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Abstract

Clustering is the task of partitioning objects into clusters on the basis of certain criteria
so that objects in the same cluster are similar. Many clustering methods have been
proposed in a number of decades. Since clustering results depend on criteria and algo-
rithms, appropriate selection of them is an essential problem. Recently, large sets of
users’ behavior logs and text documents are common. These are often presented as
high-dimensional and sparse vectors. This chapter introduces information-theoretic
clustering (ITC), which is appropriate and useful to analyze such a high-dimensional
data, from both theoretical and experimental side. Theoretically, the criterion, generative
models, and novel algorithms are shown. Experimentally, it shows the effectiveness and
usefulness of ITC for text analysis as an important example.

Keywords: information-theoretic clustering, competitive learning, Kullback-Leibler
divergence, Jensen-Shannon divergence, clustering algorithm, text analysis

1. Introduction

Clustering is the task of partitioning objects into clusters on the basis of certain criteria so that

objects in the same cluster are similar. It is a fundamental procedure to analyze data [1, 2].

Clustering is unsupervised and different from supervised classification. In supervised classifica-

tion, we have a set of labeled data (belong to predefined classes), train a classifier using the

labeled data (training set), and judge which class a new object belongs to by the classifier. In the

case of clustering, we find meaningful clusters without using any labeled data and group a

given collection of unlabeled data into them. Clustering can also help us to find meaningful

classes (labels) for supervised classification. Since it is more difficult to prepare the training set

for larger data sets, recently unsupervised analysis of data such as clustering becomes more

important.

For example, Table 1 user-item matrix shows which item a user bought. When considering the

data as a set of feature vectors for users, we can find a lot of types of users’ behavior by
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clustering. It is also possible to analyze data as a set of feature vectors for items. From word-

document matrix in Table 2, both document clusters and word clusters could be extracted.

Many clustering methods have been proposed in a number of decades. Those include k-means

algorithm [3], competitive learning [4], spherical clustering [5], spectral clustering [6], and

maximum margin clustering [7]. Since clustering results depend on criteria and algorithms,

appropriate selection of them is an essential problem. Large sets of users’ behavior logs and

text documents (as shown in Tables 1 and 2) are common recently. These are often presented

as high-dimensional and sparse vectors. This chapter introduces information-theoretic cluster-

ing [8] and algorithms that are appropriate and useful to analyze such a high-dimensional

data.

Information-theoretic clustering (ITC) uses Kullback-Leibler divergence and Jensen-Shannon

divergence to determine its criterion, while k-means algorithm uses the sum of squared error

as criterion. This chapter explains ITC by contrasting these two clustering techniques (criteria

and algorithms), because there are a number of interesting similarities between them. There

exists difficulty in algorithms for ITC. We explain the details of it and propose novel algo-

rithms to overcome.

Experimental results for text data sets are presented to show the effectiveness and usefulness

of ITC and novel algorithms for it. In experiments, maximum margin clustering and spherical

clustering are used to compare. We also provide the evidence to support the effectiveness of

ITC by detailed analysis of clustering results.

2. The sum-of-squared-error criterion and algorithms

Given a set of M-dimensional input vectors X ¼ {xijxi∈RM
;i ¼ 1;…;N} where N is the number

of vectors, clustering is the task of assigning each input vector xi a cluster label kðk ¼ 1;…;KÞ to

item1 item2 item3 item4 item5

User1 3 0 0 5 0 3 0 0 5 0
0 1 2 0 0
1 0 0 0 2
0 0 1 0 0

0

B

B

@

1

C

C

A

User2 0 1 2 0 0 )

User3 1 0 0 0 2

User4 0 0 1 0 0

Table 1. Consumption behavior of users.

Document1 Document2 Document3 Document4 Document5

Word1 3 0 0 5 0

Word2 0 1 2 0 0

Word3 1 0 0 0 2

Word4 0 0 1 0 0

Table 2. Word frequencies in documents (bag-of-words feature representation).
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partition them into K clusters C ¼ {C1
;…;CK}. The sum-of-squared-error criterion [9] is a simple

and widely used criterion for clustering.

Let μk be the mean of the input vectors xi which belong to the cluster Ck (see Figure 1). Then,

the error in Ck is the sum of squared lengths of the differential (= “error”) vectors ∥xi−μk∥2 and

the sum-of-squared-error criterion about all clusters (within-cluster sum of squares) is defined

by

JW ¼ ∑
K

k¼1
∑

x
i ∈ Ck

∥xi−μk∥2: (1)

JW is the objective function (criterion) to be minimized in clustering based on this criterion.

Also, we define the sum of squares of between-cluster JB and total JT as

JB ¼ ∑
K

k¼1
Nk∥μ

k−μ∥2; JT ¼ ∑
N

i¼1
∥xi−μ∥2, (2)

respectively, where Nk is the number of input vectors xi in Ck (i.e., N ¼ ∑K
k¼1 Nk) and

μ
k
¼

1

Nk
∑

x
i∈Ck

x
i
; μ ¼

1

N
∑
N

i¼1
x
i
: (3)

It follows from these definitions that the total sum of squares is the sum of the within-cluster

sum of squares and the between-cluster sum of squares:

JT ¼ JW þ JB: (4)

Since the mean of the all input vectors μ is derived from X ¼ {x1;…;x
N} [see Eq. (3)], JT does not

depend on clusters C [see Eq. (2)] and is constant for the given input vectors X . Therefore,

minimization of JW is equivalent to maximization of JB. In this sense, clustering based on

minimizing this criterion JW works to find separable clusters each other.

2.1. Generative model

In the background of the clustering based on the objective function (criterion) JW , there exists

assumption of Gaussian distribution about input vectors [10].

Figure 1. Input vectors and the mean vector in Ck.
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Suppose that there are clusters Ckðk ¼ 1;…;KÞ, which generates input vectors by the condi-

tional probability density function:

pðxijxi∈CkÞ ¼
1

ð2πσ2kÞ
M=2

exp −
∥xi−μk∥2

2σ2k

� �

, (5)

where σk is a standard deviation of the cluster Ck and M is the number of dimension of xi. In

followings, we assume that σk is constant value σ for all clusters Ckðk ¼ 1;…;KÞ. Considering

independence of each generation, joint probability density function for the input vectors X

becomes

pðX jCÞ ¼ ∏
K

k¼1
∏

x
i∈Ck

1

ð2πσ2ÞM=2
exp −

∥xi−μk∥2

2σ2

� �

, (6)

where C indicate cluster information that specifies which input vector xi belongs to cluster Ck.

