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Abstract

The main objective of this chapter is to present to the readers a step-by-step design
approach when designing antenna array. Subsequently, the chapter will proceed follow-
ing an example design of a passive Ku band planner receive array antenna for direct
broadcast from satellite (DBS) reception for mobile systems. First, an appropriate
antenna topology capable of reaching our target goals will be selected and optimized
to be the base array element. During the design process of the base element, some
figures-of-merit will be proposed in order to make a comparative study with the
designed antenna and previously published antenna structures. Subarrays of microstrip
line feed antennas will be combined by waveguides in order to build a low-loss feed
network for the array antenna. The main question during the design of the feed network
is: “How should one form the subarrays and their accompanying waveguide feed
networks?” These sections will answer this question by formulating the subarray and
array feed network loss as an optimization problem with constraints on the size and the
weight of the array. In the concluding sections, measurements on realized antennas will
show that the design exhibits a 16.5% relative bandwidth, covering the complete down-
link band, and the designed antennas have a 28.4–31.3 dBi gain for both vertical and
horizontal polarizations. Results of some field tests will be given and conclusions will be
made in the final section.

Keywords: wideband antennas, antenna arrays, hybrid feed networks

1. Introduction

Antennas are crucial components needed during the design of systems in which information is

transmitted via electromagnetic waves. Special attention must always be paid to the antenna

design in order to build up an efficient system. Antenna engineering is the area in which

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



engineers are specialized in designing antennas for a wide range of applications. Each appli-

cation may require a different approach during the design process; also in each approach,

engineers will come across different challenges. Antenna engineering is a fascinating applica-

tion of electromagnetic theory where theory and practice are collated to form a beautiful

harmony.

One can find a vast number of fairly comprehensive books on antenna theory written by some

of the greatest scholars. Each year an enormous number of academic papers are being

published, expanding the area of antenna theory. However, very few resources on practical

design procedures are available. The main objective of this chapter is to show a step-by-step

design procedure for a large antenna array that will hopefully give valuable insight to young

engineers who are at the beginning of their path to become an antenna engineer.

The text following this section will first define the antenna problem. The specifications that a

planner Ku band receive antenna array must necessarily achieve for reception of direct broad-

cast from satellite (DBS) systems will be defined. Section 3 will cover the design of a high

performance antenna array element. A suitable microstrip antenna topology will be selected

based on some figures-of-merit that will be defined according to the given specifications. The

selected structure will be optimized to supply the best performance and a comparative study

between previously published examples will be executed. Section 4 will show the design of

optimal subarrays and microstrip line feed networks. These subarrays will then be combined

with waveguides to build up a larger array. Finally, measurement results of realized antennas

will be discussed.

2. System level requirements for mobile satellite TVantennas

Information and entertainment systems for reception of direct broadcast from satellite (DBS)

on mobile environments have been a great challenge for the automotive industry. Over the last

two decades, there has been growing interest for developing low-cost, high performance

systems working on mobile platforms. Such systems in automobiles now demand compact

mobile antennas for reception of DBS from different service providers simultaneously.

Most of the existing commercial products were based on reflector-type antennas, which pos-

sess excellent bandwidth, gain, noise figure, and half power beam width (HPBW) characteris-

tics. These aspects also make these antennas ideal candidates for control and tracking of

satellites while the vehicle is on the move. Satellite tracking with reflector-type antennas is

basically carried out by mechanically steering the antenna in both the elevation and the

azimuth axes. However, the bulky size and high profile of reflector antennas cause aerody-

namic problems on vehicles. Moreover, these structures are not suitable for smaller vehicles. A

low profile structure such as microstrip antenna arrays with reduced size would be more

advantageous. The primary specification is to build a planner structure using microstrip

antennas which would hold the same properties of a reflector antenna. The low profile antenna

would also be mechanically steered in both elevation and azimuth planes so that no active

components such as phase shifters hence amplifiers would be necessary.
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In the field of TV broadcasting, geostationary satellites are set apart 6° or more from each

other: For azimuth tracking, the antenna's half power beam width is commonly preferred to be

less than 5° whereas it is chosen to be more than 1.5° to optimize tracking the satellite on a

moving vehicle. In order to successfully lock to the satellite over a 32 MHz IF bandwidth,

which is the maximum bandwidth for TurkSat,1 a minimum of 7 dB of carrier-to-noise ratio

(CNR) is required.

It is possible to achieve high antenna gain throughout a maximum of 3° azimuth HPBW in a

planar microstrip antenna array with appropriate number of elements. However, maintaining

target antenna gain at low elevation angles is difficult with broadside antenna elements. The

TM20 mode type radiation pattern may be more suitable, but achieving target bandwidth with

such patch is extremely challenging. Besides, the antenna size would be much larger compared

to TM01 mode broadside looking patch. Utilizing subarrays or panels, positioned on the same

platform, which are capable of being mechanically tilted to certain elevation angles would be a

compromise on height profile. Yet this still is a more expensive choice and it also complicates

the control of the system. This solution is known to have been used in previous studies [1–5]

and it is still broadly used in many satellite systems. Added complexity of this system out-

weighs the benefits of fulfilling electrical specifications.

