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Abstract

Hypoxia is a common underlying condition of many disease states. Hypoxia can occur
with ischemia, a lack of blood flow to tissues, or independent of ischemia as in acute
lung injury, anemia, and carbon monoxide poisoning. Hypoxia may be observed in
patients  with  diseases  such  as  obstructive  sleep  apnea,  cerebrovascular  diseases,
systemic hypertension, cardiovascular diseases, chronic obstructive pulmonary disease
(COPD), pulmonary hypertension and congestive heart failure (CHF), inflammatory
disease states, and acute and chronic renal diseases. In the past decade, research has
shown hypoxic signaling to be involved in a range of responses from adaptation of the
body to reduced oxygen to pathogenesis of disease. Hypoxic signaling intermediates
orchestrate a whole host of responses from angiogenesis, glycolysis, and erythropoiesis
to inflammation and remodeling, which could be beneficial or harmful to the hosting
organ. The length of exposure to low oxygen pressure as well as the existing signaling
pathways within different cells dictates their benefit or disadvantage from hypoxic
signaling. Therefore, activation or inhibition of hypoxic intermediates could serve as
novel therapeutic strategies. In this chapter, we review the role of hypoxic signaling in
neurodegenerative, inflammatory, and renal disease states and the emerging therapeu‐
tic approaches involving hypoxic signaling.

Keywords: hypoxia, hypoxia‐inducible factor, neurodegenerative disease, Parkinson’s
disease, Alzheimer’s disease, ischemia/reperfusion, inflammation, epigenetics, micro‐
RNA, inflammatory bowel disease, rheumatoid arthritis, acute kidney injury, chronic
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1. Hypoxia and neurodegenerative diseases

1.1. Introduction

Neurodegenerative diseases are defined by the progressive loss  of  specific neuronal  cell
population and protein misfolding and aggregate. Reduced oxygen supply has been detected
during the aging process as well as the pathogenesis of neurodegenerative diseases. Besides,
diseases associated with a  lowering of  systemic oxygen levels  predispose individuals  to
neurodegenerative diseases. Although the connection between hypoxia and neurodegenera‐
tion has been well established, the exact role of hypoxia in neurodegenerative diseases has yet
to be elucidated.

This section summarizes current identified clues linking hypoxia to the onset and progression
of neurodegenerative diseases, including neurotoxic effects, altered signaling transduction
and protein expression, and abnormal epigenetic modification. Furthermore, the following
discussion emphasizes on the detrimental impacts of cerebral oxygen deficiency on three major
neurodegenerative diseases: Alzheimer’s disease (AD), Parkinson’s disease (PD), and amyo‐
trophic lateral sclerosis (ALS).

1.1.1. Hypoxia and Alzheimer’s disease

AD is characterized by progressive impairments in memory and cognitive function. The
hallmark features of AD are extracellular plaques whose major components are amyloid β
peptide (Aβ) and intracellular neurofibrillary tangles constituted by hyperphosphorylated tau
protein. Other changes identified in AD brains are loss of synapses and neurons, proliferation
of reactive astrocytes, and microglial activation. The incidence of AD in the United States is
11% among the population aged over 65 years and approximately 32% among those 85 years
and older (Alzheimer’s Association, 2015) [1]. Apparently, aging is the most significant risk
factor for AD, since the risk of developing AD doubles every 5 years after the age of 65 years.
Other factors, including environmental neurotoxins/metals, gene mutations, susceptibility
polymorphisms, cardiovascular diseases, traumatic brain injury, and ischemia/hypoxia, also
potentially prompt the development of AD.

Although the exact mechanisms and triggers initiating AD remain unclear, both clinical and
preclinical studies suggest that hypoxia should be considered as an important risk factor in
AD pathogenesis. Chronic cerebral hypoperfusion and glucose hypometabolism appearing
decades before cognitive dysfunction promote the initiation and progression of cognitive
decline and AD [2]. Patients after cerebral hypoxia or ischemia are more susceptible to
developing dementia. Cerebral blood flow (CBF) reduction decreases the synthesis of proteins
necessary for memory and learning and contributes likely to neuritic injury, neuronal death,
and the onset and progression of dementia [3]. Correspondingly, significantly reduced resting
CBF is distinguished in AD patients and is also present in the early stages of AD pathogenesis
[4].

Generally, hypoxia modifies Aβ production and tau phosphorylation at numerous points
(Figure 1). Aβ is a cleavage product generated through the sequential actions of β‐ and γ‐
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secretases on amyloid precursor protein (APP). Hypoxia can stimulate Aβ generation and
senile plaque formation in AD through increasing the expression of β‐ and γ‐secretases along
with the localization of γ‐secretase from cell body to axon [5]. Furthermore, hypoxia elevates
the levels of APP and presenilin‐1 (PS‐1), a main component of γ‐secretase complex, in vivo
[6]. The expression of neprilysin (NEP), an enzyme responsible for Aβ degeneration, is reduced
during hypoxia [7]. Rats exposed to hypoxic stress display tau hyperphosphorylation in the
hippocampus as well as memory deficit, and Aβ‐induced tau phosphorylation is raised
through calpain upon hypoxia exposure [8, 9]. The activity of protein phosphatase 2A (PP2A)
is compromised in AD and is believed to be a cause of tau neurofibrillary. Brain hypoxia
generates an acidic environment that promotes the cleavage of I2

PP2A, a potent inhibitor of PP2A,
by activating asparaginyl endopeptidase, thus giving rise to tau hyperphosphorylation [10].

Figure 1. The molecular mechanisms of hypoxic predisposition to AD.

