (DM-CHC-PEN) and BCNU vs. IC implanted tumor 
models. The HOOI lysine salt demonstrated equal activity to that of HOOI alone. Over 

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



all, the drug was well tolerated. Predictions for human pharmacokinetic parameters and 
dosing are made from allometric analysis using the above three species. Data predicted 
an acceptable starting dose of 39 mg/m2 with a clearance of 11 L/h +/− 2.75 and a T1/2α 15 
min and T½β 5.30 h for a 70 kg human patient. The presented toxicity data plus strong 
antineuro-oncology activity supports DM-CHOC-PEN’s proposed use as a treatment for 
CNS malignancies. The drug is being prepared for Phase I trial studies in the US–IND 
pending.

Keywords: HOOI, 4-hydroperoxyifosfamide, brain tumors, non-tumor target therapy, 
no renal toxicity

1. Introduction

Isophosphoramide mustard (IPM) (Figure 1) is the active metabolite of ifosfamide (IFOS) 

and a bifunctional DNA alkylator that generates guanine-cytosine interstrand cross-link-

ing in G-X-C sequences producing cell death [1, 2]. Although IPM is the ultimate alkyl-

ator that is derived from IFOS, it has been removed from clinical trials because of lack of 

sufficient anticancer activity in clinical trials [3–5]. IFOS is still the phosphoramide mus-

tard that is most used in sarcoma therapy; however, its use is hampered by requirement 

for hepatic activation and release of extracellular acrolein (ACR) and chloroacetaldehyde 

(CAA)—resulting in dose limiting cystitis, renal toxicity, and neurotoxicity, plus myelo-

suppression [6, 7].

4-Hydroperoxyifosfamide (HOOI, Figure 1) is a peroxide derivative of IFOS that spontane-

ously undergoes ring cleavage releasing acrolein and chloroacetaldehyde primarily in situ in 

cancer cells, not extracellularly in the general circulation as does IFOS [8–10]. The support 

data for HOOI’s anticancer activity and toxicity is reviewed here.

DEKK-TEC’s interest in HOOI was to document its potential usefulness as an anticancer 

agent and if it possesses any of IFOS’ toxicities – cystitis, renal tubular necrosis, and CNS 

alterations, all of which hamper the usefulness and utilization of IFOS [6, 7]. A secondary goal 

was to develop a stable form of HOOI for clinical use [11, 12].

Figure 1. Ifosfamide (IFOS) and derivatives.
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2. Chemistry, formulations and analyses

HOOI and the L-lysine salt have been synthesized at DEKK-TEC, Inc., using GLP/GMP 

guidelines, previously described in detail [8, 9, 13–16]. The HOOI-L-lysine salt is a very stable 

chemical in the solid state under ambient conditions, soluble in water or saline and can be 

administered to animals in a saline solution (10%); the elemental analysis, NMR, mass spec-

tra, and X-ray crystallography all agreed with the structure given in Figure 2 [9].

Bulk HOOI and the L-lysine salt are stable as a lyophilized powder and can be stored at 

20–23°C for up to 1.6 years without deterioration [16].

HOOI is a weak acid which in prolonged contact with water undergoes hydrolysis resulting 

in IPM and deterioration; thus, the stability of HOOI has always been an issue [16]. The HOOI 

structure can be stabilized with L-lysine, a basic amino acid. The optimized structure for HOOI 

as the L-lysine salt is a ternary (three-molecule) HOOI-2-Lys complex—as described from 

molecular mechanics and semiempirical computational analysis of the HOOI-Lys complexes 

(Figure 2) [16]. Two lysine molecules aligned themselves "above" and "below" HOOI. L-lysine 

stabilizes the HOOI through hydrogen bonding between the –NH-PO-NH- moiety and the 

ammonium group of the lysine. In this way, the ternary complex prevents water molecules from 

approaching the acidic –NH–P=O moiety, thus protecting HOOI from hydrolysis [9, 11, 12, 16].

HOOI and its L-lysine salt (bulk, as well as, in aqueous solutions – including biological) can 

be assayed/monitored with standard high-pressure liquid chromatography (HPLC) analysis 

(Figure 3) [16].

