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Abstract

Stem cell therapies hold considerable promise for the treatment of neurodegenerative dis-
eases. Pluripotent stem cells (PSCs) have been of particular clinical interest because of their 
ability to generate neuronal cells and to be used in animal models of neurodegenerative 
disease as well as for testing new drugs. Several PSCs isolated from humans and animals 
that carry the genotype of Huntington’s disease (HD) have been used in aforementioned 
studies. HD-PSCs obtained can produce in vitro neural progenitor cells (NPCs). These 
NPCs applied in HD models show several advantages: they engraft into the brain in ani-
mal models and differentiate into neuronal cells, thus promoting behavioral recovery and 
motor impairment. Although progress has been made using PSCs, additional tests should 
be done to overcome several limitations as, for example, tumorigenicity, before their clini-
cal application. We focus this chapter on current knowledge regarding HD-PSC lines and 
their helpfulness as an in vitro model for basic research. Next, we discuss the advances 
of disease-free PSCs in preclinical HD models aiming to their potential application in 
patients. Additionally, we discuss their potential use as a test system for anti-HD drug 
screening by the pharmaceutical industry, especially considering HD patients’ welfare.

Keywords: Huntington’s disease, neural progenitor cells, pluripotent stem cells, stem 
cell transplantation

1. Introduction

HD is an autosomal dominant neurodegenerative genetic disease caused by an expansion of 
polyglutamine (CAG) repeats in the huntingtin (HTT) protein. Clinically, HD patients present 
cognitive decline, motor dysfunction and psychological problems. The age of onset for these 
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symptoms is directly associated with the number of repeats. Pathological threshold is reached 

when patients present more than 36 repeats [1, 2]. Conventional therapies have no effect on 
HD [3–6]. Stem cells, which have amazing potential to develop into many different cell types 
in the body during early life, may offer new therapeutic approaches for treating HD disease 
[7–9]. Fetal neural grafts, neural progenitor cells (NPCs) and mesenchymal stem cells (MSCs) 
have already been used in several preclinical and even in preliminary clinical trials [10–14]. 

Other options of stem cells to be used in HD studies are embryonic stem cells (ESCs) and, espe-

cially, induced pluripotent stem cells (iPSCs), which have recently been developed in the field 
of human stem cells [15–19].

In devastating HD, the loss of neurons and the incapacity to mobilize inherent regenerative 
mechanisms to recover from progressive damage underlies the pathology and prognosis [1, 
2].  Stem-cell-based therapies hold promise for the future treatment of these symptoms and 

to study the progress of disease. The establishment of in vitro cellular HD models for testing 

new drugs is under development and is of great importance. Furthermore, in vitro HD cell 

models help to better understand HD at the molecular and cellular levels and to identify new 
HD biomarkers [20–22]. Recently, NPCs have been derived from HD-iPSC [23]. The present 

chapter discusses PSCs use as a model study HD, and to carry out drug screening and study 
stem cell-based therapy in animal models of HD.

2. HD clinical aspects

HD has been reported in almost all countries and occurs in all races, equally affecting both 
genders. The diagnosis of HD depends on a detailed clinical evaluation and positive fam-

ily history, which may be confirmed through the use of molecular genetic techniques. The 
average age of onset varies between 35 and 45 years, although it may manifest at any age. In 
about 10% of cases, the onset of symptoms occurs before 20 years of age, when patients are 
said to have “juvenile HD” and, in 25% of cases, the onset arises after 50 years of age—the 
so-called “late HD” [24]. The median survival time in HD ranges from 14 to 17 years, while 
it may be as long as 40 years [25]. The most frequent complaint in HD patients is a lack of 
“coordination” and occasional involuntary tremors in several body segments, which can 
usually be attributed to the presence of chorea [26]. Other early motor abnormalities include 

interrupted saccadic eye movements or hypometric balconies, motor impersistence of tongue 
protrusion and difficulty performing rapid alternating movements. Patients are described as 
being excessively irritable, impulsive, unstable or aggressive. The most common early symp-

tom is mental depression. Symptoms of emotional nature or personality changes, preceding 
or concurrent with the onset of tic movements, are reported in half of the patients with HD 
[27]. A striking feature in a large number of HD patients is the intense weight loss. Cause of 

this weight loss is unclear. Premature aging is another obvious feature of HD [26].