1.1.2. Hypoxia and Parkinson’s disease

The clinical features of PD include classical motor symptoms (bradykinesia, rigidity, postural
instability, resting tremor) and non‐motor symptoms (dementia, sleep disorder, depression,
autonomic dysfunction), resulting from a continuous degeneration and loss of dopaminergic
neurons in the substantia nigra (SN) and the presence of intracytoplasmic proteinaceous
inclusions called Lewy bodies (LB) [11].

α‐Synuclein (α‐syn), a major constituent of LB, is the pathological hallmark of PD. Hypoxic
brain injury is a potential cause of PD, as it enhances α‐synuclein expression and aggregation
[12]. ATP13A2 (PARK9) mutations have been found in postmortem PD patients, declaring its
relevance to PD pathogenesis [13]. Although the exact molecular mechanism remains un‐
known, it turns out that hypoxia upregulates ATP13A2 transcription via HIF‐1 alpha
(HIF‐1α) in dopaminergic cells [14]. Hypoxia changes the localization of intracellular hemo‐
globin whose overexpression is correlated with an increased risk of PD [15]. In addition,
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subnormal sensitivity to hypoxia has been noticed in PD patients even at an early stage of
diseases, probably leading to the exacerbation of respiratory failure in PD [16].

1.1.3. Hypoxia and amyotrophic lateral sclerosis

ALS, also known as Lou Gehrig’s disease, is a progressive and fetal disease resulted from
damaged motor neurons in the spinal cord, brain stem, and motor cortex. The incidence rate
of ALS worldwide is estimated to be 2 in 100,000 people, and in the United States, about 5000
persons are diagnosed with ALS every year [17]. ALS risk is influenced by physical activity,
smoking habit, type of diet, and exposure to agriculture chemicals and heavy metals. Occu‐
pations that may cause intermittent hypoxia, such as fire fighter, double the risk of ALS, and
genetic impairment in reaction to hypoxia predisposes motor neuron to death [18].

Hypoxia is not only a causative factor of ALS but also accelerates the progression of ALS. Motor
neurons under hypoxic conditions fail to survive and undergo degeneration [19]. SOD1G93A

mutant mice, an ALS animal model, have experienced aggravation in motor neuronal loss,
neuromuscular weakness and possibly cognitive deficiency, with higher level of oxidative
stress and inflammation after chronic intermittent hypoxia [20]. Chronic sustained hypoxic
condition induces the activation of apoptosis‐related genes such as caspase 3, apoptosis‐
inducing factor (AIF), and cytochrome C in motor neurons from the spinal cord of ALS mice,
facilitating the progression of ALS [21].

1.2. The mechanism of hypoxia-induced injury in neural cells

Cellular and molecular pathways underlying hypoxia‐induced neurotoxicity and cell death
are multifaceted and complex, including a number of cross‐talked mechanisms. Ensuing
hypoxia stimulates the production and release of proteins mediating oxidative stress,
inflammation, apoptosis, mitochondrial metabolism, metal homeostasis, synaptic transmis‐
sion, and autophagy, contributing to neuronal death (Figure 2).

Figure 2. Different pathogenic mechanisms linking hypoxia to neurodegenerative diseases.
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1.2.1. Hypoxia-promoted oxidative stress

Oxidative stress has been implicated in hypoxic injury and neurodegenerative diseases. It
occurs due to the disruption of oxidative balance and excessive production of reactive oxy‐
gen species (ROS) and reactive nitrogen species (RNS), including hydrogen peroxide (H2O2),
nitric oxide (NO), superoxide (O2

−), and the highly reactive hydroxyl radicals (·OH) [22]. The
production of ROS and RNS is increased under hypoxic condition, probably because there is
no acceptor for the electrons available. During hypoxic events, high levels of free radicals
are produced through mitochondrial complex III, and the antioxidant status is depleted,
thus leading to oxidative damage of vital cellular components. For instance, neuroblastoma
cells exposed to hypoxia have augmented production of free radicals accompanied by a con‐
comitant decrease in reduced glutathione (GSH) content, glutathione reductase (GR), gluta‐
thione peroxidase (GPx), and superoxide dismutase (SOD) activities, further inciting
apoptotic death [22].

Increased oxidative stress is believed to be associated with neurological disorders and classical
neuropathy. Reduced antioxidant capacity is a trait of AD. The activation of NO/NOS signaling
system by cerebral ischemia in aged rats triggers hippocampal Aβ production through β‐
secretase 1 (BACE1) pathway, implying RNS is a bridge linking hypoxia to AD [23]. In retinal
ganglion cells (RGEs) derived from rats, hypoxia exposure triggers Aβ formation, intracellular
ROS accumulation, and following cell death, suggesting the involvement of Aβ in hypoxia‐
induced retinal degeneration in AD [24]. In PD, the promotion of ROS formation is highly
correlated to mutant α‐syn phosphorylation at serine 129 (Ser129), possibly preceding cell
degeneration [25]. Agents with antioxidant property ameliorate neurodegenerative situation,
including natural compounds and iron chelators.

1.2.2. Hypoxia-altered ionic homeostasis

Impaired cellular homeostasis of metals can be triggered by hypoxic conditions, resulting in
neurodegeneration through various mechanisms, such as oxidative stress, inflammation, and
aberrant expression of metalloproteins.