However, the most useful method to monitor HOOI in biological samples (blood, urine, etc.) 

is with GC/MS [8, 16, 17]. HOOI can be derivatized with t-butyl dimethylsilyl-N-methyl-tri-

Figure 2. 4-HOOI/L-lysine.
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fluoroacetamide (TBDMF), which is very stable, easy to prepare, and reproducible in GC/MS 
assays (Figure 4) [8, 16, 17].

The GC/MS chromatogram for pure HOOI-TBDMF had a unique peak at 15 minutes. HOOI’s 

quantification can be performed by selected ion monitoring (SIM) at m/z = 406 amu (m = 520–

114) of fragments corresponding to the mass spectrum of the t-butyl dimethylsilyl derivatized 

compound revealing the loss of the well-known t-butyl dimethyl Si group (m-114) (Figure 4). 

Differences between HOOI and 4-HO-IFOS (a metabolite of IFOS, Figure 1) cannot be made 

on GC/MS, but this is resolved with HPLC [8, 9, 16].

The TBDMF derivatization of HOOI yield is 90% and limits of quantitation are 10 ng/mL; the 

extraction coefficients from plasma and saline are 75% and 98%, respectively [16]. Validation 
of the assay was conducted using GLP guidelines, with reference to the reported values per 

Struck et al. [12].

The GC/MS assay also allows identification of IPM (Figure 1), the ultimate degradation prod-

uct and active anticancer species generated from both IFOS and HOOI [16].

3. Antitumor evaluation in vivo

Antitumor evaluations for HOOI were performed employing standard GLP guidelines at 

Southern Research Institute and DEKK-TEC [8, 9, 16, 18]. Human xenograft tumors (U251 or 

D54 human glioma) were implanted intracranially (IC) into athymic NCr-nu/nu and the 9L rat 

glioma implanted subcutaneously (SC) into Hsd:SD rats, respectively in concentrations of 106 

cells per animal [16, 18]. All approved and monitored under the respective IACUCs.

Figure 3. HPLC: retentions – L- lysine-4.018 and HOOI-7.535.

Figure 4. Derivatization of HOOI.
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HOOI and the L-lysine salt were prepared as 10% saline solutions and evaluated against the 

above rodent tumor models per IP administered in doses ranges of 25–300 mg/kg per dose/

day × 5 days, which included the maximum tolerated dose.

Of significance is that HOOI was curative at 90 mg/kg/day × 5 days (84% long-term survival, 
LTS, with 20% CR) against the human U251 glioblastoma implanted IC. In contrast BCNU—

the gold standard for years in the treatment of gliomas produced—no CRs, while temozol-

amide (TMZ) [120 mg/kg/d × 3 days], the current standard produced identical responses to 

HOOI [16, 18, 19].

HOOI vs. HOOI-L-lysine salt possessed similar activity in a rat glioma model. No weight loss 

or hematuria was noted with either HOOI or the L-lysine salt. In contrast, IFOS produced 

gross hematuria; both HOOI and the L-lysine salt were well tolerated (Table 1).

4. Pharmacology and toxicity

The results for the acute IV toxicity studies for HOOI in mice and dogs are presented in 

Tables 2 and 3, which includes the median lethal dose values observed. Two separate single 

IV mouse-dosing studies calculated an LD
10/50

 of 200/385 mg/kg (for both sexes; with 95% 

confidence limits) [16].

Drug Dose (mg/kg) Life span (% ILS) Long-term survival (% LTS)

Control

HOOI

Vehicle

100

0

+54

0/9

89% (8/9 CR)

HOOI.lys 125 +54 100% (9/9 CR)

IFOS 400 5 0

TMZ 120 +54 60% (3/5 CR)

Treatment Schedule: 8 days post-SC implant admin.

HOOI, IFOS—IP once; TMZ—PO q 4 day × 3. Species: Hsd:SD rats—female, Harlan rats; study termination at 54 days.

Table 1. Activities of HOOI and HOOI-Lys vs. 9L rat glioma in rat implant: 106 cells SC.

Route Dose (mg/kg) Number and sex Observations

IV 0 5 M 5 F No death

50 5 M 5 F No death

100 5 M 5 F No death

200 5 M 5 F 0 M and 3 F—died

300 5 M 5 F 4 M and 4 F—died

400 5 M 5 F 5 M and 5 F—died

Table 2. Acute IV toxicity for HOOI in the mouse – DEKK-TEC study (Single dose).
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Clinical deterioration occurred in both sexes of mice and rats post-HOOI dosing in a dose-

dependent manner. No seizures or loss of coordination were observed [16].