At this point, it will be suggested to use two panels built from microstrip patch antennas for

each polarization to minimize the added complexity of this implementation. The array will be

formed in order to have a tilted beam. Since the array can be mechanically tilted, it would be

easier to scan low elevation angles without exceeding the overall height limits. The system

configuration of the proposed design is illustrated in Figure 1.

The directivity of a TM01 mode broadside patch is roughly:

DP ¼
4π

ΩA

≈

4π

π
¼ 4ð6 dBiÞ (1)

where, ΩA represents beam solid area. For K elements, the array directivity DA becomes:

DA≈KDP (2)

If elevation scanning of ± 15° is assumed, HPBWθ in elevation can be taken as 30°. HPBW∅ can

be set to 3° for azimuth tracking. Then, the directivity of the array is roughly [6]:

DA≈

40, 000

HPBWθHPBW∅

≈ 444ð26:47 dBiÞ (3)

Furthermore, if 55% total efficiency (due to feed network loss, mismatch loss) is assumed, the

gain of the array should be 807 (29 dBi). Number of broadside patch elements required for this

gain is 202. To preserve symmetry and to account for other losses (e.g. random, mutual

coupling among array elements), we estimate that 256 elements per polarization is needed.

1The antenna in this design example is for the transponders fixed on TurkSat 2A and 3A satellite. It is positioned to an

elevation angle of 42°E in Turkey.
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Based on the simple calculations given above and a quick overview of some commercial

products, the target system specifications are formed and summarized in Table 1.

3. Wideband, high gain antenna element design

Based on the specifications given in Section 2, a high gain and wideband planar antenna

is desired. When designing such antennas, the first step should be achieving the target

bandwidth. Antenna gain becomes the next goal, because gain directly impacts signal-to-

Specification Value

Frequency 10.8–12.8 GHz

Polarization Dual linear (vertical and horizontal)

Antenna G/T (EIRP >54 dBW) >5.5 dB/°K at 45° elevation

Antenna gain 29 dBi (per polarization)

Spatial coverage 35–75° elevation, 0–360° azimuth

Antenna height (w/max mechanical tilt) <70 mm

System diameter <75 cm

Weight (w/o electromechanical components) <3 kg

Table 1. Target system specifications.

Figure 1. System configuration of the proposed array antenna.
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noise ratio (SNR) of the system. Often, minimum gain in the target bandwidth is speci-

fied to fulfill SNR requirements. However, gain and bandwidth are usually complemen-

tary metrics where the improvement in one, results in the degradation of the other.

Thus, one must optimize the design for gain-bandwidth product (GBWP) rather than

bandwidth/gain only. An upper bound on gain-bandwidth product can be placed for

electrically small antennas [7, 8], but this is rather difficult for multiple resonant or

wideband antennas.

One of the most common planar antenna configurations is the aperture-coupled microstrip

antenna (ACMSA) configuration [9]. Slot coupling is also suitable for high-frequency applica-

tions where structural dimensions are in millimeter or submillimeter range. Most of these

applications need high directive gain; thus, utilize phased arrays where high gain and wide-

band antenna elements are required. To increase the bandwidth of an ACMSA, parasitic

elements in the form of stacked patches or coplanar parasitic elements were proposed [10,

11]. Unlike coplanar parasitic elements, stacked patches do not increase the aperture area of

the antenna, hence they do not require increased interelement spacing that may cause grating

lobes. Either a nonresonant slot is coupled to stacked resonant patches or a resonant slot

radiates with resonant stacked elements. Stacked patches coupled with a resonant slot exhibit

fractional bandwidth (FBW) more than 50% with gain in excess of 5 dBi [12, 13]. For

nonresonant slot coupling, various slot shapes ranging from rectangular slots to dog-bone

shape slots have been proposed [9–15]. Hourglass shape nonresonant slot was identified as

the best configuration in terms of fractional bandwidth [10]. However, none of these studies

considered GBWP, and which configuration produces best gain-bandwidth performance is yet

unknown. Also, it is still unclear whether resonant slot or nonresonant slot has better perfor-

mance.

In any antenna design, bandwidth, gain, and HPBW are the most essential design character-

istics along with other features such as cross polarization ratio, front-to-back ratio, in-band

gain ripple, electrical height, and physical dimensions. Although it is difficult to define a

common figure-of-merit (FOM) to combine all these metrics into one, several FOMs will be

derived based on GBWP. Performance-wise comparisons of various nonresonant and reso-

nant aperture coupled stacked patches will be defined for the best configuration in terms of

these FOMs.

This design is particularly focused on Ku band applications for mobile satellite TV reception

and satellite communications. A wideband equivalent circuit representation of the optimized

ACMSAwill be derived. Based on this study, a high gain, wideband antenna structure operat-

ing at Ku band with highest FOM compared to earlier studies will be proposed. Realized

antenna and measurement results will also be provided.