Taking the logarithm of Eq. (6) yields

lnpðX jCÞ ¼ −
NM

2
logð2πσ2Þ−

1

2σ2
∑
K

k¼1
∑

x
i∈Ck

∥xi−μk∥2: (7)

Since σ is constant, the maximization of Eq. (7) is equivalent to the minimization of

∑
K

k¼1
∑

x
i∈Ck

∥xi−μk∥2: (8)

which is nothing more or less than the objective function (criterion) JW . Therefore, under the

assumption of Gaussian distribution about input vectors, clustering based on Eq. (8) works to

find the most probable solution C.

2.2. Algorithms

2.2.1. k-means algorithm

k-means [3, 11] is well-known algorithm for clustering based on the sum-of-squared-error

criterion. Main idea of this algorithm is as follows. In the objective function JW (1), error for

vector x is calculated by ∥x−μk∥2 where μk is the mean of cluster Ck to which x belongs. If

∥x−μt∥2 < ∥x−μk∥2, changing the cluster from Ck to Ct can reduce the objective function JW .

We introduceweight vectorwkðk ¼ 1;…;KÞ (W) that represent cluster Ck to implement the idea

mentioned above. The weight vector w
k involves mean vector μk and prototype vector of

cluster Ck. As illustrated in Figure 2, the idea of k-means is alternative repetition of two steps

“(a) Update weights” (calculating mean μk as weight vector w
k) and “(b) Update clusters”

(allocating input vector xi to a cluster Ck on the basis of minimum length from weight vectors

w
k). Note that Figure 2b is a Voronoi tessellation determined by weight vectors wk, which are

usually called prototype vector in this context.
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Figure 3a is a flow chart of k-means algorithm to which processes of initialization and termi-

nation are added. As a matter of fact, clustering is closely related to vector quantization. Vector

quantization means mapping input vectors to a codebook that is a set of weight vectors

(prototype vectors). When using quantization error EQ:

EQ ¼ ∑
N

i¼1
min

k
∥xi−wk∥2, (9)

clusters C determined by a local optimal solution of vector quantization W is a local optimal

solution of clustering problem [12]. In this sense, clustering can be replaced by vector quanti-

zation and vice versa. We can write a flow chart for vector quantization as Figure 3b, but we

also find this chart (b) as k-means algorithm. Furthermore, LBG algorithm [13], which is well

known for vector quantization, is based on an approach of Lloyd [3] (one of original papers for

k-means algorithm). These facts show a close relationship between clustering and vector

quantization.

Initialization is important, because k-means algorithm converges to a local optimal solution

which depends on an initial condition (a set of weights or clusters). If we initialize weights W

by randomly selecting them from input vectors, it may converge to a very bad local optimal

solution with high probability. Random labeling that randomly assigns cluster labels C to input

vectors may lead to better solutions than random selection of weights. The initialization

Random labeling can also be used for charts (b) and (c) in Figure 3 by replacing “Initialize

weights” step to “Initialize clusters” and “Update weights” steps. For directly initializing

weights, splitting algorithm [13] and k-means þþ [14] were known.

2.2.2. Competitive learning

Competitive learning [4, 11] is a learning method for vector quantization and also utilized for

clustering. While k-means algorithm updates all weights W by batch processing, competitive

learning updates one weight w at a time to reduce a part of the quantization error QE (see

Figure 3c) as

Figure 2. Two steps in k-means algorithm. (a) Update weights. (b) Update clusters.
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1. Select one input vector x randomly from X .

2. Decide a winner wc from W by

c ¼ argmin
k

∥x−wk∥2 ðIf there are several candidates; choose the smallest kÞ: (10)

3. Update the winner's weight wc as

w
c
←ð1−γÞwc þ γx, (11)

where γ is a given learning rate (e.g., 0.01–0.1).

Though the winner-take-all update in Step 3 (Figure 4) that reduces partial error ∥x−wc∥2 in

steepest direction does not always reduce the total quantization error EQ, repetition of the

update can reduce EQ on the basis of stochastic gradient decent method [15, 16]. For termina-

tion condition, maximum number of times of iteration Nr (the number of maximum repetitions)

can be used. After termination, the step of deciding clusters C like Figure 2b is required for

clustering purpose.

Figure 3. Flow charts of algorithms based on sum-of-squared-error criterion. (a) k-means1, (b) k-means2, and (c) compet-

itive learning.

Figure 4. Update of the winner's weight in competitive learning.
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Against natural expectations, competitive learning outperforms k-means without any contriv-

ance in most cases. Furthermore, information obtained in learning process allows us to

improve its performance. Splitting rule [12] utilizes the number of each weight w wins to

estimate density around it. As Figure 5a, b shows, higher density of input vectors around

makes the weight vector wa win more frequently than w
b.

Splitting rule in competitive learning [12] aims to overcome the problem of discrepancy

between distribution of input vectors X and that of weight vectors W. The discrepancy causes

a few weight vectors w monopolize X and leads to a solution of very poor quality, but it is

impossible to figure out the distribution of input vectors beforehand. Accordingly, this split-

ting rule distributes weight vectors w in learning process as

1. One weight vectorw1 with a variable τ1 is set. τ1 denotes howmany times weight vectorw1

wins and is initialized to 0.

2. Select one input vector x, decide winner wc, and update the winner's weight wc.

3. Add 1 to τ
c. If τc ¼ θ and the current number of weights K′ is less than K, generate a new

weight vector w which is the same as the winner wc and clear τ of both to 0, where θ is the

threshold of times for splitting.

4. Repeat 2 and 3 until termination condition is true.

3. Information-theoretic clustering and algorithms

Information-theoretic clustering (ITC) [8] is closely related to works about distributional

clustering [17–19] and uses Kullback-Leibler divergence and Jensen-Shannon divergence to

determine its criterion. Though there exists difficulty in algorithms and effectiveness for high-

dimensional count data (e.g., text data), its definition and properties are similar to those of the

sum-of-squared-error criterion. The main contributions of this chapter are to present the

technique to overcome the difficulty and effectiveness of ITC.

Let X ¼ {xijxi∈RM

þ ;i ¼ 1;…;N} be a set ofM-dimensional input vectors (N denote the number of

input vectors), where elements of vectors x are nonnegative real numbers. We define a l1-norm

Figure 5. Density of input vectors around a weight vector.
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of input vector tið¼ ∑mjx
i
mjÞ, normalized input vectors pi ¼ xi=ti, and an input probability

distribution Pi whose mth random variable takes the mth element of pið¼ pimÞ. Let

P ¼ {P1,…, PN} be a set of input distributions (input data).