3. HD genetic and pathophysiological aspects

HD is a hereditary autosomal dominant condition. The Htt gene is located on chromosome 

4p16.32 and the genetic alteration is an increase in the number of repetitions of three  nucleotides 
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(C, A and G) in the coding region of the first exon of the HD gene [1]. The CAG “triplet” is 

normally repeated about 20 times in humans, but an estimated doubling in the number of 
repeats (40 CAG repeats or more) results in the development of HD. Intermediate numbers of 

repeats, between 27 and 35, are not associated with the HD phenotype. Expansions above 36 
are most frequent in the paternal lineage, due to the instability of the number of CAG repeats 
during spermatogenesis. The presence of 36–39 repeats is related with reduced penetrance, 
whereby HD may develop or not, and is considered uncertain [1]. The majority of adult onset 

cases have 40–50 CAG repeats, whereas expansions of 50 or more repeats generally causes 
the juvenile form of the disease [28, 29]. Additionally, the greater the number of CAG repeats 
in the Htt gene, the earlier the disease will manifest [30]. In HD, the number of CAG repeats 
explains many of the genetic features of this disorder, including its progression and severity.

CAG is a codon that codes for glutamine, and the mutation leads to an abnormally expanded 
polyglutamine tract in huntingtin [1]. In HD, the expanded polyglutamine is cleaved, result-
ing in an N-terminal fragment containing the polyglutamine expansion [31]. Huntingtin 

(HTT) is a protein of approximately 300 kDa, which is located in the cytoplasm of all somatic 
cells, except for neurons, where it is found in both the cytoplasm and nucleus. Normal gene 
function and how this mutation produces HD is still unknown, however, huntingtin is essen-

tial for life. These aggregated proteins accumulate in excess in neuron axons or dendrites and 
may block neurotransmitter action, impairing the normal neuronal function and leading to 
onset of behavioral deficits [32]. During disease progression, HTT protein aggregates accu-

mulated in neuron cells cause cell death. Striatum and cerebral cortex are the structures that 
have most prominent neuronal loss. In fact, the most striking anatomopathological feature 
of HD is the degeneration of the basal ganglia, especially the caudate nucleus and putamen, 
with progressive and intense atrophy and gliosis [30].

PSCs are an important tool for HD in vitro studies, since these cells can model the disease, 
informing, for instance, the outcome of different CAG repeat numbers in HD neurons, includ-

ing the possible interactions of the mutant HTT with different proteins. Conversely, PSCs can 
also be used in vitro to study the effect of different number of CAG repeats in PSCs develop-

ment and ability to differentiate.

4. Mouse pluripotent embryonic stem cells: variability and heterogeneity

Pluripotency is a transient property of stem cells during early embryogenesis. It refers to an 

unrestricted developmental potential of the cells to give rise to all three embryonic germ lay-

ers: endoderm, ectoderm and mesoderm, and to contribute to the formation of all tissues of the 
developing organism. After isolation from early embryos at morulae or at blastocyst stage, PSCs 
are able to retain pluripotency during long-term in vitro cultivation [33, 34]. In mice, there are 
two different PSC types isolated from early embryo, which are naive and primed ESCs. Naive 
cells are extracted from the inner cell mass (ICM) of preimplanted embryos at day 4.5 [33, 35], 
while primed cells are obtained from the epiblast of postimplantation embryos around day 7 

[36, 37]. Naive ESCs and primed epiblast stem cells (EpiSCs) differ in the expression levels of 
pluripotent key markers, such as the POU-family transcription factor Oct-4, the homeodomain 
DNA-binding protein Nanog and the Sox-family transcription factor Sox2 [38]. Naive female 
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ESCs have both X chromosomes active; in contrast, female-derived EpiSCs have only one of the 
X chromosomes activated. When injected into immunocompromised or syngeneic mice, both 
naive and primed EpiSCs are able to produce teratomas which contain the derivatives of all 

three germ layers [36]. Reintroduction of naive and primed EpiSCs into the mouse blastocyst 

leads to the formation of chimeras (animals composed by donor and recipient cells) with a high 

percentage of donor cell contribution, thus demonstrating their ability to participate efficiently 
in normal development. Only naive ESCs are able to generate germline-competent chimeras, 
which are able to pass on their donor cells genotype to the next generations [39–42].

5. Human pluripotent embryonic stem cells: variability and heterogeneity

In humans, so far only primed ESCs are known. They are isolated from the ICM of preim-

plantation human blastocysts [33]. They express several key markers of pluripotency, such as 
OCT4, NANOG and SOX2 [33, 43–45], and are able to generate teratomas in vivo [33, 46–48]. 

Due to ethical considerations, live chimeras cannot be obtained from hESCs. Nevertheless, effi-

cient hESC integration into the postimplantation mouse epiblast has been shown, although, 
at a later stage, these cells were rapidly eliminated during embryo development probably 
because of the difference in cell cycle timing between the two species [49].

The production of human ESCs involves destruction of human embryos, which is of ethical con-

cern. An alternative, the generation of iPSCs by adult somatic cell reprogramming, has been pro-

posed. These cells are initially obtained in vitro using a defined cocktail of transcription factors 
(Oct3/4, Sox2, c-Myc and Klf), called reprogramming factors, which are able to restore pluripo-

tency when introduced into terminally differentiated cells or into adult cells [17, 19, 20, 50]. These 

human iPSCs are able to produce teratomas that contain the derivatives of all three germ layers. 