3.1. Gain-bandwidth product of rectangular patch antenna

The bandwidth for a rectangular patch antenna with length L, width W and substrate height h

is given as:

Design of a Ku Band Planner Receive Array for DBS Reception Systems
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BW ¼ VSWR−1

Q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VSWR
p (4)

where, Q represents the quality factor of the patch. Fractional bandwidth rather than absolute

bandwidth is regarded as the bandwidth, thus, BW can also be expressed as:

BW ¼ f u−f l
f c

(5)

where, f u, f l and f c represent upper, lower, and center frequency of the impedance match

frequency band.

For VSWR < 2, BW becomes:

BW ¼ 1

Q
ffiffiffi

2
p (6)

For electrically thin substrates (h/λ<<1), BW can be estimated as [16]:

BW ¼ 16

6π
ffiffiffi

2
p c1p

er

k0h

εr

W

L
(7)

where, er is the efficiency, k0 ¼ 2π=λ0 (free space wavenumber), εr is the permittivity of the

substrate, c1 and p are functions used in the approximation [17]. ForW/L < 2, p becomes almost

1, and c1 becomes 0.4 for air-dielectric and nearly 1 for high permittivity substrates. It is clear

from Eq. (6) that the electrical height of the antenna is directly proportional to the bandwidth.

For a given substrate height, the bandwidth is relatively wider at higher frequencies.

The gain of the patch antenna is approximated as [18]:

G ¼ 4ðk0WÞ2
πη0

erRr (8)

where, Rr represents radiation resistance. Rr given in Ref. [19] was not very accurate as stated

by its authors so a more accurate representation given in [20] can be used. Rr given in [20] is

approximated to its leading terms and is proportional to:

Rr ¼ εr1

ðk0hÞ2 k0w=2
�

Þ2 −1þ 14
k0w=2ð Þ2

� � (9)

The gain of the antenna is inversely proportional to ðk0hÞ2. Hence, neglecting the constants and

assuming p equals to 1, GBWP for rectangular patch is proportional to:

GBWP ¼ 1

k0h

W

L

1

−1þ 14
k0w=2ð Þ2

� � (10)

Therefore, increasing k0h for bandwidth improvement deteriorates attainable gain and limits

GBWP. High aspect ratio (W/L) also improves GBWP if higher order modes are not excited. It
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is interesting to see that substrate permittivity and antenna efficiency are not the factors of

GBWP. Low permittivity substrates are good for bandwidth improvement but relatively

worse for antenna gain. Aperture-coupled antennas mostly follow the same trend of rectan-

gular antennas, however, approximate relations are quite difficult to obtain.

Although these approximate formulas have been widely accepted, they are only valid for

electrically thin substrates. 3D simulations were performed on rectangular patch antenna with

pin feed and defined GBWP as:

GBWP ¼
∫
f u
f l
Gðf Þdf

f u−f l

f u−f l
f c

� �

(11)

where, f l ≤ f i ≤ f u, i = 1, 2,…, N and G(f) represents gain (linear not decibel) as a function of

frequency. Rectangular patch antenna is optimized for best GBWP for different k0h and sub-

strates of different relative permittivity εr. The results are shown in Figure 2. Unlike approxi-

mate formulas, simulations show that GBWP has a maximum at certain k0h and it is maximum

for air-dielectric substrate. A similar analysis for different patch aspect ratios has also been

simulated for air-dielectric patch only (see Figure 3). Again, it appears that there exists an

optimum electrical height where GBWP is optimal. All simulations were run around Ku-band

downlink frequency band (10.8–12.8 GHz).

GBWP performance has also been compared between pin-feed rectangular patch antenna and

nonresonant rectangular slot coupled patch antenna, and the results are displayed in Figure 4.

It can be observed that slot-coupled geometry produces much better GBWP performance as

the inductance of pin feed severely limits BW of rectangular patch antenna.

Figure 2. GBWP vs. k0h. for different dielectric materials.
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3.2. Aperture coupled microstrip patch antenna

A typical aperture-coupled microstrip patch antenna is shown in Figure 5, with a slight

difference. The structure shown below has a secondary patch named “the parasitic patch.”

This parasitic element is placed in order to give the structure a double resonant characteristic

to enhance the bandwidth. The key analysis in this section is to decide what type of aperture

structure is the optimum based on GBWP.

Figure 3. GBWP vs. k0h for different aspect ratios.

Figure 4. GBWP vs. k0h comparison between aperture coupled (nonresonant slot) microstrip antenna and pin-feed

microstrip antenna (antenna substrate is air and εr for feed substrate of aperture coupled antenna is 2.2).
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To compare the antenna performances, FOM1 (figure-of-merit 1) is defined as GBWP (Eq. (11))

without considering the electrical height and half power beam width (HPBW) of the antenna.

We also studied resonant slot coupled patch antenna, pin-feed microstrip antenna (MSA) and

resonant slot with two stacked patches (three resonators), all optimized for performance. The

results are shown in Table 2.

We observe that all nonresonant slot coupled antennas have very similar performance, but

hourglass is slightly better than the others. A resonant slot with two stacked patches achieves

almost 54% BW.

3.3. Design of a Ku band antenna

Earlier sections have led us to a conclusion on the topology of the element antenna. The final

results show that an aperture-coupled stacked patch antenna with an hour-glass shaped

Figure 5. Aperture-coupled antenna and possible aperture shapes.