Suppose that we assign each distribution Pi a cluster label kðk ¼ 1,…;KÞ to partition them into

K clusters C ¼ {C1;…;CK}.

Let P
k
be the distributions on themean of input data Pi which belong to the clusterCk (see Figure 6).

Then, the generalized Jensen-Shannon (JS) divergence to be minimized in Ck is defined by

DJSð{P
ijPi∈Ck}Þ ¼ ∑

Pi∈Ck

π
iDKLðP

i∥P
k
Þ; P

k
¼ ∑

Pi∈Ck

π
iPi; (12)

where Nk is the number of distributions Pi in cluster Ck (i.e., N ¼ ∑K
k¼1Nk), DKLðP

i∥P
k
Þ is the

Kullback-Leibler (KL) divergence to the mean distribution P
k
from Pi, and πi is the probability

of Pi (∑Pi∈Ckπ
i ¼ 1). Here Pi ¼ 1=Nk. Then, we define within-cluster JS divergence JSW which

considers all clusters Ckðk ¼ 1;…;KÞ as

JSW ¼ ∑
K

k¼1

Nk

N
DJSð{P

ijPi∈Ck}Þ (13)

¼
1

N
∑
K

k¼1
∑

Pi∈Ck

DKLðP
i∥P

k
Þ (14)

¼
1

N
∑
K

k¼1
∑

Pi∈Ck

∑
M

m¼1
pimlog

pim
p k
m

¼
1

N
∑
K

k¼1
∑

Pi∈Ck

∑
M

m¼1
ðpimlog pim − pimlog pkmÞ: (15)

The within-cluster JS divergence JSW is the objective function (criterion) of information-theo-

retic clustering (ITC) to be minimized [8]. We also define JS divergence of between-cluster JSB
and total JST as

JSB ¼ DJSð{P
k
jk ¼ 1;…;K}Þ ¼ ∑

K

k¼1
π
kDKLðP

k
∥PÞ; πk ¼ Nk=N, (16)

JST ¼ DJSð{P
iji ¼ 1;…;N}Þ ¼ ∑

N

i¼1
π
iDKLðP

i∥PÞ; πi ¼ 1=N, (17)

where P ¼ ∑N
i¼1π

iPi ¼ 1=N∑N
i¼1P

i is the distribution on the mean of all input data. It follows

from these definitions that the total JS divergence is the sum of the within-cluster JS divergence

and the between-cluster JS divergence [8]:

JST ¼ JSW þ JSB: (18)

Since JST are constant for given input distributions P, minimization of JSW is equivalent to

maximization of JSB. In this sense, clustering based on minimizing this criterion JSW works to

find separable clusters each other.
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The definition and properties of ITC as shown so far are similar to those of the sum-of-

squared-error criterion. Those will help us to understand ITC.

3.1. Generative model

In the background of information-theoretic clustering (ITC), there also exists the bag-of-words

assumption [20] that disregards the order of words in a document. (Since ITC is not limited for

document clustering, “word” is just an example of feature.) It means that features in data are

conditionally independent and identically distributed, where the condition is a given proba-

bility distribution for an input vector. Based on this assumption, we describe a generative

probabilistic model related to ITC and make clear the relationship between the model and the

objective function (criterion) JSW .

Let an input vector x ¼ {x1;…;xm;…;xM} present a set of the number of observations of mth

feature. Suppose that there are clusters Ckðk ¼ 1;…;KÞ which generates ti features for a data (=

input vector) with the probability distribution P
k
¼ {pk1;…;pkM}, and conditional probability of a set

of the observation about features in an input vector xi is expressed by multinomial distribution

pðxijxi∈CkÞ ¼ Ai ∏
M

m¼1
ðpkmÞ

xim
; Ai ¼

ti!

xi1! � x
i
2!⋯xiM!

; ti ¼ ∑
M

m¼1
jximj, (19)

where Ai is the number of combination of the observation. Assuming independence of each

generation, joint probability function for the input vectors X ¼ {x1;…;x
N} becomes

pðX jCÞ ¼ ∏
K

k¼1
∏

x
i
∈Ck

Ai ∏
M

m¼1
ðpkmÞ

xim , (20)

where C indicates cluster information that specifies which input vector xi belongs to cluster Ck.

Taking the logarithm of Eq. (20) yields

lnpðX jCÞ ¼ ∑
N

i¼1
logAi þ ∑

K

k¼1
∑

x
i
∈Ck

∑
M

m¼1
x
i
mlogp

k
m (21)

¼ ∑
N

i¼1
logAi þ ∑

K

k¼1
∑

Pi
∈Ck

∑
M

m¼1
ti � pimlogp

k
m: (22)

This is a generative probabilistic model related to ITC. If we assume that ti takes constant value t

for all input vectors, maximization of the probability (22) as well as minimization of the

objective function JSW (15) come to the minimization of

1

N
∑
K

k¼1
∑

Pi
∈Ck

∑
M

m¼1
−pimlogp

k
m ¼

1

N
∑
K

k¼1
Nk ∑

M

m¼1
−pkmlogp

k
m, (23)

for given input distribution P. Here, the relationship ∑Pi
∈Ckpim ¼ Nkp

k
m is used. Since ti may not

be constant value t, the generative model (22) is not an equivalent model of ITC but the related

Information‐Theoretic Clustering and Algorithms
http://dx.doi.org/10.5772/66588

101



model. This difference comes from the fact that the model treats each observation about

features equally, while ITC treats each data (input vector) equally. Though the additional

assumption ti ¼ t is required, ITC works to find the most probable solution C in the generative

probabilistic model. Furthermore, Eq. (23) is also based on the minimization of entropy in

clusters as Eq. (23) shows. Entropy (specifically, Shannon Entropy) is the expected value of

the information contained in each message that is an input distribution here. The smaller

entropy becomes, and the more compactly a model can explain observations (input distribu-

tions). In this sense, the objective function JSW (15) presents the goodness of the generative

model. The relationship (including difference) between the probabilistic model and the objec-

tive function JSW is meaningful to improve the model and the objective function in future.

Choice of appropriate model for data is important, when analyzing them. For example, large

set of text documents contain many kinds of words and are presented as high-dimensional

vectors. Taking extreme diversity of documents’ topics into account, feature vectors of docu-

ments are distributed almost uniformly in the vector space. As known by “the curse of

dimensionality” [10], most of the volume of a sphere in high-dimensional space is concen-

trated near the surface, and it becomes not appropriate to choose the model based on Gaussian

distribution which concentrates values around the mean. In contrast, ITC on the basis of the

multinomial distribution is a reasonable and useful tool to analyze such a high-dimensional

count data, because the generative model of ITC is consistent with them.