Recent studies showed that X chromosome reactivation, an important event in cell reprogram-

ming, occurs in hiPSCs [51, 52]. Additionally, hiPSCs are able to integrate into different anatomic 
sites in mouse embryos at E10.5 [52]. Both these studies suggest that, hypothetically, hiPSCs might 
form chimeras, thus showing the characteristic of primed PSCs.

Given the pluripotent ability of hESCs and hiPSCs, both cell types are of great interest to gen-

erate HD in vitro models that can be used in basic research characterizing juvenile and adult 
HD molecular and cellular mechanisms as well as in the pharmaceutical industry, to screen 
new drugs. The capacity of hiPSCs to differentiate into neural cells and produce functional 
neurons [53–55] has potentially great impact given the possibility of the use of these cells in 

cell therapy and tissue regeneration. However, due to the potential risk that these cells can 
derive teratomas, hiPSC application in patients is still under the investigation.

6. Isolation of pluripotent hESCs from HD embryos

Primary cell cultures from adult tissues can be obtained from HD patients. However, this is 
not always possible, can pose a risk for patients and there is a limited variety of tissues that 
can be used for cell isolation. Therefore, frequently HD cells are isolated post mortem from 
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tissue samples. Thus, isolation of hESCs from HD embryos was a cutting-edge discovery in 
HD cellular models. These hESCs with genetic disease inheritance that have unlimited pro-

liferating and self-renewing potential are unique sources to reproduce heredity of diseases 
in vitro [56, 57]. However, only a few studies reported isolation of these cells so far [57–61].

The first derivation of hESCs from HD embryos occurred in 2005 [57]. Since then, other HD 
lines have been obtained from donated embryos that mainly contain 37–51 CAG repeats. 

These cells express the Htt gene, and mutated Htt mRNA and protein levels, and thus have 
the potential to model HD pathology at the cellular level. The HD-hESCs isolated so far 

(Table 1) can be considered primed hESCs according to the existing classification [43, 62]. 

They express core pluripotency markers and present a normal karyotype [58–61]. Only one 

study demonstrated that HD-hESCs are able to form teratomas [59]. In vitro, HD-hESCs are 
able to differentiate into neurons and astrocytes [58–61] through neurosphere formation 

by the cells positive for the neuroectodermal marker Pax6 [60]. Another study showed that 

HD-hESCs differentiate preferentially into astroglial cells [58]. Glial cells comprise 90% of the 

brains cells and provide support neuroprotective for neurons. In healthy brain, astroglial cells 
protect against excitotoxicity by removing excess of glutamate from the extracellular space 
[63]. However, in the HD brain, mutant HTT accumulates in glial nuclei and decreases the 
expression of glutamate transporters in neurons and atroglial cells (Table 1). This is an impor-

tant outcome for further HD studies that investigate the effect of mutant HTT on astroglial 
cells and the potential therapeutic potential of these cells in HD.

HD is considered as a disease of the striatum, characterized by vulnerability to degenera-

tion and death of the medium spiny neuron (MSN) [64]. Thus, the ability of HD-hESCs to 
differentiate into gamma-aminobutyric acid GABAergic MSNs, which are susceptible to 
 neurodegeneration in HD, has also been tested. MSNs receive a massive combination of dopa-

Ref Source CAG repeats Number 

of 

lineages

Pluripotent markers 

expressed

Teratoma 

formation

Formation of Htt 
aggregates

Neuronal 

differentiation

[59] HD embryo 40–48 4 OCT4, SSEA3, 
SSEA4, TRA-1-60, 
and TRA-1-81

Positive N/A Neurons

[60] HD embryo 37 and 51 2 SSEA-3, SSEA-4, 
Oct-4, TRA-
2–39, TRA-1–60 and 
TRA-1–80

N/A absent Neurons and 

astrocytes

[61] HD embryo 37 and 51 3 TRA-1-60,D9 N/A N/A Neurons and 

GABAergic 

neurons

[58] HD embryo 47 1 POU5F1, SSEA3 
and 4, TRA1-61 and 
1-80CD9

N/A N/A Neurons and 

astrocytes

N/A, non available.
Chromosomal abnormalities were absent in all derived cell lines.

Table 1. Human ESC lines derived from HD patients.
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minergic and glutamatergic inputs, which result in preferential vulnerability of these cells to 
the toxicity of polyQ-HTT [65]. However, only one report has shown that HD-hESCs are able 
to differentiate into GABAergic MSNs [61].