Antenna Gain (dBi) BW k0h FOM1

H-shaped slot 7.87–9.06 0.275 0.837 2.088

Hour glass slot 7.88–9.07 0.283 0.837 2.150

Rectangular slot 7.89–9.04 0.275 0.837 2.083

Resonant slot 3.51–9.19 0.350 0.736 2.142

Three resonators 5.14–8.88 0.539 0.431 1.314

Pin-fed MSA 9.2–9.3 0.047 0.277 0.401

Table 2. Comparative study based on FOM1.
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nonresonant aperture would be the best solution for the element antenna. Figure 6 shows the

structure of the antenna to be designed.

The antenna was optimized through simulations in a commercial full-wave electromagnetic

solver to give the best results possible, followed by this optimization the realized antenna is

shown in Figure 7. Target band is the Ku band downlink frequencies. Radiating and parasitic

Figure 6. Aperture-coupled stacked microstrip patch antenna.

Figure 7. Antenna-prototype: top (patch) side and bottom (feedline) side.
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patches were formed on flexible PCBs with 75 µm thickness and were placed over the slots

using Rohacell HF 31 foam (εr = 1.046, tanδ = 0.0017). Measurements were carried out in an

anechoic chamber using R&S ZVA40 Network Analyzer, and measurement results are

displayed in Figure 8. Impedance match bandwidth is defined as |S11| < -9.5 dB (VSWR < 2).

Simulations show that the antenna has 25% FBW with maximum broadside gain of 9.67 dBi at

11.24 GHz. Measured antenna has 29% FBW and maximum broadside gain of 9.5 dBi. In-band

gain ripple is less than 0.5 dB, which is also desirable in phased array antenna applications.

Broadside gain is greater than 9.3 dBi in 10.8–12.75 GHz frequency band. Vertical polarization

principal plane (ϕ = 0°) radiation pattern at 11.9 GHz, center frequency of Ku band downlink, is

shown in Figure 9. The HPBW is almost 80°. Due to its wide beamwidth, the antenna can be

utilized in electronically beam-tilted phased array antennas. Measurements corroborate well

with simulation results in terms of gain, impedance bandwidth, radiation patterns, and HPBW.

3.4. Other FOM definitions and a comparative study with previous antenna designs

In a typical system design, minimum in-band gain is more critical than average gain to satisfy

minimum target SNR. Hence, we modified FOM1 in terms of minimum gain and electrical

height of the antenna as:

FOM2 ¼ GminBW
1

k0h
(12)

where Gmin represents the minimum gain throughout the band and k0h represents electrical

height (2πh/λ) at f c. Finally, we define a third FOM to include HPBW as:

Figure 8. Simulated and measured, gain and input reflection coefficient vs. frequency graphs of aperture coupled

antenna ( Measured Input Reflection Coefficient, Measured Gain, Simulated Gain,

Simulated Input Reflection Coefficient).
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FOM3 ¼ Gmin
HPBW

π

� �

BW
1

k0h
(13)

Table 3 shows a comparative study between this work and some of the previously designed

antennas based on the three figure-of-merit definitions, bolded numbers show the best design

Figure 9. Simulated and measured, normalized gain patterns at 11.5 GHz ( Measured Co-Pol pattern,

Simulated Co-Pol pattern, Measured X-pol pattern, Simulated X-pol pattern).

Antenna Gain (dBi) BW (%) HPBW/π k0h FOM1 FOM2 FOM3

This work 9–9.5 0.290 0.438 0.868 2.389 2.118 0.929

[12] 5–7 0.525 0.431 1.452 2.424 1.142 0.493

[14] 7–8.9 0.391 0.444 1.925 2.388 0.642 0.285

[15] 8.2–9.1 0.155 0.437 0.607 1.211 1.806 0.790

[21] 9–9.3 0.110 0.433 0.617 0.905 1.413 0.612

[21] 12–13.9 0.110 N/A 3.539 2.221 0.492 N/A

[22] 8–13.5 0.235 0.138 4.451 3.485 0.333 0.046

[23] 9.2–9.7 0.190 0.435 1.007 1.601 1.313 0.571

[24] 8.5–9.17 0.355 0.435 1.171 2.777 1.836 0.799

[25] 6.2 – 6.7 0.040 0.351 0.544 0.187 0.344 0.120

Table 3. Comparative study based on all three figure-of-merits.
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based on defined FOM’s. It is clear that values obtained in this work are very close to those

from [14] in FOM1 where electrical height is not taken into account. Also values obtained in

[22] being the best solution, nearly all the other designs are better than this work. But when the

physical dimensions, minimum gain, and half power beamwidths are taken into account;

present work is better than all other antennas in FOM2 and FOM3. We believe FOM2 and

FOM3 are critical in array applications as the height of the antenna can be further increased

with suspended or inverted substrate etched structures to enhance gain at the expense of

increased antenna profile.

4. Array and hybrid microstrip/waveguide feed network design

In third section and its sub-sections, the design of an aperture-coupled stacked microstrip

patch antenna was accomplished and the antenna was compared with previous studies. It has

proven its value accomplishing the figures-of-merit defined. This section will focus on the

array synthesis and the feed network design.