Calcium dyshomeostasis is a fundamental mechanism in the pathogenesis of neurodegener‐
ative diseases. The interaction between γ‐aminobutyric acid (GABA) and calcium‐dependent
neurotransmission as well as calcium‐dependent neuronal metabolism also reveals the role
of Ca2+ in neuronal degeneration. Ca2+ acts as an intracellular messenger, controlling not only
transsynaptic signal transmission but also cellular metabolism by reaching the mitochondria
[26]. Hypoxia can disrupt Ca2+ entry and signaling in various cell types. In hypoxic human
neuroblastoma cells, the storage of intracellular Ca2+, Na+/Ca2+ exchange, and capacitative Ca2+

entry are boosted, indicating adaptive cellular remodeling in response to prolonged hypoxia
[27]. Similarly, chronic hypoxia enhances capacitative Ca2+ entry and mitochondria Ca2+ content
in the primary culture of rat type‐I cortical astrocytes [28]. In terms of AD, chronic hypoxia
potentiates posttranscriptional trafficking of L‐type Ca2+ channels that may result from the
interaction between Aβ and Ca2+ channel subunit [29].
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Iron can be released from storage protein in the brain under hypoxic circumstances, and
disruption of intracellular free iron homeostasis is an early event upon hypoxic stimulation in
oligodendrocytes that contain enriched iron and ferritin [30]. Progressive hypoxia dramatically
activates the synthesis of ferritin, a major iron‐binding protein, in oligodendrocytes, and this
induction may require ROS formation as it can be enhanced by co‐treatment with H2O2 [31].
Intracellular free iron has neurotoxic effects. Iron promotes Aβ aggregation in vitro [32], and
iron‐Aβ interaction exhibits toxic effects through ROS [33]. Iron also binds to tau, but inter‐
estingly, its effect on tau relies on the oxidation state. Fe3+ induces the aggregation of hyper‐
phosphorylated tau and reduces the phosphorylation of tau, whereas Fe2+ exerts an opposite
action [34]. As for PD, abnormal accumulation of iron results in α‐syn aggregation by pro‐
moting its synthesis and inhibiting its degradation [35].

1.2.3. Hypoxia-disrupted mitochondrial functions

The consequences of mitochondrial dysfunction cover oxidative stress, intracellular Ca2+

dysregulation, apoptosis, and metabolic failure, aggravating the deleterious effect.

Respiratory chain reprogramming is the first stage in the development of hypoxia‐triggered
mitochondrial disorders, converting complex I electron transport chain (ETC) to complex II
succinate oxidation. The activation of succinate is regarded as a protective and compensatory
mechanism in response to oxygen shortage and preserves the aerobic energy production [36].
Otherwise, the dysregulation of complex I during oxygen deficiency may lead neurons to acute
degeneration, characterized by decreased membrane potential, loss of ATP, and respiration
disorders caused by abnormal oxidation of nicotinamide adenine dinucleotide (NADH) [37].
The study of mitochondrial genes informs that hypoxia upregulates genes involved in
glycolytic pathways, indicating a shift in energy production from oxidative phosphorylation
to glycolysis, which converts glucose to pyruvate and eventually lactate. This shift is supported
by the observation of elevated brain extracellular lactate concentration in traumatic brain injury
(TBI) patients. A cerebral microdialysis study discloses that the neurons in TBI patient are
unable to utilize lactate produced by astrocyte through tricarboxylic acid (TCA) cycle, leading
to increased lactate/pyruvate ratio [38]. In addition, the ketogenic capacity of cultured astroglia
and neurons is augmented under hypoxia, probably because of the susceptibility of pyruvate
dehydrogenase to oxygen deprivation [39].

Many rare mitochondrial diseases are actually models of neurodegeneration, such as Leber’s
hereditary optic neuropathy (LHON) and autosomal dominant optic atrophy (ADOA), and
abnormal mitochondrial function has been discovered in several age‐related neurodegenera‐
tive diseases. Suppression of complex I potentiates tau phosphorylation, pointing out the role
of mitochondrial dysfunction in the formation of tangles in AD [40]. During prolonged
exposure to hypoxia, ROS production, Aβ accumulation, and Ca2+ dyshomeostasis are
enhanced through regulation on ETC [41]. The SN of PD patients has reduced activity of
mitochondrial complex I, and inhibitors of complex I produce neurological changes similar to
PD [42].
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1.2.4. Hypoxia-mediated apoptotic cascades

Cerebral hypoxia results in increased activities of caspase‐9, caspase‐8, and caspase‐3 in the
cerebral cortex of newborn piglets and enhances cytochrome C expression and caspase‐3
activity followed by the induction of apoptosis in neuroblastoma cells. NO induced by hypoxia
exerts proapoptotic property through elevating the expression of proteins such as Bax and Bad,
leading to APAF‐1 activation and consequential activation of caspase‐9 and caspase‐3, and, on
the other hand, through downregulating antiapoptotic proteins of the B‐cell lymphoma‐2
(Bcl‐2) family [22, 43] . Exposure of primary neuron cells from ALS mice to chronic sustained
hypoxia results in enhanced cellular apoptosis, suggesting hypoxia could accelerate ALS via
neuronal apoptosis [21]. Angiogenin (ANG) is a potent inducer of neovascularization and is
responsive to hypoxia. Silence of ANG promotes hypoxic injury‐induced motor neuron
apoptosis, while exogenous overexpression of ANG has an antiapoptotic function. Mutation
of ANG has been identified in ALS patients, proposing the importance of ANG in ALS
pathogenesis [44].