4.1. Acute studies in mice

Table 2 reviews the acute toxicity for HOOI when administered intravenously in single doses 

of 50, 100, 150, 250, and 400 mg/kg to adult male and female mice, 10 animals per sex per dose 

level [16, 17, 19].

No animals died at 0, 100, or 150 mg/kg, then a dose vs. lethal response occurred (Table 2). 

The cause of death was generally from cardiovascular collapse. No seizures or CNS toxicities 

were reported. No macroscopic findings were reported in any of the animals [6, 19].

Based on the conditions and findings of this study, the intravenous LD
10

 of HOOI was cal-

culated to be 200 mg/kg (95% confidence limits could not be calculated) in mice (combined 
sexes). Acute intravenous toxicity study results are presented in Table 2.

4.2. Acute intravenous toxicity in dogs [16]

A dog study evaluated the acute toxicity of HOOI, when administered via a single intrave-

nous (bolus) injection to dogs (Table 3). Male beagle dogs, in groups of two (2) were admin-

istered HOOI at dose levels–10, 15, 20, and 30 mg/kg. One additional group of two male 

animals served as the control and received the vehicle, 0.9% sodium chloride, administered 

once on Day 1 via intravenous single bolus injection, at a dose volume of 1 mL/kg. Following 

administration, all animals were maintained on study for up to a 14-day observation period. 

Blood work was obtained for complete chemistry, hematological, and urine analyses, plus 

timed-blood samples for pharmacokinetic studies throughout the study.

No treatment-related effects were noted on coagulation, clinical chemistry, and urinalysis evalu-

ations, or on macroscopic and organ weight evaluations during the study. Treatment related 

mortality was noted during the study, but was limited to the 20 and 30 mg/kg dose groups. All 

animals in these groups were euthanized in extremis on Day 8 due to their deteriorating physical 

condition and following veterinary consultation. The respective groups that were administered 

the vehicle control, HOOI—10 and 15 mg/kg, survived to their scheduled necropsy (Day 15).

Treatment-related clinical findings noted during the study were most prominent at 30 mg/
kg and included decreased activity, feces few/absent, yellow discharge from the eyes, emesis/

vomit, with decreased activity, and salivation which were also noted at 20 mg/kg. However, 

Route/schedule Dose (mg/kg) Number and sex Observations

IV once 0 2 M No death

10 2 M No death

15 2 M No death

20 2 M All died

30 2 M All died

Table 3. Acute IV toxicity for HOOI in the dog.
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the animals in both these dose groups generally stopped (or nearly stopped) eating over time 

and would not respond to attempts to stimulate their appetite with canned food supplemen-

tary diet, leading to their continued deterioration and the need for subsequent early eutha-

nasia in extremis on Day 8. At 15 mg/kg, some similar signs were seen (decreased activity, in 

appetence, and thinness in one animal; feces few/ absent in the other). The conditions of the 

latter dosed animals did not deteriorate over time (they responded to attempts to stimulate 
appetite with canned food supplementary diet), allowing them to survive to the scheduled 

necropsy on Day 15, as did the animals at 10 mg/kg, whose only noteworthy clinical finding 
was feces few/absent in one of the two animals [16]. Treatment-related body weight loss and 

correlated decreases in food consumption were noted at all HOOI dose levels, and exhibited 

a dose-response pattern of effect [16].

Alterations in hematology were noted as follows: erythrocytes, hemoglobin, and hematocrit 

decreased similarly in all treatment groups by Day 3, while the control animals tended to 

increase slightly. The erythrocytes and hematocrit tended to continue to decrease through 

Day 15 with the 15 mg/kg dose. At 10 mg/kg, there was little change in erythrocyte numbers 
of hemoglobin, but hematocrit continued to decrease slightly through Day 15. These changes 

in red cell parameters were accompanied by marked reductions of reticulocytes in treated 

animals, again with no dose-dependency. These reticulocytes were beginning to rebound 

at Day 15 in the surviving animals at 10 and 15 mg/kg. Total leukocytes tended to decrease 

slightly at 15 mg/kg by Day 3, and slightly more at 20 and 30 mg/kg. This was due primarily 

to dose-dependent decreases of lymphocytes, although neutrophils also decreased at Day 

3 at 20 mg/kg. By Day 15, the lymphocytes were beginning to rebound at 10 and 15 mg/kg.