We introduce weight distribution Q
kðk ¼ 1;…;KÞðQÞ that represent cluster Ck and that

involves mean distribution P
k
and prototype distribution of cluster Ck in a manner similar to

that of the sum-of-squared-error (SSE) criterion (see Section2.2.1). Figure 7 shows relationships

between parameters in generative models. Parameters are generated or estimated by other

parameters to maximize probability of generative model. For example, clustering is the task to

find the most probable clusters C for given input vectors X or input distributions P. In

Figure 7b, constructing a classifier is the task to find Q for given P and C (classes in this

context) in training process. Then, it estimates C for unknown P using the trained Q. The

classifier using multinominal distribution is known as multinominal Naive Bayes classifier [21].

As it shows, ITC and Naive Bayes classifier have a close relationship [18].

3.2. Algorithms

There exists difficulty (Appendix A) in algorithms for ITC. We show a novel idea to overcome it.

Figure 6. Input distributions and the mean in Ck.
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3.2.1. Competitive learning

When competitive learning decides a winner for an input distribution P, it easily faces the

difficulty of calculating KL divergence from P to weight distributions Q (see Appendix A). To

overcome this difficulty, we present the idea to change an order of steps in competitive

learning (CL). As shown in Figure 8b, CL updates all weights (= weight distributions) before

deciding winner by

Qk
←ð1−γÞQk þ γP, (24)

where γ is a learning rate. Since updated weight distributions Qkðk ¼ 1;…;KÞ include all words

(features) of input distribution P, it is possible to calculate KL divergence DKLðP∥Q
kÞ for all k.

In following steps, CL decide a winner Qc from Q by

c ¼ argmin
k

DKLðP∥Q
kÞ ðIf there are several candidates; choose the smallest kÞ, (25)

and activate winner's update and discard others. These steps satisfy the CL's requirement that

it partially reduces value of objective function JSW in steepest direction with the given learning

rate γ. Here, neither approximation nor distortion is added to the criterion of ITC. Note that

updates of weight distributions Qk before activation are provisional (see Figure 8b).

Related work that avoids the difficulty in calculating KL divergence presented skew diver-

gence [22]. The skew divergence is defined as

sαðP;QÞ ¼ DKLðP∥αQþ ð1−αÞPÞ, (26)

where αð0≤α≤1Þ is the mixture ratio of distributions. The skew divergence is exactly the KL

divergence at α ¼ 1. When α ¼ 1−γ, Eq. (26) becomes similar to Eq. (24). Then, we can rewrite

the steps in CL above using the skew divergence as

1. Select one input distribution P randomly from P.

2. Decide a winner Qc from Q by

Figure 7. Relationships between model parameters. (a) Clustering based on SSE criterion. (b) Information-theoretic

clustering
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c ¼ argmin
k

sαðP;QkÞ ðIf there are several candidates; choose the smallest kÞ, (27)

3. Update the winner's weight distribution Qc as

Qc
←ð1−γÞQc þ γP, (28)

where γ is a learning rate and equal to 1−α (α is the mixture ratio for sα) usually.

Hence, we call this novel algorithm for ITC as “competitive learning using skew divergence”

(sdCL). In addition, splitting rule in competitive learning [12] can also be applied to this

algorithm.

3.2.2. k-means type algorithm

Dhillon et al. [8] proposed information-theoretic divisive algorithm which is k-means type algo-

rithm with divisive mechanism and uses KL divergence.1 However, it still remains the

Figure 8. Flow charts of competitive learning. (a) Competitive learning for SSE. (b) Competitive learning for ITC

1

The algorithm was proposed for feature/word clustering and applied to text classification. Since the algorithm uses

document class (labeled data), it cannot be applied to general clustering problem.

Advances in Statistical Methodologies and Their Application to Real Problems104



difficulty to use KL divergence directly. In such a situation, we propose to use the skew

divergence instead of KL divergence in k-means type algorithm as

1. Initialize clusters C of input distribution P randomly.

2. Update weight distributions Q by

Qk ¼
1

Nk
∑

Pi
∈Ck

Pi
: (29)

3. Update each cluster c of an input distribution Pi by

c ¼ argmin
k

sαðP
i
;QkÞ ðIf there are several candidates; choose the smallest kÞ; (30)

where mixture ratio αð0≤α≤1Þ for skew divergence sα is 0.99 for example.

4. Repeat 2 and 3 until change ratio of objective function JSW is less than small value (e.g., 10−8).

The algorithm itself works well to obtain valuable clustering results. Further, if α is close to 1,

skew divergence sα becomes a good approximation of KL divergence. Therefore, restart of

learning after termination with α closer to 1, such as 0:999; 0:9999;…, may lead to better

clustering result.

3.2.3. Other algorithms

Slonim and Tishby [23] proposed an agglomerative hierarchical clustering algorithm, which is

a hard clustering version of Information Bottleneck algorithm of Tishby et al. [24]. It is similar to

the algorithm of Baker and McCallum [18] and merges just two clusters at every step based on

the JS divergence of their distributions. A merit of the agglomerative algorithms is not affected

by the difficulty of calculating KL divergence, because it just uses JS divergence. However, a

merge of clusters at each step optimizes a local criterion but not a global criterion, as Dhillon

et al. [8] pointed out. Therefore, clustering results may not be as good as results obtained by

nonhierarchical algorithms (e.g., k-means and competitive learning) in the sense of optimizing

the objective function of ITC. Additionally, hierarchical algorithms are computationally expen-

sive, when the number of inputs is large.

Note that a lot of studies [8, 18, 23] aimed at improving accuracy of text classification using

feature/word clustering based on ITC or distributional clustering. If a clustering is just a step to

final goal, feature clustering is meaningful. However, features which characterize clusters

should not be merged, when we aim to find clusters (topics) from a set of documents. Actually,

finding topics using clustering is the aim of this chapter.

4. Evaluation of clustering

Since clustering results depend on methods (criteria and algorithms), appropriate selection of

them is important. So far, we introduced two criteria for clustering. These are called internal

Information‐Theoretic Clustering and Algorithms
http://dx.doi.org/10.5772/66588

105



criteria that depend on their own models and not enough for evaluation. If criterion for

clustering is common, we can compare clustering results by objective function of the criterion.

Under a certain model that is an assumption in other word, a more probable result can be

regarded as a better result. However, it is not guaranteed that the model or the assumption is

reasonable at all times. Moreover, good clustering results under a certain criterion can be bad

results under different criteria. A view from outside is required.