Blockage of apoptosis can be neuroprotective. Rasagiline and its derivatives, a group of highly
potent irreversible monoamine oxidase (MAO) B inhibitor, exert their anti‐Parkinson feature
by preventing apoptotic cascades. They activate Bcl‐2 and protein kinase C (PKC) and inhibit
proapoptosis FAS and Bax against neuronal apoptosis [45]. Treatment of 0.5% isoflurane, an
inhaled anesthetic, attenuates caspase‐3 activation, BACE upregulation, and Bcl‐2 reduction
caused by hypoxia in H4 human neuroglioma cells, hinting the neuroprotective effect of
isoflurane in AD [46].

1.2.5. Hypoxia-modified synaptic signaling

Synaptic transmission in the central nervous system (CNS) is extremely sensitive to hypoxia,
since it requires 30–50% of cerebral oxygen. Decrease in synaptic efficacy occurs very early
during hypoxia and is possibly the first response of neurons to ischemic insult.

Oxygen‐sensitive ion channels and voltage‐gated Ca2+ and K+ channel are activated in response
to hypoxia, bringing about changes in excitation and inhibition of neuronal and glial cells [47].
Under hypoxic circumstance, there is an accumulation of adenosine in the extracellular space,
due to the increased catabolism of adenosine triphosphate (ATP) into adenosine monophos‐
phate (AMP) [48]. Adenosine is a neurotransmitter inhibiting synaptic transmission, and its
effect is mediated by adenosine A1 receptor. The mechanism is that receptor activation
stimulates inwardly rectifying K+ channels, substantially inhibiting Ca2+ channels, phospholi‐
pase C activation, and the release of neurotransmitters including glutamate, dopamine,
serotonin, and acetylcholine [49].

P2Y1 receptor is a G‐protein‐coupled ATP receptor activated by ATP released from neurons
and astrocytes during neuronal activity or under pathophysiological conditions such as
hypoxia, brain injury, and AD [50]. Emerging evidence shows that P2Y1 receptor obstructs the
release of neurotransmitters and modulates synaptic plasticity in the brain, especially in the
prefrontal cortex, hippocampus, and cerebellum, leading to impaired cognitive process [50].
P2Y1 receptors are localized with AD features such as neurofibrillary tangles and neuritic
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plaques, suggesting the altered distribution of P2Y1 in AD brains [51]. Astrocytic hyperactivity
consisting of single‐cell transients and Ca2+ waves has been observed around Aβ plaques. P2Y1
receptors are strongly expressed by reactive astrocytes, and blockade of P2Y1 receptors can
reduce astrocytic hyperactivity back to normal [52].

1.2.6. Hypoxia and autophagy

In general, autophagy is regarded as a survival mechanism, but under severe hypoxia/
ischemia, autophagy may cause self‐digestion and eventual cell death due to its overactiva‐
tion [53]. The morphological characteristics of autophagic‐programmed cell death have been
observed in both mice and rats with cerebral ischemia [54, 55].

Enormous studies indicate autophagy dysfunction in AD. Autophagic vacuoles (AVs) are
significantly accumulated in the brain of AD patients compared to normal brain, possibly
leading to lysosomal enzyme dysfunction [56]. The cross talk between autophagy and tau
aggregation indicates the change of autophagic function in the pathogenesis of AD. Autophagy
initially degrades tau to protect neurons; however, hyperphosphorylation of tau results in
autophagic dysfunction, which substantially exacerbates AD via inducing tau aggregation [57,
58]. Remarkably, hypoxia induces autophagic activation through AMPK‐mTOR signaling,
resulting in more Aβ production and AD aggravation in vitro [56].

Defective autophagy has been implicated in PD [59], and several mutations in PD are strongly
relevant to autophagy dysregulation, such as PTEN‐induced putative kinase 1 (PINK1) [60].
Autophagy in ALS prevents neurons from degeneration, and inhibition of autophagy aggra‐
vates motor neuron viability, since the aggregates composed of intermediate filaments and
insoluble forms of proteins can be cleared by autophagy pathway [61].

1.3. The role of hypoxia-sensitive transcription factors in neurodegenerative diseases

Several transcription factors are responsive to hypoxia and subsequently alter gene expression
and cellular activity. The signaling pathways relevant to these transcription factors have been
indicated in the development of neurodegenerative diseases. Therefore, these transcription
factors may provide a link between hypoxic environment and neurodegeneration. The
following discussion will include HIF‐1, the most well‐studied hypoxia‐inducible gene, and
two other redox‐sensitive transcription factors, nuclear factor‐kappa B (NF‐κB) and NF‐E2‐
related factor 2 (Nrf2).

1.3.1. Hypoxia-inducible factor-1

Hypoxia‐inducible factor‐1 (HIF‐1) is a transcriptional activator involved in oxygen hemosta‐
sis, regulating the expression of genes and the activation of signaling pathways that participate
in angiogenesis, erythropoiesis, neovascularization, iron metabolism, glucose metabolism, cell
proliferation, apoptosis, and cell cycle control (Figure 3).
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Figure 3. The neuroprotective role of HIF‐1α activation in hypoxia.

In AD, HIF‐1α upregulates neuronal glucose transporters such as GLUT‐1 and GLUT‐3 and
facilitates glucose uptake, thus providing increased oxygen supply to hypoxic tissues [62]. It
also contributes to cell survival by inducing the key enzymes in pentose phosphate pathway,
including glucose‐6‐phosphate dehydrogenase and 6‐phosphogluconate dehydrogenase [63].
HIF‐1α also connects hypoxia to amyloidogenic processing of APP through transcriptionally
upregulating BACE1 and eventually increases Aβ formation [64].