As discussed before, repeat size of CAG is a major determinant of the severity and pathology in 
HD. The longer the repeats, the more severe the symptoms [66]. After differentiation, neuronal 
precursor populations derived from HD-hESCs do not present any alteration in the incidence of 

CAG repeats [58, 60]. These findings indicate that the presence of Htt mutation does not prevent 
HD-hESCs from differentiating into neural cells in vitro [57, 59, 60], implying that HD-hESCs 
can be used as an in vitro model of HD. This model has the potential to increase the understand-

ing of the mechanisms of neurodegeneration and can be used for efficient screening for new 
anti-HD drugs, selecting only the most efficient for further testing in human clinical trials.

7. Isolation of induced pluripotent stem cells from HD patients

HD-iPSCs that carry different number of huntingtin gene repeats (from 39 CAGs to 180 CAGs) 
have been isolated [23, 67–72] (Table 2). To produce HD-iPSCs, the most common original cell 
type isolated from HD patients is fibroblasts. Fibroblasts from HD patients show HD-related 
phenotypes, such as alterations in proteasome activity and altered Htt gene expression [23, 
67–73]. The majority of HD-iPSCs have been generated by retroviral infection that promotes 

the expression of four transcription factors: Oct-4, Sox2, c-Myc and Klf4 [23, 67–69, 71, 72] 

(Table 2). After retroviral infection, HD-reprogrammed fibroblasts gain hESCs-like morphol-
ogy, start to express markers of pluripotent cells, such as OCT4, NANOG, SSEA4 and alkaline 
phosphatase (AP) [23, 67, 68, 71, 72]; TRA-1-60 [67, 71, 72, 74], SSEA3 [67, 72]; and TRA-1-81, 
REX1, GDF3 and hTERT [67]. At present, the pluripotency of human HD-iPSCs is less studied 
when compared with that of human iPSCs derived from healthy donors. Only few studies 

perform the teratoma formation assay, which is essential for the characterization of the plu-

ripotency of any reprogrammed cell. This assay is a reliable method to verify the in vivo dif-

ferentiation potential of HD-hiPSC [71, 74, 75]. An important aspect of HD-iPSC technology is 

a unique possibility to study the mechanism of HD patient-specific neuronal differentiation, 
since HD-iPSCs are able to form neurospheres that express neuronal progenitor markers [67, 
71, 72, 74]. These neurospheres are able to produce neurons, including GABAergic MSN, and 
glial cells [23, 68, 71, 72, 74]. Overall, these studies show that the Htt mutation and the number 
of CAG repeats seem not to affect neural cells fate in vitro, although HD in vivo is associated 

with changes in neural function and survival.

In order to use autologous HD-iPSCs therapeutically, it is critical to develop reprogramming 
methods that can provide a correction of the expanded Htt allele in iPSCs in these cells upon 
their expansion in vitro. A gene targeting technique has been used to achieve a correction of the 
expanded Htt allele in HD-iPSCs, replacing the expanded CAG repeat with 21 repeats (within 
the normal, non-pathological range, which varies from 6 to 34) using homologous combina-

tion [72]. The resulting cells maintain the pluripotent characteristics and can differentiate into 
MSNs in vitro and in vivo. This study demonstrated that non-pathological iPSCs potentially can 

be produced from diseased patients for stem cell replacement therapy [72].
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Ref Source CAG repeats Inducing method Correct allele 

CAG repeat

Number  

of lineages

Pluripotent  

markers expressed

Teratoma 

formation

Formation 

of mHtt 
aggregates

Neuronal 

differentiation
Chromosomal 

abnormalities

[72] HF 72 Retroviral iPSC 

(OCT3/4, SOX2, 

KLF4, C-MYC)

21 CAG 8 NANOG, SOX2, OCT4, 
SSEA4, and TRA-1-60

N/A Absent GABAergic 

neurons

Absent

[67] HF 72 Retroviral iPSC 

(OCT3/4, SOX2, 

KLF4, C-MYC)

N/A N/A TRA-1–81, TRA-1–60, 
OCT4,NANOG,  
SSEA3, and SSEA4 
REX1, GDF3, and 
hTERT

N/A N/A N/A Absent

[74] HF 60 and 180 Retroviral iPSC 

(OCT4, SOX2, 

C-MYC, KLF-4) 

and LIN 28

N/A 14 OCT4, SSEA4, or 

TRA-1-60, PAX6
N/A Absent GABAergic, 

neurons and 

astrocytes

Absent

[23] HF 72 Not informed N/A N/A OCT4, NANOG, 
SOX2 and SSEA4

N/A N/A GABAergic 

neurons

N/A

[68] HF 39 to 44 Retroviral and 

lentiviral iPSC 

(OCT4, KLF-4, 

SOX2, C-MYC)

N/A 5 OCT4, SOX2 Positive N/A GABAergic 

neurons

Positive

[71] HF 50 and 109 Retroviral iPSC 

(OCT3/4, SOX2, 

KLF4, C-MYC)

N/A N/A NANOG, OCT3/4, 
SSEA4 and TRA 1-60 

Positive N/A Astrocytes 

neurons

N/A

[75] MF 72 Retroviral iPSC 

(OCT4, SOX2, 

KLF-4)

N/A N/A OCT4, SSEA4, TRA1 

-60, RIPS3 alkaline 
phosphatase

Positive Positive Astrocytes 

neurons

N/A

N/A, non available; HP, human fibroblasts; MF, monkey fibroblasts.