Treatment-related microscopic findings from necropsies (all animals) were limited to the 
bone marrow (femur, rib, and sternum), spleen, thymus, lymph nodes (mandibular and mes-

enteric), Peyer’s patch, and sublingual salivary gland. Treatment-related depletions in the 

hematopoietic and lymphoid tissues were noted throughout the body. Bone marrow from of 

the femur, rib, and sternum had mild to moderate mixed depletion at 20 and 30 mg/kg. Mixed 

bone marrow depletion was characterized by decreased numbers of hematopoietic cells in 

erythroid, myeloid, lymphoid, and megakaryocytic lineages [16].

The spleen had minimal to moderate generalized lymphoid depletion in males at 10, 15, 

20, and 30 mg/kg. Generalized lymphoid depletion in the thymus was considered to be 

increased in severity compared to controls in males at 15, 20, and 30 mg/kg. The man-

dibular and/or mesenteric lymph nodes had minimal to moderate generalized lymphoid 

depletion in males at 20 and 30 mg/kg. The Peyer’s patch (gut-associated lymphoid tissue) 

had mild generalized lymphoid depletion in males at 20 and 30 mg/kg. Stress and/or an 

overall impairment of health potentially contributed to the development of hematopoietic 

and lymphoid depletion; however, these findings may indicate a direct test article effect in 
these animals. The sublingual salivary gland had minimal to moderate atrophy in males 

at 30 mg/kg. Salivary gland atrophy was potentially associated with a decrease in food 

intake; however, a direct test article-related effect cannot be ruled out [16]. The kidneys 
were normal [16].

The LD
10/50 

for dogs was calculated to be 17.24/17.32 mg/kg. The experimental design is pre-

sented in Tables 3 and 4.
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Table 4 summarizes the toxic effects of single IV dose administrations of HOOI in mice and 
dogs, which includes investigations on the acute toxicity performed in mice, rats, and dogs. 

The intravenous studies were conducted under FDA GLP guidelines [16].

4.3. Pharmacokinetics

The bioavailability for HOOI in one dog dosed once with IV HOOI 30 mg/kg is presented in 

Figure 5. The plasma HOOI was assayed employing the GC/MS method. In Table 6, all of 

the PK parameters are reviewed for all the dogs treated [16]. Overall, PK profile for HOOI in 
dogs revealed a two-compartment model with AUCs linear for all doses evaluated. The assay 

is sensitive to 20 ng/mL of HOOI [16]. Calculations were made as per methods previously 

reported [14, 15, 17, 21–23].

Model parameters were estimated using Micropharm software and nonlinear least squares 

regression was performed using Simplex and Gauss-Newton fitting algorithms (Statistical 
software available from Stat soft, Tulsa, OK) [17, 21]. An open two-compartment model 

provided the best fit. Clearance, volume of distribution, and half-lives were derived from 
estimates of the model parameters. Data analysis was performed on all plasma studies 

and analyzed via non-linear regression using a non-weighed quasi-Newtonian/simplex 

[17, 20, 21].

4.4. Brain/tumor penetration (CNS accumulation of drug)

Female athymic NCr-nu/nu mice were IC implanted with U25I glioma cells (106 cells) and 

divided into groups of 5 animals and administered HOOI (135 mg/kg/ day) in saline or saline 

(vehicle) (0.5 mL) IP daily for two consecutive days (qd × 2) beginning 4-day post inoculation 

Study Species and 

strain

No./sex Age and wt Route and 

mode

Pretest 

conditioning, 

dose and 

regimen

Results Date/

laboratory

HOOI-12 Mice

CD2F1

30 M

30 F

10 wks

19–24 g

IV

Bolus

Single doses of 

50–400 mg/kg 

of HOOI with 

observation × 15 

days

LD
10

—200 

mg/kg

2007/

DEKK-TEC

793-017 Dogs

Beagle

10 M 6 months

7.75–9.8 kg

IV

Bolus

Single dose of 

10–30

mg/kg of HOOI 

in a 24 day 

observation

LD
10

—17.24 

mg/kg

LD
50

—17.32 

mg/kg

2008/MPI 

Research

Bevh-011 Hd

Rats

20 F 10 wks

160–180 g

IP Single doses of 

100–150 mg/kg 

of HOOI and 

obs’d x 7 days

No evidence 

of impaired 

memory or 

learning

2008/

DEKK-TEC

Table 4. Acute toxicity summary study.
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of cells. Four hours after the second treatment of each group, the animals were sacrificed and 
the brains removed intact and flash frozen in liquid nitrogen for storage [16, 17].