The protective role of HIF‐1 in PD has been demonstrated by its ability to increase dopamine
synthesis and dopaminergic neuron growth. Tyrosine hydroxylase (TH) is the rate‐limiting
enzyme of dopamine synthesis in dopaminergic neurons, and interestingly, it contains an
HRE [65]. HIF‐1 elevated in response to hypoxia increases TH expression in rat brain stem,
and HIF‐1α conditional knockout mice exhibit reduced expression of TH and aldehyde
dehydrogenase in SN [57]. HIF‐1 activation may defend against dysregulation of brain iron
homeostasis and mitochondria in PD. Iron accumulation has been observed in the SN of PD
patients and is considered as a culprit of ROS generation and intracellular α‐syn aggregation
[66]. Moreover, the neurotransmitter dopamine is a metal reductant that reduces the oxidation
state of metals such as Fe3+ and subsequently results in elevated oxidative stress [67]. Defer‐
oxamine (DFO), an iron chelator, prevents neurotoxicity in MPTP‐treated mice through
upregulation of HIF‐1α protein expression, leading to declined expression of proteins such as
α‐syn, divalent metal transporter with iron‐responsive element (DMT1 + IRE) and transferrin
receptor (TFR), and elevated expression of HIF‐1 target genes, including TH, vascular endo‐
thelial growth factor (VEGF), and growth associated protein 43 (GAP43) [68].

HIF‐1 activation during hypoxia should be beneficial to ALS. HIF‐1‐VEGF pathway can induce
angiogenesis and increase blood supply to motor neurons. VEGF overexpression delays motor
neuron loss and impairment in SOD1G93A mutant mice and prolongs the survival of mice [69].
Deletion of HRE in VEGF promoter region abolishes hypoxia‐increased VEGF expression,
causing motor neuron degeneration [70]. Additionally, HIF‐1‐erythropoietin (EPO) pathway
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is suggested to be a new therapeutic target for ALS. EPO treatment in SOD1G93A mice postpones
the onset and progression of motor deterioration and modulates the immune‐inflammatory
response through reducing the levels of pro‐inflammatory cytokines and enhancing the
expression of anti‐inflammatory cytokines [71, 72]. However, both above pathways are
impaired in ALS. The level of VEGF is low in the CSF of early ALS patients, and likewise, the
expression of VEGF in the CSF from hypoxemic ALS patients is lower than that in the CSF
from normoxemic ALS patients [73, 74]. EPO protein level is declined in the surrounding glial
cells of SOD1G93A mice, and in the anterior horn cells (AHCs) from SOD1G93A mice, impaired
cytoplasmic‐nuclear transport of HIF‐1α has appeared since the presymptomatic stage,
indicating the abnormality in HIF‐1 pathway might precede motor neuron degradation [75,
76].

The well‐studied group of agents targeting HIF‐1 is iron chelators. The neuroprotective and
neurorestorative activities of M30, an iron chelator with brain‐selective monoamine oxidase
(MAO) AB inhibitory function, share a same pathway, the activation of HIF‐1, in different
neurodegenerative diseases. M30 elevates HIF‐1 to regulate neurotrophins BDNF, GDNF,
VEGF, and EPO in PD, and meanwhile, it delays the onset of ALS in SOD1G93A mutant mice
through HIF‐1 upregulation [77, 78]. In APP/PS1 AD mice model, M30 treatment upregulates
HIF‐1α in the frontal cortex, resulting in the beneficial modulation of target glycolytic gene
expression, such as aldolase A, enolase‐1, and GLUT‐1 [79].

Taken together, HIF‐1 is a key player protecting neuron cells against hypoxia and oxidative
stress, as well as a reasonable therapeutic target against major neurodegenerative diseases,
since its participation in the pathogenesis of neurodegeneration has been well identified.

1.3.2. Nuclear factor-kappa B

Nuclear factor‐kappa B (NF‐κB) is analogous to HIF‐1 in structure, function, and mechanism
of activation and plays a critical role in inflammation, immune response, synaptic transmission,
neuronal plasticity, and apoptosis [80]. In resting state, NF‐κB is complexed with the inhibitory
subunit I‐κB; however, under physiological or pharmacological stimulus such as oxidative
stress, I‐kappa B (I‐κB) is degraded, leading to translocation of NF‐κB from cytoplasm to
nucleus to modulate gene transcription. NF‐κB and I‐κB proteins comprise a growing family
of structurally related transcription factors, and functional NF‐κB complexes are present in
generally all cell types in the nervous system, such as neurons, astrocytes, microglia, and
oligodendrocytes [81, 82]. In neurons, the most common variants consist of p50, p65/RelA, and
I‐κB subunits.

As a redox‐sensitive transcription factor, the mobilization and upregulation of NF‐κB have
been reported in hypoxia and ischemia‐reperfusion damage. Hypoxic‐ischemic brain damage
(HIBD) upregulates the expression of NF‐κB and the NO content in rat cortex cells, suggesting
the involvement of NF‐κB/nNOS pathway during the recovery of HIBD‐induced neuron
damage [83]. The role of NF‐κB in neonatal HIBD depends on the duration of hypoxia. Early
activation of NF‐κB is detrimental, and at that time point, treatment of NF‐κB inhibitor, TAT‐
NBD, exhibits significant therapeutic outcomes, whereas late NF‐κB activation enhances
antiapoptotic pathway and contributes to endogenous neuroprotection [84]. The overall effect
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of NF‐κB activation seems to facilitate ischemic neuronal degeneration, but still, the effect can
be either neuroprotective or deleterious depending on the cell type and the strength of signal
[85]. The suppression of NF‐κB or I‐κB in neuron can reduce infarct size after stroke, and the
inhibition of NF‐κB caused by Ginkgolide B has protective effects on ischemic stroke [86, 87].