4.1. Array synthesis

There are multiple methods and formations possible to develop an antenna array capable of

satisfying the specifications given in Table 1. Yet the most important specifications were the

maximum dimensions and weight, which were supplied according to the needs of the indus-

try. The system diameter must not exceed 75 cm, the height must be less than 7 cm and the

weight must be less than 5 kg. The antenna will have two panels, one for each polarization.

Based on these facts, the array should cover an area with lengths less than 73cm × 20 cm. Using

array theory, it is possible to synthesize an array of 256 elements with the area of given

dimensions. Figure 10 shows the layout of a two-dimensional array.

Let us say that, n and m are the number of elements in the x and y directions, respectively. The

interelement spacing in the x and y directions are dx and dy, respectively. xsn,m and ysn,m are the

Figure 10. Two-dimensional array.
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positions of the source antennas on the (x,y) coordinate system. θ0 and ϕ0 are the angles

pointing the main beam direction of the antenna pattern. The current distribution of each

element being Ia,b, the array factor of such an array can be written as follows:

AFðθ,ϕÞ ¼ ∑
m

b¼1

∑
n

a¼1

Ia,be
jfβ½xsn,mð sinθ cosϕ− sinθ0 cosϕ0Þþysn,mð sinθ cosϕ− sinθ0 cosϕ0Þ�g (14)

The array antenna in this application should have the highest gain possible. Since the array is a

receive-only structure, side lobe levels are not of utmost importance. HPBW in both elevation

and azimuth axes are very important for the design due to the physical limits given in the

specifications. A trade-off between azimuthal HPBW and gain has been made. For maximum

gain, elements in the azimuth axis have been placed 0.82λ (dy) apart. On the other hand,

elements in the elevation axis have been placed 0.73λ (dx) apart. Spacing in the elevation axis

was set in that magnitude so that the phasing of each row would have an electrical phase shift

of 90° for a beam pointing at the desired beam angle (θ0 = 20°, ϕ0 = 0°). The array factor given

in Eq. (14) would become:

AFðθ,ϕÞ ¼ ∑
32

b¼1

∑
8

a¼1

Aa,be
jf2π½0:82ðb−16:5Þ

�

sinθ cosϕ− sin ð20Þ

	

þ0:73ða−4:5Þð sinθ cosϕÞ�gþϑa,b
(15)

where Aa,b is the magnitude of current at each element (which is 1, for uniform excitation) and

ϑa,b is the electrical phasing of each element (90° between each row, uniform in the azimuth

axis). Figure 11 shows the elevation pattern of the synthesized array of 256 which consists of

8 rows and 32 columns.

4.2. Hybrid microstrip and waveguide feed network

Ohmic and dielectric losses tremendously increase in high frequencies, therefore a dramatic

loss is perceived by the feed network for large arrays. We must also put the surface wave

excitation and radiation losses into account concerning the feed network. The reason that

corporate microstrip feed network becomes immensely difficult when combining 256 ele-

ments is thus the electrically long microstrip lines. To overcome feed network loss, series

feed, parallel feed, series-parallel feed, all waveguide feed and waveguide-microstrip hybrid

feed, various techniques were proposed in the past. Waveguide-only feed, i.e., each antenna

element being fed into the waveguide, is not attractive due to cost and weight of the die-cast

structure. Series, parallel, and their combinations exhibit poor bandwidth performance and

only work well for narrowband systems. Most suitable choice would be hybrid microstrip

and waveguide feed system, but the size of the corporate feed for the subarray must be

carefully determined. Dominant mode waveguides are known for their low loss properties.

The crucial aspect of design of such a hybrid structure would be microstrip-to-waveguide

transition. For this design, the waveguide must be 6 mm below the feedline, on the other side

of a reflecting ground. In the following parts of this section; the design of a low loss

microstrip-to-waveguide transition, a detailed analysis on microstrip line and waveguide

losses will be discussed and finally the optimum solution for the feed network structure will

be calculated.
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4.2.1. Microstrip feed network losses

The well-known reasons for loss in microstrip lines are conductor losses, dielectric losses, radia-

tion losses, and surface wave losses. Regarding the fields within two guided-wave media, TEM

waves do not propagate in microstrip lines. When the longitudinal components of the fields are

significantly diminished compared to transverse components, the quasi-TEM approximation is

applicable. Equations given below can be found in almost every book about antennas and

microwave theory. Although the accuracy of these equations is not that liable for the Ku band,

it will provide a fairly satisfying approximation for determining the dimensions of the subarray

feed network. Dielectric properties of the substrate that will be used are; dielectric constant (εr) 3,

loss tangent ( tan δ) 0.0023, thickness (h) 0.5 mm, and copper thickness (t) 35 µm.

The frequency for which the effects of dispersion that can be neglected is calculated from (for h

given in mm, f dis is in GHz):

f dis ¼ 0:03

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Z0

h
ffiffiffiffiffiffiffiffiffi

εr−1
p

s

(16)

f dis is calculated to be nearly 8 GHz. For a Ku band application, the dispersion effects cannot be

neglected. The effects of dispersion mostly affect the relative dielectric constant. Calculations

can be modified to include these effects with varying frequencies.