This section introduces external criteria that are Purity, Rand index (RI), and Normalized

mutual information (NMI) [25] to evaluate clustering quality and to find better clustering

methods. These criteria compare clusters with a set of classes, which are produced on the basis

of human judges. Here, each input data belong to one of class Ajðj ¼ 1;…;JÞ and one of cluster

Ckðk ¼ 1;…;KÞ. Let TðCk;AjÞ be the number of data that belongs to both Ck and Aj.

Purity is measured by counting the number of input data from the most frequent class in each

cluster. Purity can be computed as

purity ¼
1

N
∑
K

k¼1
max

j
TðCk;AjÞ, (31)

where N is the total number of input data. Purity is close to 1, when each cluster has one

dominant class.

Rand index (RI) checks all of the NðN−1Þ=2 pairs of input data and is defined by

RI ¼
aþ b

aþ bþ cþ d
, (32)

where a, b, c, and d are the number of pairs in following conditions:

• “a,” where the cluster number (suffix) is the same and the class number is the same

• “b,” where the cluster numbers are different and the class numbers are different

• “c,” where the cluster number is the same and the class numbers are different

• “d,” where the cluster numbers are different and the class number is the same

The Rand index (RI) measures the percentage of agreements a+b in clusters and classes.

Normalized mutual information (NMI) is defined as

NMI ¼
IðC;AÞ

�

HðCÞ þHðAÞ
�

=2
, (33)

where, IðC;AÞ is mutual information and HðÞ is entropy and
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IðC;AÞ ¼ ∑
K

k¼1
∑
J

j¼1
PðCk

;AjÞlog
PðCk

;AjÞ

PðCkÞPðAjÞ

¼ ∑
K

k¼1
∑
J

j¼1

TðCk
;AjÞ

N
log

TðCk
;AjÞN

TðCkÞTðAjÞ
,

(34)

HðCÞ ¼ ∑
K

k¼1
−PðCkÞlogPðCkÞ ¼ ∑

K

k¼1
−
TðCkÞ

N
log

TðCkÞ

N
, (35)

HðAÞ ¼ ∑
J

j¼1
−PðAjÞlogPðAjÞ ¼ ∑

J

j¼1
−
TðAjÞ

N
log

TðAjÞ

N
, (36)

where PðCkÞ, PðAjÞ, and PðCk
;AjÞ are the probability of data being in cluster Ck, class Aj, and in

the intersection of Ck and Aj, respectively. Mutual information IðC;AÞ measures the mutual

dependence between clusters C and classes A. It quantifies the amount of information obtained

for classes through knowing about clusters. Hence, high NMI shows some kind of goodness

about clustering in information theory.

5. Experiments

This section provides experimental results that show the effectiveness and usefulness of ITC

and the proposed algorithm (sdCL: competitive learning using skew divergence). Experiments

consist of two parts, experiment1 and experiment2.

In experiment1, we applied sdCL to the same data sets as used in the paper of Wang et al. [26]

and compared performance of sdCL with other clustering algorithms evaluated in it. The

algorithms that the paper [26] evaluated are as follows.

• k-means (KM). The weightsW are initialized by randomly [26].

• Normalized cut (NC) [27].

• Maximum margin clustering (MMC) [7].

• Generalized maximum margin clustering (GMMC) [28].

• Iterative support vector regression (IterSVR) [29].

• Cutting plane maximum margin clustering (CPMMC) [26], CPM3C [26].

As shown above, maximum margin clustering (MMC) [7] and related works are much focused.

These works extend the idea of support vector machine (SVM) [30] to the unsupervised

scenario. The experimental results obtained by the MMC technique are often better than

conventional clustering methods. Among those, CPMMC and CPM3C (Cutting plane

multiclass maximummargin clustering) [26] are known as successful methods. Experimental
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results will show that the proposed algorithm sdCL outperforms CPM3C in text data clus-

tering.

In experiment2, we focus on text data clustering and compare performance of algorithms,

sdCL, sdCLS (sdCL with splitting rule, see Sections 2.2.2 and 3.2.1), and spherical competitive

learning (spCL). We also provide the evidence to support the effectiveness of ITC by detailed

analysis of clustering results.

spCL is an algorithm for spherical clustering like the spherical k-means algorithm [5] that was

proposed for clustering high-dimensional and sparse data, such as text data. The objective

function to be maximized for the spherical clustering is cosine similarity between input vectors

and the mean vector of a cluster to which they belong. To implement spCL, we turn input and

weight vectors (x, w) into a unit vector and decide winner wc by

c ¼ argmax
k

cos ðx;w
kÞ ðIf there are several candidates; choose the smallest kÞ; (37)

and update the winner's weight wc as

w
c
←

ð1−γÞwc þ γx

∥ð1−γÞwc þ γx∥
: (38)

For all competitive learning algorithms, the learning rate γ ¼ 0:01, the number of maximum

repetitions for updating weights Nr ¼ 1; 000; 000 (termination condition), and the threshold of

times for splitting rule θ ¼ 1000 are used. After competitive learning (sdCL, sdCLS, or spCL) is

terminated, we apply k-means type algorithm to remove fluctuation as a post-processing.

Specifically, sdKM (the k-means type algorithm using skew divergence shown in Section

3.2.2) with α ¼ 0:999; 0:9999; 0:99999 is applied consecutively after sdCL and sdCLS. In each

learning procedure including post-processing, an operation is iterated 50 times with different

initial random seeds for a given set of parameters.

5.1. Data sets

We mainly use the same data sets as used in the paper of Wang et al. [26]. When applying

algorithms for ITC, we use probability distributions P
iði ¼ 1;…NÞ (P) derived from original

data.

1. UCI data. From the UCI repository,2 we use ionosphere, digits, letter, and satellite under the

same setting of the paper [26]. The digits data (8 · 8 matrix) are generated from bitmaps of

handwritten digits. Pairs (3 vs. 8, 1 vs. 7, 2 vs. 7, and 8 vs. 9) are focused due to the difficulty

of differentiating. For the letter and satellite data sets, their first two classes are used. Since

the ionosphere data contain minus values and cannot be transformed to probability distri-

butions, we do not apply ITC to them.