NF‐κB activation has been observed in neurons and astroglia of brain sections from AD patients
but only in cells surrounding early plaques, suggesting that the induction of NF‐κB activity
by Aβ is partially responsible for the aberrant gene expression in diseased nervous tissue [88].
In addition, intraperitoneal injection of sodium hydrosulfide (NaHS), a donor of H2S whose
level is reduced in the hippocampus of Aβ‐injected rats, inhibits MAPK/NF‐κB pathway and
dramatically mitigates cognitive decline and neuroinflammation [83]. Another novel drug for
AD, Gx‐50, exerts anti‐inflammatory effects against Aβ‐triggered microglial overactivation in
AD mice model via inhibition of NF‐κB signaling [89].

Increased NF‐κB activation has been reported in dopaminergic neurons of SN from PD
patients, as well as in astrocytes of spinal cords from ALS patients [90]. Compounds inhibiting
NF‐κB translocation in microglia such as vinyl sulfone compound (VSC2) downregulate the
expression of inducible NOS (iNOS) and TNF‐α, leading to anti‐inflammatory and antioxidant
events in PD animal model [91]. NF‐κB is also involved in microglia‐induced motor neuron
death in ALS. Deletion of NF‐κB signaling in microglia rescues motor neuron from microglia‐
mediated death and extends survival in ALS mice by impairing pro‐inflammatory microglial
activation [92].

Collectively, NF‐κB is responsive to the injury of nervous system in both acute and chronic
neurodegenerative conditions. Agents suppressing NF‐κB activation have been tested in
animal models of neurodegenerative conditions, but their usage should be considered
cautiously because of the involvement of NF‐κB in learning and memory.

1.3.3. NF-E2-related factor 2

NF‐E2‐related factor 2 (Nrf2) is a basic leucine zipper (bZIP) transcription factor that is
ubiquitously expressed in a wide range of tissues and cell types. It heterodimerizes with small
Maf or Jun proteins and binds to the antioxidant response element (ARE) in the promoter
region of target genes in response to oxidative stress [93]. Nrf2 knockout mice are susceptible
to oxidative stress and neurodegeneration without obvious phenotypic defects [94].

The upregulation of Nrf2 exerts neuroprotective action during hypoxia/ischemia. Hypoxia
preconditioning on rat brain against severe hypoxia or ischemia insult is through upregulating
Nrf2 and HO‐1 expression and alleviating oxidative stress damage [95]. rhEPO administration
in ischemic rat activates Keap‐Nrf2/ARE pathway to decrease H2O2 concentration and to
protect brain tissue [96]. Similarly, in oxygen‐deficient astrocytes, sulfiredoxin‐1, an endoge‐
nous antioxidant protein, ameliorates oxidative stress via Nrf2/ARE pathway to prevent the
brain from ischemic injury [97].

The expression level of Nrf2 is significantly decreased in the hippocampal neurons from AD
patients [98]. The beneficial effect of Nrf2 upregulation in AD is evidenced by the finding that
Nrf2 is able to induce NDP52, an autophagy adaptor protein, which facilitates the clearance
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of phosphorylated tau in neurons [99]. Examination of postmortem brain samples from PD
patients reveals that NQO1 and p62 whose expression is associated with Nrf2 are partly
sequestered in LB, demonstrating the impaired Nrf2 signaling in PD, and pharmacological
activation of Nrf2 defends PD by protecting nigral dopaminergic neurons against α‐syn
toxicity and decreasing astrocytosis and microgliosis [100]. Correspondingly, in ALS mice
model, WN1316, a novel acylaminoimidazole, boosts the activity of Nrf2 to protect motor
neurons against oxidative injury and repress glial inflammation, microgliosis, and astrocyto‐
sis [101].

The Nrf2 signaling pathway is an attractive therapeutic target for neurodegenerative diseases,
and thus, the chemopreventive agents aiming at Nrf2 might be suitable candidates against the
development and progression of neurodegeneration.

1.4. Epigenetic modification

Epigenetics is the study of heritable and nonheritable changes in gene expression without
changes to the underlying DNA sequence. Currently, at least three systems, DNA methylation,
histone medication, and noncoding RNA (ncRNA)‐associated gene silencing, are identified in
epigenetic changes. A large body of evidence documents that hypoxia triggers epigenetic
alternation that contributes to the initiation and aggravation of neurodegeneration.

1.4.1. Modification of DNA and histone

DNA methylation and histone modification are two important epigenetic mechanisms altering
the transcription of genes. The methylation of CpG island in the promoter region results in the
silence of gene expression, whereas demethylation undergoes the opposite direction. The
posttranslational modification (PTM) of histone includes acetylation, methylation, and
phosphorylation that are regulated by pairs of enzymes, impacting gene expression via
altering chromatin structure or recruiting histone modifiers.

Short‐term hypoxia causes long‐lasting changes in genomic DNA methylation in hippocampal
neuronal cells and subsequent alternation in the expression of a number of genes participating
in neural growth and development [102]. Chronic hypoxia‐mediated downregulation of NEP
in mouse primary cortical and hippocampal neurons is through G9a histone methyltransferase
and histone deacetylase 1 (HDAC1) other than methylation of gene promoter [103]. Cultured
astrocytes under ischemia‐hypoxia (IH) condition show hypermethylation of global DNA and
hypoacetylation of histone H3/H4, manifesting epigenetic reprogramming induced by
hypoxia [104]. Chronic hypoxia exaggerated the neuropathology and cognitive impairment in
AD mice through decreasing the expression of DNA methyltransferase 3b (DNMT3b) to
prevent the methylation of γ‐secretase promoter [105].