Figure 11. Array factor elevation pattern of synthesized array.
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Let W be the width of the feedline and t the copper thickness, the effective feedline width to

dielectric thickness ratio can be calculated as:

Weff

h
¼ W

h
þ t

πh
1þ ln

2h

t

� �

f or W
h= ≥1 2 π= (17)

Weff

h
¼ W

h
þ t

πh
1þ ln

4πW

t

� �

f or W
h= ≤1 2 π= (18)

Effective dielectric constant can be calculated as:

εeff ¼
εr þ 1

2
þ εr−1

2
1þ 12

h

Weff

� �

−1=2

f or Weff=h ≥ 1 (19)

εeff ¼
εr þ 1

2
þ εr−1

2
1þ 12

h

Weff

� �

−1=2

þ 0:04 1−
Weff

h

� �2
" #

f or Weff=h ≤ 1 (20)

Effects of frequency variations on εeff:

εeffðf Þ ¼
εr−εeff

1þ ð0:6þ 0:009Z0Þ 8fπh
Z0

� 	2
(21)

Characteristic impedance Z0 can be calculated by:

Z0 ¼
60
ffiffiffiffiffiffiffiffiffiffiffiffiffi

εeffðf Þ
p ln 8

h

Weff
þ 0:25

Weff

h

� �

f or Weff=h ≥ 1 (22)

Z0 ¼
120π= ffiffiffiffiffiffiffiffiffi

εeffðf Þ
p

Weff

h þ 1:393þ 0:667ln Weff

h þ 1:44
� 
 f or Weff=h ≤1 (23)

Wavelength:

λ ¼ λ0
ffiffiffiffiffiffiffiffiffiffiffiffiffi

εeffðf Þ
p

εeffðf Þ
1þ 0:63

�

εeffðf Þ−1
	

Weff

h

� 
0:1255

2

4

3

5

1=2

f or Weff=h ≥ 0:6 (24)

λ ¼ λ0
ffiffiffiffiffiffiffiffiffiffiffiffiffi

εeffðf Þ
p

εeffðf Þ
1þ 0:6

�

εeffðf Þ−1
	

Weff

h

� 
0:0297

2

4

3

5

1=2

f or Weff=h ≤ 0:6 (25)

From these equations, one can easily calculate the width (W) for 50 Ω line at the Ku band mid

frequency, to be 1.055 mm. The total loss in a feedline can be calculated from the sum of the

attenuation constants for αc (conductor loss), αd (dielectric loss), αsurf (surface loss) and αrad

(radiation loss). Since we are trying to practically calculate the losses of a microstrip feed

network for an antenna array, the length of the feedline will be found to be greater than 5λ.
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For this reason, the effects of radiation and surface wave losses can be neglected since their

effects are small compared to the conductor and dielectric losses.

Conductor losses can be calculated by:

αc ¼ 20loge
1

Z0Weff

ffiffiffiffiffiffi

πfμ0
σc

p

(26)

Dielectric losses can be calculated by:

αd ¼ 20loge

2πεr

�

εeff ðf Þ−1

	

tan δ

λðεr−1Þ
ffiffiffiffiffiffiffiffi

εeff ðf Þ
p

(27)

4.2.2. Microstrip to waveguide transition losses

The transition geometry involves copper disk and dielectric loaded pin for wideband match

and low loss. The geometry of the transition is illustrated in Figure 12. In order to register all

ohmic losses of this design, the transition was modeled using a full-wave electromagnetics

solver where waveguide is aluminum and the probe is copper. Simulated results for insertion

loss and transmission loss are shown in Figure 12. Prototype of the disk-loaded transition was

manufactured and measurements were carried out. Input reflection coefficient was below 15

dB and the loss for this transition was measured to be 0.78 ± 0.02 dB in the desired frequency

band.

4.2.3. Waveguide combiner losses

In hybrid system, one must take the loss in the waveguide combiner into account as well for

quantification. Instead of a typical E-type combiner, an H-type waveguide was chosen. The

major reason to prefer this design was to decrease the height of the WR75 waveguide. Because

the electric field lines are set parallel to longitudinal axis of the guide. Unlike the E-plane

combiner, the output ports are in phase with each other as well resulting in no need for phase

compensation. Moreover, it is easier to realize this waveguide since one is able to cut into one

of the longer sections of waveguide in order to machine its remaining part from die-cast as

well. Summary of all losses are presented in Table 4. Given these parameters, the size and form

of the subarrays and waveguide sections can be designed.

4.2.4. Optimizing the hybrid feed network

An optimization problem for minimum feed network loss can be formulated and solved for

subarray size. Layout of a general array is illustrated in Figure 13. Number of elements in x-

and y-directions is denoted as N and M, respectively. Let NS and MS represent the number of

elements in the subarray.

The number of levels for single output can be expressed as:

log2NM ¼ log2NsMs þ log2
N

Ns
þ log2

M

Ms

� �

(28)

where log2NSMS and (log2N/NS +log2M/MS) represent number of levels in the subarray and in

the waveguide, respectively. Loss in the hybrid combiner can be stated as:
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log2
N

Ns

þ log2
M

Ms

� �

LT,WG þ LTRANS ¼ L1 (29)

where LT,WG and LTRANS are waveguide T-junction losses and microstrip to waveguide transi-

tion losses. A single transition is found to be effective while calculating the corporate feed

Figure 12. Microstrip line to waveguide transition and simulation results.