Table 2. Human iPSC lines derived from HD patients.
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8. HD animal models

Models of HD recapitulate disease pathogenesis and predict response to experimental treat-
ments. In general, there are two ways of generating animal models of HD: use of toxic/chemi-
cal pharmacological agents or of genetically modified animals [76, 77]. The majority of studies 

in vivo with NPCs from PSCs used quinolinic acid (QA)-HD models [69, 78–81].

QA can be found endogenously, where it binds and activates the N-methyl-d-aspartate recep-

tor, a glutamate receptor and ion channel protein found in nerve cells. At high concentrations, 
QA is neurotoxic by over-exciting the same receptors, eventually leading to neuronal cell 
death [76]. This toxin mimics several aspects of human HD, such as extensive degeneration 
in striatum, death of dopamine-expressing GABAergic neurons [82, 83], weight loss [84] and 

motor and cognitive deficit [85]. However, motor deficit is discrete, the main motor alterations 

including tremor, seizures, eventual paralysis and recumbence [84]. Another aspect of the 

QA-HD lesions are symptoms that mimic deficits seen in early stages of HD (but not later). 
The lesions produce hyperactivity in animal models, but the hypoactivity that occurs later in 
the disease is not modeled by any dose of the toxin [86].

With the discovery of the Htt mutation in 1993, it became possible to create animal models 
with a similar genetic background as that found in humans with HD [1]. Hayden and col-

leagues used a yeast artificial chromosome these YAC vector system to express the entire 
human Htt gene under control of the human Htt promoter [87] YAC mouse strains contain 

either 72 or 128 CAG repeats. The resulting YAC mice present more hallmarks of human HD 

than toxic models, with a decrease in the number of GABAergic neurons in the striatum, 
decrease in body weight and pronounced motor deficit (ataxia, gait abnormalities, hind limb 
clasping) and increased nuclear Htt staining. Interestingly, only the YAC 128 CAG shows 
positive staining for inclusion bodies—a feature found in human HD—at 18 months [88].

Rodent and non-rodent studies in vitro and in vivo show the potential of these HD models, but 
there are limitations as to how these models may benefit patients. It is important to choose 
appropriate animal models according to the question under investigation. Chemical toxicity 
models, such as QA, are reliable to reproduce neuronal regeneration when associated with 
massive cells loss; however, they are not appropriate for assessment of later stages of the 
disease (similar to chronic). Whereas genetic animal models have similar HD symptoms as 

patients in later stages of the disease, thus allowing investigators to study HD progression.

9. Isolation of pluripotent stem cells from HD transgenic animals

Several PSCs have been established as in vitro models of HD. Somatic cells, such as fibroblasts 
and NPCs isolated from HD-transgenic animals (monkeys and rodents), have been repro-

grammed using the Oct4, Sox2 and Klf4 transcription factors, producing HD-iPSCs. These 
cells preserve both the HD-related genotype and phenotype: they express mutant HTT pro-

tein and show formation of intracellular HTT protein aggregates [75, 89, 90]. In addition, PSCs 
have been generated using cell fusion as a tool for reprogramming: transgenic HD monkey 
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skin fibroblasts and wild-type non-transgenic monkey oocytes were fused and the pluripotent 
hybrid cells selected after fusion were found to express mutant Htt and to have HTT protein 

intracellular inclusions after the induction of in vitro neural differentiation [91]. These studies 

teach us that HD pluripotent cells can recapitulate the genotype and cellular phenotype of 

HD-patient cells, which is crucial for the production of cell systems that closely resemble HD. 
These models can then be used for the screening of anti-HD drugs in pluripotent cells and 

neurons derived from these cells.