Epigenetic modifications are reversible that make it a promising candidate for therapy.
Valproic acid is a neuroprotective agent showing HDAC inhibitory property. It prevents the
decrease of H3‐Ace in the NEP promoter regions in prenatal hypoxia‐induced AD
neuropathology, upregulating NEP to improve learning deficits and decrease Aβ level [106].
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1.5. Conclusion

This section reviews the major consequences of hypoxia in the CNS and the contribution of
individual consequence to the pathogenesis of several neurodegenerative diseases. However,
the cross‐link among these consequences and how they may predispose hypoxic patients to
neurodegeneration remain to be determined, as well as the communication between neurons
and glia in response to hypoxic environment. Different types of hypoxia, acute, chronic,
sustained, or intermittent, may vary in terms of their effects on neural cells. Therefore, further
investigation is required. The prevention of hypoxic condition is clearly helpful for the
reduction of neurodegeneration, and the molecules targeted by hypoxia provide therapeutic
strategies and interventions against common neurodegenerative diseases.

2. Hypoxia and the inflammatory diseases

2.1. Introduction

Inflammatory diseases are pathological conditions associated with local or systemic activation
and persistent activity of inflammatory mediators, leading to cellular, tissue, or organ damage.
The inflammatory cascade leads to increased vascular leakage, recruitment of leukocytes,
increased generation and secretion of local and systemic inflammatory cytokines and chemo‐
kines, and activation and proliferation of innate and adaptive immune cell members. Ulti‐
mately, the inflammatory response leads to destruction of target molecules as well as their
hosting cells and tissues, which could lead to pathological conditions such as inflammatory
bowel disease and rheumatoid arthritis.

Hypoxia and inflammation have been extensively studied, and the two conditions seem to
have a complex interrelated relationship. In general, hypoxia induces the inflammatory
response via activation of cytokines and inflammatory cells, while inflammatory states are
complemented with severe hypoxia and induction of hypoxic signaling intermediates [107,
108]. A key mediator of hypoxic signaling in inflammation is HIF‐1. Aside from low oxygen
tension, recent evidence shows that various oxygen‐independent pathways regulate HIF‐1α
transcription and translation under normoxia. For example, endogenous nitric oxide has been
shown to stabilize HIF‐1α under normoxia [109–111]. Angiotensin II is another factor that
increases HIF‐1α transcription and translation under normoxia, and angiotensin receptor
blockade has shown to independently reduce HIF‐1α levels under hypoxic injury [112, 113].
Other nonhypoxic HIF‐1 regulatory molecules are via growth factors, thrombin, bacterial
lipopolysaccharide (LPS), interleukins, and tumor necrosis factor‐α (TNF‐α) [114]. In general
transcriptional and translational regulation of HIF‐1α occurring as a secondary mode of HIF‐1
regulation may aggravate or hinder the hypoxic response of the protein.

It has been noted that during hypoxemic states the levels of inflammatory cytokines such as
IL‐1, IL6, and TNF‐α increase in serum [107, 115, 116]. Activation of macrophages and other
innate and adaptive immune cell members is also shown to be induced by HIF‐1 under hypoxia
via activation of Toll‐like receptor (TLR) signaling [117, 118]. Likewise, ischemia reperfusion
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is associated with recruitment of polymorphonuclear (PMN) leukocytes and vascular leakage
[116, 119, 120]. This response is shown to be mediated via several endothelial cell surface
glycoproteins and receptors and secondary activation of signaling via HIF‐1–induced adeno‐
sine generation and NF‐κB [116, 119].

It is noteworthy that ischemia and hypoxia are observed in inflamed tissues due to occlusion
of blood flow via inflammatory cells [108]. As a result, signaling via inflammatory intermedi‐
ates has been shown to potentiate hypoxic signaling via HIF‐1. Macrophages in specific have
been shown to release cytokines that stabilize and increase the activity of HIF‐1 [111, 121].
Ultimately, transcriptional activation of factors such as VEGF by HIF‐1 seems to increase
angiogenesis and blood flow restoration to the site of inflammation.

Activation of HIF‐1 further assures energy supply and survival of myeloid cells as well as
bactericidal capacity of macrophages [122, 123]. Among the signaling pathways induced by
HIF‐1 in macrophages are mediators such as NF‐κB, TNF‐α, and nitric oxide that play key
roles in the inflammatory capacity of the myeloid cells [111, 121, 123]. Interestingly, HIF‐1α
stabilization in turn positively regulates the production of inflammatory cytokines such as
TNF‐α, and therefore, through a positive feedback mechanism, inflammation and hypoxic
signaling potentiate one another [123]. In the following sections, detailed mechanisms of this
interaction will be discussed. Furthermore, the role of hypoxia and HIF molecules in arthritic
and inflammatory bowel disease (IBD) pathophysiology and potential therapeutic targets
relating to hypoxic signaling will be examined.