Component Value

Microstrip line 0.072 dB/cm

Microstrip T-junction 0.11 dB

Microstrip-to-waveguide transition 0.78 dB

Waveguide T-junction 0.12 dB

Table 4. Summary of losses.
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network loss in spite of the various (NM/NSMS) transitions in the waveguide. Loss in

microstrip lines could be written as follows:

dx þ dy

2
þ

Ns

2
−1

� �

dx þ
Ms

2
−1

� �

dy

� �

LMS þ ðlog2Ns þ log2MsÞLT,MS ¼ L2 (30)

where dx, dy represent interelement spacing in x and y directions, and denote microstrip T-

junction loss and microstrip line loss, respectively. Microstrip line loss includes ohmic and

dielectric losses and it is calculated for a 50 Ω straight line section. Then, total loss

becomes:

Ltot ¼ L1 þ L2 (31)

Furthermore, for corporate feed N, M, NS and MS must be multiples of 2, i.e., N ¼ 2n, M ¼ 2m,

Ns ¼ 2ns , and Ms ¼ 2ms . Total loss can be restated as:

ðn−ns þm−msÞLT,WG þ ðns þmsÞLT,MS þ LTRANS þ ð2ns−1dx þ 2ms−1dy þ lÞLMS ¼ Ltot (32)

where l represents −(dx+dy)/2. Optimization function for minimization of loss for subarray size

ns and ms can be formulated as follows:

Figure 13. Layout of the feed network.
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minimize Ltotðns,msÞ∀ ns,ms∈Z
þ

Subject to
1≤ ns ≤minðn,mÞ
1≤ms≤minðn,mÞ
wðns,msÞ≤3kg

(33)

where wðns,msÞ is the weight of the waveguide combiner, and dimensions of the subarray

cannot is determined to be smaller than the full array size in all directions. The waveguide feed

network consists most of the weight. Differing structures in the range of 4:1 to 64:1 gave way to

the design of different waveguide feed networks (commercial full-wave electromagnetic

solver) and models (CAD program for mechanical design). The weights of waveguide com-

biners were calculated according to aluminum alloy 6068 used in die-cast machines. Conse-

quently, it was found that the required weight condition could only be reached for equal to 8:1

or smaller combiner structures. For instance, a 16:1 waveguide combiner (in which the ele-

ments in the subarray are 16) weighs 4.3 kg. Hence, the constraint on weight is replaced with

ðns þmsÞ > 5. At a minimum of 32 elements is required in x-direction to obtain 3° HPBW in

azimuth because a sum of 256 elements (n + m = 8) is utilized in the full array. Hence, m and n

are set to 3 and 5, respectively (8 and 32 elements). It is now possible to have a solution for the

optimization issue for subarray dimensions ðns,msÞ. Constrained nonlinear optimization was

utilized to find ðns,msÞ as (3, 2), and the optimal solution was found to have total loss of 2.16

dB. Since waveguide and microstrip T-junctions were overestimated, the realized loss will

probably be lower than the calculated value.

The size of the subarray is set to 4 × 8 (32 elements total) and the subarrays are combined as 8:1

in the waveguide. We also observed that if we were able to use an alternative material such as

electro-form-plated dielectric material, it was possible to reduce weight, which would enable a

larger combiner that had less total loss.

5. Realization of the Ku band antenna and measurement results

The previous sections have led to the conclusion that the 256-element array antenna would

consist of 8 rows and 32 columns. Further analysis on losses in the feed network components

has shown that four row, eight column (32 elements) subarrays, where antenna elements are

combined by microstrip feedline networks would give optimal performance and have an

acceptable loss. Eight subarrays will then be combined by a reduced height waveguide com-

biner. This section will conclude with the design of each component and build both the vertical

and horizontal polarization arrays.

5.1. Design of 4 × 8 (32-element) arrays

The Ku band array antenna is divided into eight subarrays for each polarization. Within

each subarray, corporate feed network is used. Although corporate feed network has more

loss than parallel feed network, it has much wider impedance bandwidth when tapered

microstrip lines and tapered T-junctions are used. Each antenna input was defined as a 50
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Ω port and S-parameters of 33-port network (32 for antennas and 1 for output port) were

optimized for match, uniform power distribution, bandwidth, and minimum port-to-port

coupling. Following that, as terminating loads in the feed network, simulated input

impedance values of 32 antenna elements were placed. Finally, the layout was driven for

the best match at the combined output. Vertical and horizontal subarrays for a fixed 20°

elevation tilt are shown in Figure 14. Antiphase feeding between upper and lower parts of

the vertical polarization subarray is used to reduce microstrip line lengths for required

phasing (90°) between the rows of the array. The same technique was not possible to

implement in the horizontal polarization subarray due to perpendicular orientation of

coupling slots underneath feedlines. Element spacing along longer axis (azimuth tilt direc-

tion) and along shorter axis (elevation tilt direction) of the subarray is 0.82λ and 0.73λ,

respectively.