10. Transplantation of hESCs and rodent ESC-derived NPCs in HD 

animal models

Studies have shown the therapeutic potential of hESC-derived NPCs in HD chemical rodent 

models (Table 3). NPCs have been transplanted directly into the striatum at between 104 and 

106 cells per animal [79–81]. These cells were able to survive and graft into the striatum in a 

QA-induced HD animal model [79]. After transplantation, the cells were shown to differenti-
ate into GABAergic MSN [80] and astrocytes [79–81]. However, the stage of NPC maturation 
reflects on their specification. Thus, rosette-forming NPCs are not able to differentiate in vivo 

into MSN, while striatal progenitor cells effectively generate striatal neurons [80]. The main 

problem in using PSCs in the clinic is the need to control neural cell proliferation, avoiding 
xenograft overgrowth, which may compromise postgrafting safety. Although published data 
suggest the beneficial action of NPCs in striatal injury regeneration, the role of hESC-derived 
NPCs in this process needs to be better elucidated.

Only one study so far has demonstrated an efficient recovery of motor deficit after hESC-
derived NPCs transplantation in the QA rat model [81]. The animals treated with NPCs 

exhibited a significant behavioral improvement in the apomorphine-induced rotation test as 
compared to sham 3 weeks’ posttransplant. None of the studies investigated long-term motor 
functional recovery following NPC transplantation or the possible mechanisms of therapeutic 

action of these cells besides differentiation [79–81]. There is no doubt that more ample and 

rigorous studies using chemical and transgenic animals must be performed to demonstrate 

the efficiency and stability of hESC-derived NPCs to promote neural tissue restoration and 
functional recovery of motor deficit in HD animal models.

NPCs derived from rodent ESCs have similar beneficial effects as human NPCs when trans-

planted into the chemical rodent model. They are able to differentiate into neurons and the 
animals that receive rodent NPC transplantation show rotation behavior improvement as 

compared with untreated animals [13, 77, 92].

11. Transplantation of hiPSCs-derived NPCs in HD animal models

The beneficial effect of hiPSC, as well as hiPSC-derived NPCs has also been tested in 
HD animal models aiming to the future clinical application of these cells [69, 70, 78] 
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Immunosuppression Immunorejection 

symptom

Decreased 

striatal 

atrophy

Number of 

cells

Graft 

survival

Neuronal 

differentiation in vivo

Behavior 

improvements

Aggregate 

formation  

in vivo

Aberrant cell 

differentiation 
in vivo

Time course 

(weeks)

Cyclosporine A N/A N/A 1×105 Yes Nestin ,MAP2, 
DARPP-32, Gaba

Rotation activity Present N/A 12 and 33

Cyclosporine A N/A N/A 1×105 Yes Nestin ,MAP2, 
DARPP-32

Learning and 

motor activity

Absent N/A 12

Absent Microglia 

activation

reduced 

lesion

1×106 Yes NeuN 

,Darpp32,GFAP,Iba-1
Memory learning N/A Absent 4–6

Cyclosporine A N/A reduced 

lesion

N/A Yes Pax-6, NeuN, 
MAP2,GFAP

N/A N/A Present 4–8

Absent Microglia 

activation

N/A 1×104 Yes MAP2, NeuN, 
DARPP32, GFAP, 
MAP2, Pax6, NCAM

N/A N/A Present 4–6 and 13–21

Absent N/A N/A 1×104 Yes Nestin,TuJ1,GAD6 Learning and 

motor activity

N/A Absent 3

N/A, non available.
Neurotrophic action was not evaluated in any of the studies.

Table 3. HD treatment by stem cell transplantation in animal models.
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(Table 3). Using the ipsilateral ventricular route, these cells were transplanted into both 
chemical [69, 78] and transgenic HD rodent models [70]. Similar to ESCs, the hiPSCs dif-
ferentiate in vivo into neurons, including GABAergic specification neurons [69, 70, 78], 
and astrocytes [78]. Such transplantation caused a modest reduction in striatal neuro-

nal atrophy, a hallmark of HD disease that starts long before the onset of motor symp-

toms [19, 78]. NPCs derived from iPSCs are of particular interest to be used in HD, since 
patients are dominated by chorea (involuntary movements) and cognitive disability that 

should improve by the presence of healthy neurons [20]. The ability of these transplanted 

cells to reverse HD symptoms in animal models was assessed using several motor and 

memory tests, such as the using rotarod performance test, the staircase test, the step-

ping test and the Morris water maze spatial memory task. They showed that experimental 
animals receiving iPSC-derived NPCs showed short- and medium-term functional motor 

improvements in different Skills, exhibiting a significantly better performance than sham 
group animals [69, 70, 78]. However, the long-term (<12 months) stability of such behav-

ioral improvements still needs to be demonstrated.

12. Brain-derived neurotrophic factor

Brain-derived neurotrophic factor (BDNF) protein expression is found in the brain and the 
spinal cord [93, 94]. This protein promotes the survival of nerve cells (neurons) by playing a 

role in the growth, maturation (differentiation) and maintenance of these cells. In the brain, 
BDNF is active at the connections between nerve cells (synapses) where cell-to-cell communi-

cation occurs [93, 95]. The BDNF protein helps regulate synaptic plasticity, which is important 
in learning and memory, and is found to be expressed in regions of the brain that control eat-
ing, drinking and body weight [96–100].