2

http://archive.ics.uci.edu/ml/[Accessed: 2016-10-25].
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2. Text data. Four text data sets: 20Newsgroups (http://qwone.com/∼jason/20Newsgroups/

[Accessed: 2016-10-25]), WebKB,3 Cora [31], and RCV1 (Reuters Corpus Volume 1) [32] are

used. In experiment1, we follow the setting of the paper [26]. For 20Newsgroups data set,

topic “rec” which contains four topics {autos, motorcycles, baseball, hockey} is used. From

the four topics, two sets of two-class data sets {Text-1: autos vs motorcycles, Text-2: baseball

vs hockey} are extracted. From WebKB data sets, the four Universities data set (Cornell,

Texas, Washington, and Wisconsin University), which has seven classes (student, faculty,

staff, department, course, project, and other), are used. Note that topic of the “other” class

is ambiguous and may contain various topics (e.g., faculty), because it is a collection of

pages that were not deemed the “main page” representing an instance of the other six

classes, as pointed out in the web page of the data set. Cora data set (Cora research paper

classification) [31] is a set of information of research papers classified into a topic hierarchy.

From this data set, papers in subfield {data structure (DS), hardware and architecture (HA),

machine learning (ML), operating system (OS), programming language (PL)} are used. We

select papers that contain title and abstract. RCV1 data set contains more than 800 thou-

sands documents to which topic category is assigned. The documents with the highest four

topic codes (CCAT, ECAT, GCAT, and MCAT) in the topic codes hierarchy in the training

set. Multi-labeled instances are removed.

In experiment2, we use all of 20Newsgroups and RCV1 data sets. For RCV1 data set, we

obtain 53 classes (categories) by mapping the data set to the second level of RCV1 topic

hierarchy and remove multi-labeled instances. For WebKB data set, we remove “other”

class due to ambiguity, use the other six classes, and do not use information of universities.

For all text data, we remove stop words using stop list [32] and empty data, if they are not

removed. In experiment1, we follow the setting of the paper [26], but properties of data sets

are slightly different (see Table 3). For Cora data sets, the differences of data sizes are large.

However, they must keep the same (or close at least) characteristics (e.g., distributions of

words and topics), because they are extracted from the same source.

3. Digits data. USPS (16 · 16) and MNIST (28 · 28) are data sets of handwritten digits image.4

For USPS data set, 1, 2, 3, and 4 digit images are used. For MNIST and digits data from UCI

repository, all 45 pairs of digits 0–9 are used in two-class problems.

The properties of those data sets are listed in Table 3.

5.2. Results of experiment1

The clustering results are shown in Tables 4–7, where values (except for sdCL) are the same in

the paper of Wang et al. [26] (accuracy in that paper is equivalent to purity from its definition).

In two-class problems, CPMMC outperforms other algorithms about purity and Rand Index

(RI) in most cases. The proposed algorithm sdCL shows stable performances except for

3

http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-20/www/data/[Accessed: 2016-10-25].
4

http://www.kernel-machines.org/data [Accessed: 2016-10-25].
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ionosphere to which sdCL cannot be applied. In multiclass problems, sdCL for text data (Cora,

20Newsgroups-4, and Reuters-RCV1-4) outperforms other algorithms. The results show that

ITC and the proposed algorithm sdCL are effective for text data sets. Note that CPM3C shows

the better results than sdCL for WebKB data. However, topic of the “other” class in WebKB is

ambiguous (see Section5.1). The occupation ratio of them is large {0.710, 0.689, 0.777, 0.739}

and almost same as the values of purity in CPM3C and sdCL. It means that these algorithms

failed to find meaningful clusters in purity. Therefore, WebKB data are not appropriate to use

for evaluation without removing “other” class.

5.3. Results of experiment2

In experiment2, we focus on text data clustering. Table 8 shows that the proposed algorithms

for ITC (sdCL and sdCLS) outperform spCL in purity, RI, and NMI. Considering that spCL is

an algorithm for spherical clustering [5] which was proposed to analyze high-dimensional

Data Size (N) Feature (M) Class (K)

Ionosphere 351 34 2

Letter 1555 16 2

Digits 1555 64 2

Satellite 2236 36 2

Text-1 1981 16,259 2

Text-2 1987 15,955 2

20Newsgroups-4 3967 24,506 4

20Newsgroups-20 18,772 60,698 20

Cora-DS 2397 5745 9

Cora-HA 913 3340 7

Cora-ML 3569 6809 7

Cora-OS 2084 5029 4

Cora-PL 3026 6069 9

WebKB-Cornell 835 5574 7

WebKB-Texas 808 4482 7

WebKB-Washington 1191 7779 7

WebKB-Wisconsin 1218 8270 7

WebKB6 4219 14,142 6

Reuters-RCV1-4 19,806 44,214 4

Reuters-RCV1-53 534,135 216,704 53

MNIST 70,000 784 2

USPS 3046 256 4

Table 3. Properties of data sets.
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data such as text documents, the criterion of information-theoretic clustering is worth to use

for this purpose.

Table 8 also shows that sdCLS (sdCL with splitting rule, see Sections 2.2.2 and 3.2.1) is slightly

better than sdCL in some cases. As far as Figure 9 (left, right) shows, values of JS divergence for

sdCLS are smaller (“better” in ITC) than sdCL, and sdCLS outperforms sdCL in purity on

average. Nevertheless, an advantage of sdCLS against sdCL is not so obvious in this experiment.

Data KM NC MMC GMMC IterSVR CPMMC sdCL

Iono 0.56 0.63 0.67 0.64 0.56 0.65 –

Letter 0.71 0.64 – – 0.87 0.92 0.86

Satellite 0.92 0.92 – – 0.94 0.97 0.91

Text-1 0.50 0.88 – – 0.94 0.94 0.87

Text-2 0.50 0.84 – – 0.89 0.93 0.92

Dig 3–8 0.90 0.55 0.82 0.90 0.94 0.95 0.89

Dig 1–7 0.99 0.50 0.57 0.96 0.99 1.0 1.0

Dig 2–7 0.94 0.55 0.98 0.99 1.0 1.0 0.98

Dig 8–9 0.84 0.50 0.93 0.73 0.93 0.97 0.81

UCI-dig 0.93 0.96 – – 0.97 0.99 0.93

MNIST 0.81 0.82 – – 0.86 0.94 0.83

Bold fonts indicate the maximum rand indices for a give data set.

Table 5. Rand Index (RI) comparisons for two-class problems.