Figures 15–17 show the realized antennas and their measurement results. The results show

that the realized antennas have a minimum of 19 dBi gain throughout the desired band-

width. A good matching lower than -10 dB is also achieved throughout the desired band-

width.

5.2. Design of 8-to-1 waveguide power combiner

The optimum value for the waveguide combiner was calculated to be an 8-to-1 combiner, with

reduced height. Figure 18 shows a sketch drawing of the waveguide combiner.

Most of the losses and the power division take place in the bends and T-junctions. Figure 19

shows a closer view of the waveguide junctions and bends. The parameters in Figure 19 are the

main optimization parameters. Optimizer goals were to minimize losses and have better

impedance match less than -15 dB throughout the desired bandwidth. The most crucial com-

ponent in the design of such divider is the position of the shorting probe. Figure 20 shows the

surface current of optimized combiner section. Optimized results are given in Figure 21.

Figure 21 (bottom graphic) shows the transition characteristic at all ports; simulations estimate

the worst case, a loss of 0.5 dB.

5.3. Complete array realization and measurement results

The prototype antenna with all subarrays is built and the prototype is displayed in

Figure 22. The performance of a dish antenna was taken as a reference for comparison.

A parabolic reflector with corrugated circular feed horn (an existing commercial antenna)

was also modeled for this purpose to be named “the reference antenna.” This reference

antenna exhibits similar performance to that of a 40 cm diameter dish antenna except that

it has a lower profile. The simulation model with a great number of unknowns made it

impossible to simulate full array with waveguide feed network. This resulted in the

separate simulations of the planner array and the waveguide feed network to calculate

both their S-parameters which led to the combination of these two results to get the final

array performance. Measurements and simulations of planar array for input impedance

match and gain at 20° tilt are displayed in Figures 23 and 24. Both the planar array and

reference antenna showed in their gain simulations that they quantify similarly. Whereas
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Figure 14. 32 element subarray configurations for vertical polarization and horizontal polarization.

Figure 15. Realized vertical (top two pictures) and horizontal (bottom two pictures) subarray antennas.
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when comes to measured gain, it was lower than the simulated gain because of the

waveguide-to-coax adapter that was utilized in the measurements and for the nonideal

Figure 16. Input reflection coefficient and gain of 32 element subarrays ( Measured Gain, Simulated

Gain, Measured S11, Simulated S11).
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simulation set-up. However, over entire target frequency band, the measured gain at

desired tilt angle was found to be greater than 28.4 dBi. Planar array gain is 1.2 dB lower

than the expected value from array theory. The radiation patterns of planar array at 20°

tilt angle for azimuth and zenith cuts are shown in Figure 25 and Figure 26. Measured

HPBWθ and HPBWϕ are 8 and 2.5°, respectively. If the antenna was designed for broad-

side reception, its gain would have been definitely higher. The aperture efficiency of the

planar array is between 57 and 67% over the target frequency band (Figures 25–27).

Figure 17. Normalized radiation pattern of 32-element subarray at 11.9 GHz (ϕ = 0°, elevation patterns) (

Measured Gain, Simulated Gain).

Figure 18. 8-to-1 power combiner.
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Figure 19. Waveguide bends and junctions.

Figure 20. Simulation of surface currents on the waveguide combiner.
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The designed array antenna has also been field-tested for signal quality and satellite reception

with an LNB and a receiver. The IF loop output of the receiver was connected to the Rohde &

Schwarz FSH-8 GHz spectrum analyzer. Signal from transponders was observed to have an

average CNR of 9.5 dB. In Figure 28, the measurement results are given. Reception quality

retrieved from the receiver digital outputs was above 65%, which is slightly lower than that of

the reference antenna (71%).

Figure 21. Simulated input reflection coefficient at combiner output (top), simulated transmission coefficients of 8-to-1

power combiner (bottom).
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Figure 22. Prototype of vertical polarization 256-element array (dimensions: 70.73 cm × 18.23 cm × 2.43 cm, the height of

the waveguide adapter is excluded from dimension).

Figure 23. S11 of array antenna. ( Measured, Simulated).
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Figure 24. Gain of array antenna (θ = 20°cut) ( Measured Vertical Polarization, Measured Hori-

zontal Polarization, Simulated 256 Element Array, Simulated Reference).

Figure 25. Radiation pattern of vertical polarized full array in azimuth plane (θ = 20°cut). ( Measured @

11.9 GHz, Simulated @ 11.9 GHz, Measured @ 10.8 GHz, Measured @ 12.8 GHz).

Microwave Systems and Applications268



Figure 26. Radiation pattern of vertically polarized full array in ϕ-plane (ϕ=0° cut) ( Measured @ 11.9 GHz,

Simulated @ 11.9 GHz, Measured @ 10.8 GHz, Measured @ 12.8 GHz).

Figure 27. Radiation pattern of horizontally polarized full array in ϕ-plane (ϕ=0° cut) ( Measured @ 11.9 GHz,

Measured @ 10.8 GHz, Measured @ 12.8 GHz).
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