Figure 5. Bioavailability and pharmacokinetic profile for HOOI in dogs [16].

Drug Species Acute IV LD
10

Comparable human IV 

dosage*

HOOI Mouse 200 mg/kg (600 mg/m2) 60 mg/m2 (10% of LD
10

)

HOOI Dog 17.2 mg/kg (344 mg/m2) 57 mg/m2/d (1/6th of LD
10

)

*Standard conversion per FDA guidelines [26].

Table 6. Estimated comparable human intravenous dosages*.

Parameter 15 mg/kg 20 mg/kg 30 mg/kg

AUC (mg.h/L) 0.49

0.39

0.96

1.49

1.66

1.14

Cl (L/h) 30.35

38.64

20.63

13.36

18.01

26.2

T
1/2 

(h) 1.23

0.68

1.22

1.51

0.9

0.24

T
1/2 

β (h) 3.19

3.09

15.6

13.56

6.05

1.85

Table 5. PK parameters in dogs treated with HOOI.
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The encapsulated gliomas were easily identified and separated from normal brain with a scal-
pel and both homogenized separately in 10 mL 0.6 M phosphate buffer, pH 7.4 at 5°C [16, 17]. 
The cold homogenates were extracted with 10 mL chloroform, the organic layer separated and 

evaporated to dryness. HPLC and GC/MS analyses revealed HOOI in 100–126 ng/g glioma 

tissue. No drug was identified in the normal brain tissue homogenates. No chemicals or sub-

stances that could have interfered with the above extraction assays were noted in any of the 

tumors or normal brain tissues [16, 17].

4.5. Acute rat behavioral studies

HOOI vs. ifosfamide was evaluated in a modified rat neurobehavioral Morris water maze 
(18–20). Adult Sprague Dawley female rats (160–180 g) in groups of 3–6 rats per dosing were 

treated with single IP doses (MTD) of IFOS (400 mg/kg) vs. HOOI (200 mg/kg) vs. HOOI-Lys 

(300 mg/kg) and monitored with repeated timed swimming in the maze to find a hidden stage 
[17, 22–25].

The acute behavioral studies (latency to find a hidden platform in a Morris water maze—
Figures 6 and 7) was analyzed by variance (ANOVA) [17, 18].

Body weights and water temperature—prior to each dosing and during each assessment were 

monitored. Necropsies were performed on all rats [17].

There were no significant differences in behavior between the animals that received saline 
(controls), HOOI, and its lysine salt on the memory and learning time intervals. The IFOS-

treated animals had shakes and tremors for >7 h. (secondary to chloroacetaldehyde), but 

demonstrated normal learning behavioral patterns. Five days later, all rats treated with 
IFOS demonstrated hemorrhagic cystitis with gross bleeding, and bone marrow evaluations 

revealed pancytopenia. HOOI- and the lysine salt-treated animals did reveal hemorrhagic 

cystitis, but renal tubular necrosis was not observed in any animals. Histological examina-

tions confirmed the gross observations.

A control memory agent, MK-801, and 5-flurouracil (5-FU) were included to demonstrate 
complete and temporary impalement, respectively. Neither HOOI nor the lysine salt had any 

influence on memory or learning, in contrast to IFOS which produced long lasting impair-

ment [8].

4.6. Plasma levels of 4-HOOI, chloroacetaldehyde and acrolein

Adult, female C3H mice were dosed with a single IV MTD of cyclophosphamide (CPA) (250 

mg/kg), IFOS (400 mg/kg), or HOOI (100 mg/kg); dogs were dosed with IV HOOI (30 mg/kg). 

Blood was collected and measured for HOOI, chloroacetaldehyde, and acrolein.

IFOS released CAA and ACR during hepatic metabolism and GC/MS assays were employed 

to quantitate the plasma HOOI, CAA, and ACR generated. For ACR and CAA, the Kobayashi 

et al. procedure (involving a pentafluorophenylhydrazine derivatization) was modified, vali-
dated with pure CAA and ACR and biological samples [16, 21, 25].
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HOOI did not generate any detectable plasma levels of CAA in mice, in contrast to IFOS [16]. 