Data KM NC MMC GMMC IterSVR CPMMC sdCL

Iono 0.5428 0.7500 0.7875 0.7650 0.7770 0.7548 –

Letter 0.8206 0.7680 – – 0.9280 0.9502 0.9267

Satellite 0.9593 0.9579 – – 0.9682 0.9879 0.9506

Text-1 0.5053 0.9379 – – 0.9702 0.9500 0.9306

Text-2 0.5038 0.9135 – – 0.9399 0.9721 0.9591

Dig 3–8 0.9468 0.6500 0.9000 0.9440 0.9664 0.9688 0.9440

Dig 1–7 0.9445 0.5500 0.6875 0.9780 0.9945 1.000 1.000

Dig 2–7 0.9691 0.6600 0.9875 0.9950 1.000 1.000 0.9891

Dig 8–9 0.9068 0.5200 0.9625 0.8400 0.9633 0.9812 0.8910

UCI-dig 0.9638 0.9757 – – 0.9818 0.9940 0.9516

MNIST 0.8921 0.8992 – – 0.9241 0.9621 0.8812

Bold fonts indicate the maximum purities for a give data set.

Table 4. Purity comparisons for two-class problems.
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Data KM NC MMC CPM3C sdCL

UCI-digits 0689 0.696 0.939 0.941 0.974 0.945

UCI-digits 1279 0.4042 0.9011 0.9191 0.945 0.868

USPS 0.932 0.938 – 0.950 0.958

Cora-DS 0.589 0.744 – 0.746 0.823

Cora-HA 0.385 0.659 – 0.695 0.767

Cora-ML 0.514 0.720 – 0.761 0.802

Cora-OS 0.518 0.522 – 0.730 0.735

Cora-PL 0.643 0.675 – 0.712 0.819

WebKB-Cornell 0.603 0.602 – 0.724 0.483

WebKB-Texas 0.604 0.602 – 0.712 0.495

WebKB-Washington 0.616 0.581 – 0.752 0.426

WebKB-Wisconsin 0.581 0.509 – 0.761 0.464

20Newsgroups-4 0.581 0.496 – 0.780 0.940

Reuters-RCV1-4 0.471 – – 0.703 0.800

Bold fonts indicate the maximum rand indices for a give data set.

Table 7. Rand Index (RI) comparisons for multiclass problems.

Data KM NC MMC CPM3C sdCL

UCI-digits 0689 0.4223 0.9313 0.9483 0.9674 0.9394

UCI-digits 1279 0.4042 0.9011 0.9191 0.9452 0.8300

USPS 0.9215 0.9011 0.9191 0.9452 0.9515

Cora-DS 0.2824 0.3688 – 0.4415 0.5057

Cora-HA 0.3402 0.4200 – 0.5980 0.6145

Cora-ML 0.2708 0.3103 – 0.4549 0.5974

Cora-OS 0.2387 0.2303 – 0.5916 0.6686

Cora-PL 0.3380 0.3397 – 0.4721 0.4729

WebKB-Cornell 0.5571 0.6143 – 0.7205 0.7192

WebKB-Texas 0.4505 0.3538 – 0.6910 0.6895

WebKB-Washington 0.5352 0.3285 – 0.7817 0.7767

WebKB-Wisconsin 0.4953 0.3331 – 0.7425 0.7397

20Newsgroups-4 0.3527 0.4189 – 0.7134 0.9360

Reuters-RCV1-4 0.2705 – – 0.6235 0.8064

Bold fonts indicate the maximum purities for a give data set.

Table 6. Purity comparisons for multiclass problems.
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Note that clustering result by dCL (competitive learning using KL divergence) is shown

below. Since the values of NMI clearly illustrate that dCL converged to unrelated solu-

tions to the classes, use of skew divergence is an effective technique to overcome this

problem.

sdCL sdCLS spCL

Data Purity RI NMI Purity RI NMI Purity RI NMI

Cora-DS 0.506 0.823 0.322 0.514 0.826 0.327 0.361 0.796 0.162

Cora-HA 0.614 0.767 0.363 0.618 0.767 0.360 0.518 0.728 0.251

Cora-ML 0.597 0.802 0.384 0.602 0.801 0.385 0.431 0.757 0.181

Cora-OS 0.669 0.735 0.313 0.685 0.741 0.325 0.582 0.673 0.187

Cora-PL 0.473 0.819 0.275 0.484 0.820 0.274 0.414 0.802 0.175

WebKB6 0.575 0.712 0.272 0.575 0.712 0.272 0.519 0.702 0.181

20News-20 0.690 0.954 0.653 0.697 0.955 0.656 0.359 0.905 0.324

RCV1-53 0.731 0.910 0.586 0.738 0.906 0.580 0.568 0.895 0.384

Table 8. Comparison for text data sets.

Figure 9. Purity versus JS divergence for 20Newsgroups (left) and Reuters-RCV1 (right) data sets.

Data Purity RI NMI

WebKB6 0.363 0.667 0.00629

20News-20 0.071 0.905 0.00596
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In followings, we examine inside of clustering results obtained by ITC to make clear whether

ITC helps us to find meaningful clusters and candidates of classes for classification. Tables 9

and 10 show frequent words in classes and clusters obtained by sdCL of 20Newsgroups data

set, respectively. The order of clusters is arranged so that clusters are made to correspond to

classes. Table 11 is the cross table between clusters and classes. As shown in Table 10, the

frequent words in some clusters remind us characteristics of them to distinguish from others.

For example, the words in cluster 2: “image graphics jpeg,” cluster 6: “sale offer shipping,”

and cluster 11: “key encryption chip” remind classes (comp.graphics), (misc.forsale), and

(sci.crypt), respectively. We also imagine characteristics of clusters from the words in 7, 8, 9,

10, 13, 14, and 16th clusters. These clusters have documents of one dominant class and can be

regarded as candidates of classes. However, there are some exceptions. The 1st and 15th

clusters have the same word “god,” while classes of (alt.atheism), (soc.religion.christian),

and (talk.religion.misc) have also the same word “god.” The cluster 1 and class (alt.atheism)

have common words “religion evidence,” and the cluster 1 has many documents of the

dominant class (alt.atheism). The cluster 15 and the class (soc.religion.christian) have com-

mon words “jesus bible christ church,” and the cluster 15 has many documents of the

dominant class (soc.religion.christian). On the other hand, there is no cluster which has

alt.atheism god writes people article atheism religion time evidence

comp.graphics image graphics jpeg file bit images software data files ftp

comp.os.ms-windows.misc windows file dos writes article files ms os problem win

comp.sys.ibm.pc.hardware drive scsi card mb ide system controller bus pc writes

comp.sys.mac.hardware mac apple writes drive system problem article mb monitor mhz

comp.windows.x window file server windows program dos motif sun display widget

misc.forsale sale shipping offer mail price drive condition dos st email

rec.autos car writes article cars good engine apr ve people time

rec.motorcycles writes bike article dod ca apr ve ride good time

rec.sport.baseball writes year article game team baseball good games time hit

rec.sport.hockey game team hockey writes play ca games article season year

sci.crypt key encryption government chip writes clipper people article keys system

sci.electronics writes article power good ve work ground time circuit ca

sci.med writes article people medical health disease time cancer patients

sci.space space writes nasa article earth launch orbit shuttle time system

soc.religion.christian god people jesus church christ writes christian christians bible time

talk.politics.guns gun people writes article guns fbi government fire time weapons

talk.politics.mideast people israel armenian writes turkish jews article armenians israeli jewish

talk.politics.misc people writes article president government mr stephanopoulos make time

talk.religion.misc god writes people jesus article bible christian good christ life