The deficits in BDNF signaling contribute to the pathogenesis of several major diseases and 
disorders such as HD and depression [30, 101, 102]. The decrease in BDNF expression that is 
observed in HD impairs dopaminergic neuronal function [77], which may be associated with 
HD motor disturbances. In transgenic HD models, the level of BDNF in cortical tissues can 
be reduced to 45% of that of controls [103]. Such reduction of BDNF levels is attributed to a 
mutation in Htt which prevents BDNF transcription [104]. Additionally, BDNF transport from 
the cortex to striatum is decreased in HD transgenic models [105, 106].

The significant role of BDNF in neuronal HD cells is also evident in vitro. After removing 

BDNF from the cell culture medium, neurons derived from HD-iPSCs (109 and 180 CAG 
repeats) have a robust increase in 3/7 caspase activity and die [107]. This and many other 

studies indicate that BDNF is a critical factor in the pathology of HD and is a putative candi-

date for HD treatment [108–110]. However, it is difficult to find an ideal dose for each patient 
because of the variability in neurodegenerative disease manifestation between individuals. 

Overdoses of BDNF may induce tumor formation in the brain; on the other hand, low BDNF 
doses may not provide an efficient treatment.

Mouse ESCs have been genetically manipulated by use of knock-in technology and clones 
overexpressing BDNF-GFP have been generated. These cells differentiated into neural cells 
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in vitro and gave rise to an increased number of neurons as compared to control unmodified 
ESCs. BDNF-GFP-expressing ESC-derived neurons have a more complex dendritic morphol-
ogy and differentiate into GABAergic cells more efficiently than control cells. These BDNF-
GFP-expressing ESC-derived neurons show similar electrophysiological properties as cortical 
neurons and release BDNF in an activity-dependent manner [111].

BDNF-secreting iPSCs that were produced using a virus-free reprogramming method can 

differentiate into neural cells that overexpress BDNF. In this study, mice which were exposed 

to a stressor regimen and received BDNF-secreting iPSC-derived neural progenitors via intra-

cerebroventricular transplantation reversed the impact of stressor challenge by subventricu-

lar zone adult neurogenesis [112].

Both of these studies demonstrate that PSCs may be used to investigate the effects of BDNF 
in cell transplantation in various neuropathological conditions. Indeed, neurons derived 
from HD-iPSCs may provide a model to study the role of BDNF secretion in HD, as well as 
may help to understand whether the number of repeats and the level of mutant Htt protein 
expression affect the production of BDNF. Furthermore, these cells can be used as a model 
to develop different pharmacological, genetic and cellular strategies of BDNF delivery into 
patients, providing potential new treatments for this orphan disease.

13. Limitations on neuronal cells derived from pluripotent stem cells in 

the treatment of HD

A major concern regarding cell treatment in HD is the propensity of grafted PSCs or their 

derived cells to form tumors [33]. Two studies showed that after transplantation of neuron 

progenitors derived from hESCs and iPSCs into HD animal brains, there occurred the forma-

tion of teratoma-like cell masses [79, 80]. These studies teach us that PSCs-derived NPCs can 

be contaminated with residual PSCs, which maintain their pluripotency and may contrib-

ute to tumor formation in vivo. Coincidentally, in both studies, neural progenitor stem cells 
expressed paired box 6 (Pax6). Pax6 is a marker of immature NSCs, which play a role in the 
development of human neuroectodermal tissues; this transcription factor also has an impor-

tant regulatory function in cancer cell proliferation and tumor progression [113, 114].

Another disadvantage of PSC transplantation is the stimulation of the host immune system, 
which could lead to rejection of the cell graft [115]. The majority of in vivo studies which 

transplant human PSCs into HD animal models used immunosuppressive drugs [69, 70, 79], 
making these studies hard to interpret, since these drugs may relieve HD symptoms [116].

The studies conducted with the absence of immunosuppressive protocols show microglia 

activation in host tissues after transplantation with hESC-derived striatal and NPCs [78, 80]. 