There is a striking inefficiency in the metabolic activation of IFOS to IPM in vivo [supported in 

the observed IV single dose LD
10

 for HOOI vs. IFOS (200 vs. 470 mg/kg) in mice]. The highest 

tolerated single IV dose tolerated for IFOS was 400 mg/kg and for HOOI is 100 mg/kg. Ideally 

we would have liked to use HOOI at 400 mg/kg to equalize doses, but that would be too toxic 

for HOOI and to reduce IFOS would have made it too low [7, 8, 11, 16].

ACR plasma levels were lower for HOOI in both dogs and mice. Mice, rats, and dogs dosed 

with HOOI did not demonstrate urinary hemorrhagic cystitis, in contrast to the IFOS treated 

mice, in which hematuria occurred 5-days post dosing. The results support our hypothesis 

that subjects treated with HOOI vs. IFOS would be exposed to lower plasma levels of ACR 

and no CAA with potentially reduced risks of developing hemorrhagic cystitis and no neu-

rotoxicity. This is in agreement with Carlson et al. who measured 2.12 μg/mL for CAA @ 4 h 

after 1-h infusion of IFOS (400 mg/kg) in a clinical study [10].

Figure 6. A rat swimming through the peanuts.

Figure 7. A rat on the hidden water maze platform.
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5. Statistical analyses

Data analyses were performed on all plasma/tissue studies and analyzed with nonlin-

ear regression methods using a nonweighed quasi-Newtonian/simplex fitting algorithms 
(Statistical software from Stat Soft, Tulsa, OK) [16, 17].

6. Discussion

The rationale for the preclinical development of HOOI was based on observed antitumor 

activity vs. intracranially implanted human tumor xenografts growing in mice and an 

anticipated reduction in renal toxicity and encephaloneuropathy that occur with standard 

IFOS and IPM therapy (1, 8, 9).

We review here the anticancer activities for HOOI in mice bearing intracranially implanted 

human xenografts and the results of acute toxicity and pharmacology studies with single 

intravenous injections in groups of mice and dogs. The end-point of all the studies was to 

document anticancer activity and drug toxicity for HOOI and an acceptable starting dose for 

a Phase I clinical trial in humans with advanced cancer. The anticancer activities, toxicology, 

and pharmacology studies reported in Tables 1–4 support the clinical development of HOOI.

Human subjects treated with IFOS develop CNS toxicities which appear to be due to the CAA 

that is generated from the dechloroethylation of either of the two 2-chloroethyl moieties [2, 7, 10].

These cyclic mono-dechloroethylated metabolites of IFOS undergo 4-hydroxylation, result-

ing in a 4-hydroxyl dechloroethylated IFOS metabolite in which the ring opens resulting in 

the corresponding aldehydes with subsequent elimination of ACR. The use of HOOI would 

bypass the dechloroethylation step seen with IFOS. The ACR formation would be significantly 
reduced and therefore lead to a significant reduction in the incidence of hemorrhagic cystitis 
and renal tubular necrosis, which are common toxicities associated with IFOS therapy [2].

The observations presented in the Table 5 support DEKK-TEC’s hypothesis that subjects 

treated with HOOI vs. IFOS would be exposed to lower plasma levels of acrolein and no chlo-

roacetaldehyde with potentially reduced risks of developing renal tubular necrosis and with 

no neurotoxicity. There is a striking inefficiency in the metabolic activation of IFOS to IPM 
in vivo (3). This is noted in the observed LD

10
 for HOOI vs. IFOS (200 vs. 470 mg/kg) in mice. 

Because of this, an effective clinical IFOS dose is harder to achieve because of intrasubject 
metabolism variability. Since HOOI does not require hepatic activation in vivo, a reduced 

intrasubject variability in the clinic is another potential advantage of administering HOOI.

Renal tubular necrosis and CNS toxicity have not been noted with HOOI in the animal stud-

ies. In the mouse study, HOOI did not generate any detectable chloroacetaldehyde and only 

20% of the acrolein produced by equivalent doses of IFOS. The latter difference is because 
HOOI does not appear to be a substrate for microsomal metabolism and enters cancer cells 

intact and releases IPM and ACR in situ. Neither proximal tubular necrosis nor Fanconni syn-

drome was observed in the rat or dog studies at final necropsy [1–3, 11, 13].
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Specific emphasis has been placed on documenting potential toxicities associated with IV admin-

istered HOOI, a peroxide—capable of producing convulsions, renal damage, hemolysis, arterial 

gas emboli-pulmonary damage, and neurological pathology—none of which have been noted.