Table 9. Frequent words in classes of 20Newsgroups data set.
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documents of (talk.religion.misc) as dominant, and the documents of (talk.religion.misc) are

mostly shared by the clusters 1 and 15. Though there is a mismatch between clusters and

classes, the clustering result is also acceptable, because words in the class (talk.religion.misc)

are resemble those in the class (soc.religion.christian). We can also find that cluster 4 has

many documents of the two classes (comp.sys.ibm.pc.hardware) and (comp.sys.mac.hard-

ware). From Table 9, those classes have similar words except for “mac” and “apple.” Thus,

ITC missed to detect the difference of the classes, but found the cluster with common feature

of them. In this sense, the clustering result is meaningful and useful. Another example is that

documents in class (talk.politics.mideast) are divided into clusters 17 and 18. It means that

ITC found two topics from one class and frequency words in the clusters seem to be reason-

able (see 17th and 18th clusters in Table 10). The characteristic of cluster 20 that has words

“mail list address email send” is different from all classes as well as other clusters, but the

cluster 20 has some documents in all classes (see Table 11). This cluster may discover that all

newsgroups include documents with such words. In summary, ITC helps us to find mean-

ingful clusters, even when clusters obtained by ITC sometimes seem not to be the same as

expected classes. The detailed analysis of the clustering results above could be the evidence

to support the effectiveness and usefulness of ITC.

1 writes god article people religion evidence science moral objective time

2 image graphics jpeg file images ftp data bit files format

3 windows dos file system writes os files article program software

4 drive scsi mb card writes system mac article bit apple

5 window file server program motif sun widget set display output

6 sale offer shipping mail price condition st good email interested

7 car writes article cars engine good ve apr time oil

8 writes article bike dod apr ca ride ve good time

9 writes year article game team baseball good games time hit

10 game team hockey writes play ca games article year season

11 key encryption government chip writes clipper people article keys system

12 db writes article power good ground ca time ve circuit

13 writes article medical people disease health cancer patients time msg

14 space writes nasa article earth launch orbit time shuttle system

15 god jesus people bible writes christ christian church christians article

16 people writes gun article government fbi fire guns koresh batf

17 israel israeli writes jews article people arab jewish arabs state

18 people armenian turkish armenians president armenia war mr turks turkey

19 writes people article government cramer apr state make health optilink

20 mail list address email send information ca internet article writes

Table 10. Frequent words in clusters of 20Newsgroups data set.
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6. Conclusion

In this chapter, we introduced information-theoretic clustering (ITC) from both theoretical and

experimental side. Theoretically, we have shown the criterion, generative model, and novel

algorithms for ITC. Experimentally, we showed the effectiveness and usefulness of ITC for text

analysis as an important example.

A Difficulty about KL divergence

Let P and Q be a distribution whose mth random variable pm and qm takes the mth element of a

vector p and q, respectively. The Kullback-Leibler (KL) divergence to Q from P is defined to be

DKLðP∥QÞ ¼ pmlog
pm
qm

: (39)

In this definition, it is assumed that the support set of P is a subset of the support set of Q (If qm

is zero, pm must be zero). For a given cluster Ck, there is no problem to calculate JS divergence

1 625 4 9 2 2 4 2 8 0 3 2 0 5 49 12 54 1 5 13 163

2 1 632 44 19 17 101 10 7 4 8 0 14 32 12 18 2 0 0 1 1

3 0 107 707 189 58 60 27 5 0 0 1 12 40 2 3 3 0 0 1 1

4 0 74 64 630 711 18 104 3 3 1 0 2 93 6 3 2 0 1 0 1

5 1 43 53 11 15 712 0 1 0 1 1 9 2 1 1 0 1 0 0 3

6 0 9 5 18 25 2 648 17 15 3 0 0 16 1 3 1 1 0 1 0

7 0 1 2 7 8 0 35 784 65 1 1 0 25 2 7 2 2 2 1 1

8 1 3 0 0 4 6 7 36 867 2 0 2 10 6 6 0 1 1 0 2

9 4 0 4 4 0 1 4 3 4 886 18 0 2 3 2 3 0 3 6 3

10 0 0 1 1 0 1 9 3 2 37 943 0 1 1 1 0 3 2 3 0

11 2 15 2 4 6 5 5 1 0 1 2 881 36 5 6 0 20 9 15 3

12 1 11 11 52 33 2 32 14 4 3 0 8 603 28 10 2 1 0 0 1

13 1 0 1 0 5 1 3 1 1 1 2 1 5 771 5 3 0 0 2 2

14 3 9 5 2 3 5 4 4 4 1 1 1 29 17 843 2 4 0 5 5

15 94 1 2 0 0 0 2 1 1 3 0 0 0 10 2 863 5 4 6 299

16 15 2 0 5 8 2 6 36 11 0 1 18 6 8 4 7 805 2 189 93

17 9 2 1 0 1 1 0 7 0 0 0 0 2 1 8 6 2 547 14 10

18 32 0 0 0 0 0 1 1 0 2 1 1 5 3 4 12 12 333 38 12

19 3 7 8 2 16 3 12 20 4 4 7 13 6 13 11 13 33 12 470 16

20 6 50 44 33 46 58 53 35 8 34 16 27 66 48 36 22 18 19 8 11

Table 11. The number of documents about each class in each cluster.

Advances in Statistical Methodologies and Their Application to Real Problems116



of cluster Ck by Eq. (12), because the support set of any distribution Pið∈CkÞ is the subset of the

mean distribution P
k
. However, it is not guaranteed that KL divergence from Pið∈CkÞ toQtðt≠kÞ

(a weight distribution of other cluster Ct) is finite. This causes a serious problem to find similar

weight distribution Q for an input distribution P. For example, lack of even one word (feature)

in a distribution Q is enough not to be similar. Therefore, it is difficult to use k-means type

algorithm,5 which updates weights or clusters by batch processing, in ITC.
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