Neuroinflammation, characterized by activation of microglia and astrocytes, occurs acutely 
after traumatic injury, and is a main factor contributing to secondary injury in the central 
nervous system (CNS). Thus, microglia activation can be considered an important parameter 
to measure the anti-inflammatory process in stem cell therapies [117]. Alternatively, a study 
claims that microglia activation may be indicative for an immune response, which suggests 
donor cell rejection [118].
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The use of HD-iPSCs as therapeutic tools has significantly increased over the last years. However, 
autologous HD-iPSCs are not a good choice for stem cell-based therapy since they carry the 

HD mutation, which compromises such therapy [69, 119]. Thus, transplantation of HD72-iPSC-
derived neural precursors, where HD72 is the number of CAG repeats, into a QA rat model 
showed that a long time after transplantation (33 weeks), grafted cells showed the formation of 
huntingtin aggregates. Furthermore, in spite of initial improvement in HD, the disease returned 
after 33 weeks [69]. Later, the formation of aggregates was evaluated using the same cells (HD72-
iPSC-derived neural precursors) a short time after transplantation, and no evidence of aggregates 
was found in the mouse transgenic model. Recently, Jeon et al. [119] performed more studies and 

confirmed that the mutant HTT protein derived from NPCs generated from iPSC-HD is able to 
proliferate in vivo in fetal host tissue. They associated this effect to the activity of exosomes, since 
it has been demonstrated in vivo and in vitro that exosomes can transport mutant Htt.

Previously, it had been considered that the mutant HTT protein causes cellular dysfunction 
in a cell-autonomous manner that results in aggregation, inclusion body formation and cell 
death [120]. However, more recent publications suggested that the pathology does not occur 
purely at the cellular level. Observation of aggregates of mutant HTT within fetal striatal 

allografts in patients with HD provides strong evidence for the existence of a non-cell-auton-

omous mechanism of action, which accounts for the HTT protein to spread via pathological 
cell-cell communication [119, 121].

All studies demonstrate that HD-iPSC transplantation is a very powerful model which should 

be more intensively explored. More research is still needed to assess the ability of HD-iPSCs 
with varying number of CAG repeats to form huntingtin protein aggregates as well as to 

evaluate the disease pathology after short- and long-term cell transplantation.

14. Final considerations

A small number of studies have focused on isolation of HD-PSCs and their use in preclinical 

studies and have already shown that these cells are an appropriate in vitro model for study-

ing molecular and cellular expects of HD. Interestingly, most HD-ESCs derived so far have 
40–50 CAG repeats in Htt, a number of repeats usually associated with adult onset of HD 
(Table 2). In contrast, the majority of HD-iPSCs established to date present a variable number 
of CAG repeats, all ≤50 (Table 3), which is associated with juvenile-onset HD (prior to age 20). 
Furthermore, although, a subgroup of 5% of juvenile-onset HD patients have a CAG repeat 
number greater than 60, none of these have derived HD-iPSCs [28].

NPCs derived from ESCs and iPSCs at different stages of maturation (rosette-forming NPCs 
and striatal progenitor cells) have mainly been used in transplantation studies in chemical 

and transgenic HD animal models. However, these studies must be interpreted with care due 
to the limited number of animals used.

Another consideration worth mentioning regards injection route in transplantation assays. 

Several studies transplant NPCs via parenchymal brain injection. Although these NPCs 

demonstrate the ability to engraft into brain, to reduce striatum lesion and to differentiate 
into GABAergic neurons, such intracerebral injection route is strongly invasive, and it is 
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not  advisable to be used in humans. Thus, other routes, for example, the intravenous route, 
should be explored in NPC transplantation [11, 122–124].

Additionally, though behavior improvements have been achieved after transplantation of 
NPCs derived from hESC and hiPSC, these improvements were observed during short- and 
middle-term periods (until 12 weeks), whereas long-term studies are lacking and would be 
more useful in reproducing sort after effects for human treatment [69, 70, 72, 81].

Some safety aspects regarding future transplantation of PSC-derived NPCs into humans need 

to be reevaluated. Recent studies suggest that huntingtin aggregates formed in one cell can be 

transmitted to neighboring cells [125]. Since PSC-derived NPCs show robust engraftment into 

the injury site and differentiation to neurons, the ability of huntingtin aggregates formed in 
the neuronal cells of HD animals to pass into donor-derived neurons should be investigated 

thoroughly before clinical trials are started.

The majority of studies attribute clinical benefits of PSC-derived NPCs in HD animal mod-

els mainly to robust cell graft and tissue regeneration [69, 70, 72, 79, 81]. However, previ-
ous studies that used fetal NSCs and MSCs derived from adult tissues attribute the clinical 
improvements observed after cell transplantation to the paracrine action and neurotrophic 

support provided by these cells (reviewed in [12]. In these contexts, strategies that provide 
neuroprotective effect for HD neurons are essential for future clinical intervention in HD. 
Also, recent studies carried out with NPCs show that these cells are sensitive to BDNF with-

drawal in vitro, thus NPCs could be an appropriate model to carry out NPC-BDNF dose-

response assays.

Preclinical studies which used PSC-derived NPCs in HD animal models do not present 

enough information to support safety and efficiency of these cells for use in humans. It should 
be also considered that they presented many limitations in their use in rodent models, thus 
justifying the delay in clinical studies with PSC-derived NPCs until better data are collected.
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