In dog studies, animals that received HOOI, leukocytes, and neutrophils were moderately 

variable—decreased on Day 2 and at termination. Predominant organ(s) defect at autopsy was 

depletion of splenetic lymphocytes. Bone marrow was microscopically minimally to moder-

ately depressed with acceptable ratios of blood elements. No other evidence of toxicity was 

noted at autopsies, including careful complete examinations of the bone marrow and brain.

All dogs in the 10 and 15 mg/kg dosage groups survived to the scheduled necropsy on Day 

15, while groups administered 20 and 30 mg/kg were euthanized in extremis on Day 8 fol-

lowing veterinary consultation due to their deteriorating physical condition, primarily a 

worsening lack of appetite and associated/expected physical deterioration over time. At the 

gross necropsy of animals euthanized in extremis, three of the four animals had no findings 
while one animal exhibited mild red discoloration of the duodenum and mucosa of the small 

intestine. Other than spleens devoid of blood element precursors other pathology was noted.

Based on the results and outcomes of the dog HOOI study, the LD
10

 was calculated to be 17.2 

mg/kg and the LD
50

 was 17.3 mg/kg. Thus, the intravenous LD
10 

single-dose value for mice and 

dogs (sexes combined) were calculated as 200 and 17.2 mg/kg, respectively, and agreed well.

Clinical studies have revealed very high urinary levels of ACR and CAA in subjects dosed 

with IFOS [10]. In one study, 48% of the dose was excreted as the dechloroethylated metabo-

lites, while unchanged drug and carboxyifosfamide, the other major metabolite, accounted 

for only 4.7% and 2.2%, respectively [21]. Consequently, circulating levels of the dechloroeth-

ylated metabolites of IFOS could conceivably be a secondary source of CAA, in addition to the 

parent drug, which is very likely the primary source.

In the present study, the metabolism of HOOI in vivo was not observed to be a source of 

CAA. HOOI is probably less likely to be a substrate for cytochrome P450 oxidation to gener-

ate an exocyclic hemiacetal at an α-carbon in either of the two 2-chloroethyl moieties (with 
subsequent elimination of CAA), but is readily converted directly to carboxy-IFOS and IPM.

It is also reasonable to expect that clinical doses of HOOI would be significantly less than 
that for an equivalent amount of IFOS from the experimental studies (e.g., single MTD for 

HOOI 100 mg/kg vs. 400 mg/kg for IFOS), thus less drug would be available to form CAA. 

The bioavailability profile supports the single dose schedule, which is acceptable with the 
FDA [26].

HOOI possesses two (2) 3-high energy atom chains [-OOH and -O-P->O] (Figure 1), thus the 

drug more than enough ‘fits’ the criteria proposed earlier that high energy drugs like HOOI have 
a propensity to enter cancer cells- that are low in energy, but high in energy requirements [17]. 

Furthermore, the drug’s lipophilicity and the ability to accumulate in glioblastomas growing 

in the brain, make it a very desirable drug to develop for the treatment of brain tumors [16, 17].

No CNS/behavioral alterations or toxicities have been noted for HOOI or its L-lysine salt [16, 19].
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Thus, preclinical studies, conducted under GLP guidelines are reviewed and are support-

ive for HOOI’s entry into Phase I clinical trials as treatment for advanced cancer with CNS 

involvement. Table 6 reviews calculated starting doses, and data that satisfied the FDA’s 
requirements for an IND [26]. The initial level of dosing in the Phase I clinical trial has been 

established as 60 mg/m2 [9, 16, 19, 26].

7. Conclusion

Over all, the drug was well tolerated. Predictions for human pharmacokinetic parameters and 

dosing are made from allometric analyses using the above three species. Data predicted an 

acceptable starting dose of 60 mg/m2 (from mouse and dog studies). The presented toxicity data 

plus strong antineuro-oncology activity supports HOOI’s proposed use as treatment for CNS 

malignancies. The drug is being prepared for the US–IND pending Phase I trial studies [26].
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