2.2. Hypoxic signaling and key inflammatory intermediates

2.2.1. TNF-α

TNF‐α is a key mediator of the inflammatory response. It has been shown that HIF‐1a stabi‐
lization and DNA‐binding activity are enhanced by TNF‐α [111]. Interaction of TNF‐α and
HIF‐1 is rather complex. Physiologically, the stabilization of HIF‐1a by TNF‐α is thought to
be mediated by activated macrophages [121]. Accumulation of HIF‐1α via the TNF‐α is via a
mechanism independent from hypoxic accumulation or transcriptional activation of HIF‐1α.
Several studies have investigated the mechanism of HIF‐1α stabilization via TNF‐α, and
among such mechanisms, NF‐κB signaling seems to be the key mediator of this process
[124, 125]. Studies by Zhou et al. have shown that TNF‐α leads to accumulation of ubiquiti‐
nated form of HIF‐1α, which is normally one of HIF‐1α degradation steps. This interaction
was mediated through increased NF‐κB transcription [124]. They also noted that transfec‐
tion of cells with p50/p65 members of NF‐κB family leads to normoxic accumulation of
HIF‐1α in the absence of TNF‐α [124]. Interestingly it has also been shown that reactive oxy‐
gen species (ROS) such as H2O2 or SO− interfere with TNF‐α–mediated accumulation of
HIF‐1α [126]. Aside from protein accumulation, additional studies have shown increased
translation of HIF‐1α via TNF‐α that is also mediated via NF‐κB through upregulation of an
antiapoptotic protein Bcl‐2 [127].
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2.2.2. Nuclear factor-kappa β

NF‐κB is a family of transcription factors involved in development, proliferation, survival, and
antimicrobial response of innate and adaptive immune system cells. Numerous extensive
studies have been conducted to elucidate the very complex role of NF‐κB in the immune
response [128]. The NF‐κB family is composed of five related transcription factors, which can
form homodimers or heterodimer complexes with DNA‐binding activity. These identified
members are p50, p52, RelA (p65), RelB, and c‐Rel [128]. NF‐κB complexes are inactive in the
cytoplasm and are bound to an inhibitory protein called I‐κB. Once NF‐κB signaling is
activated, the I‐κB proteins are degraded, which then allow the transcription factors to
translocate to the nucleus [128]. In the innate immune response, NF‐κB is activated secondary
to Toll‐like receptor (TLR) activation. Toll‐like receptors are pattern recognition receptors
(PRR), which help immune cells recognize and combat pathogenic components. There are 11
identified mammalian TLRs with various coupled signaling pathways. TLRs are expressed in
the cytosol as well as on the plasma membrane of immune cells [128]. Upon ligand binding,
TLR signaling leads to recruitment of specific adaptor proteins and second messenger
molecules, which in turn activate several transcription factors. Among such signaling path‐
ways are mediators that result in degradation of I‐κB proteins and activation of NF‐κB [128].
NF‐κB in turn induces gene expression of cytokines and other proteins involved in bactericidal
activity against pathogens. NF‐κB activation and signaling are also involved in adaptive
immunity. T‐cell and B‐cell receptor activation and signaling activate NF‐κB, which in turn
activates antiapoptotic proteins and increases transcription of cytokines that ensure survival,
proliferation, and differentiation of B and T cells [128].

2.2.3. Hypoxia and the cross talk between HIF-1 and NF-κB

It has been shown that NF‐κB is directly activated under hypoxic conditions [129, 130].
Although the mechanism of NF‐κB activation under hypoxia remains to be an extensive area
of research, it has been shown that I‐κB tyrosine residues are phosphorylated under hypoxia
[129]. More recent studies suggest phosphorylation and inactivation of I‐κB under hypoxia
occur secondary to activation of transforming growth factor beta‐activated kinase‐1 (TAK1)
and I‐kappa B kinase (IKK) complex, primarily responsible for in I‐κB degradation resulting
in NF‐κB activation [130–133]. Additionally, it has been shown that O2‐dependent prolyl
hydroxylases (PHDs) that are involved in HIF‐1 inactivation also play a role in proline
hydroxylation of IKKβ and NF‐κB repression [133]. Thus, during hypoxia loss of PHD activity
would activate NF‐κB.

Although hypoxic activation of NF‐κB is to be better understood, a large body of convincing
evidence shows a critical role for NF‐κB in induction of HIF‐1. Activation of NF‐κB leads to
induction of HIF‐1α gene expression and basal HIF‐1α mRNA, and protein levels are depend‐
ent upon NF‐κB subunit expression levels [134, 135]. Several studies have explored the
mechanism of regulation of HIF‐1 by NF‐κB [124, 127, 134, 136, 137]. It has been shown that
NF‐κB induces expression and increases protein levels of HIF‐1α both in hypoxia and nor‐
moxia [124, 134, 137]. Indeed, certain studies suggest that HIF‐1α gene expression under
hypoxia is dependent upon intact NF‐κB signaling pathway [134, 137]. These studies also
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provide mechanistic evidence into the regulation of HIF‐1α gene expression via binding of
several NF‐κB subunits to the HIF‐1α promoter region [134, 135]. Thus, secondary to direct
activation of HIF‐1 under hypoxic conditions, interaction of NF‐κB additionally contributes to
this process by increasing basal levels of HIF‐1α protein.

Respective regulation of NF‐κB by HIF‐1 has also been reported in the literature [114, 138,
139]. These studies suggest direct activation of NF‐κB via HIF‐1 signaling in inflammatory
cells. Among suggested mechanisms are increased expression of TLR2 and TLR6 leading to
activation of NF‐κB, hyperphosphorylation of IKKβ, and phosphorylation of serine residues
of p65 subunit of NF‐κB leading to its translocation to nucleus and transcriptional activity [117,
138, 139].

Overall, hypoxia and signaling via NF‐κB and HIF‐1 are closely linked and, respectively,
regulate one another to enhance the inflammatory response.

2.3. Hypoxia and inflammatory bowel disease (IBD)

IBD is associated with loss of intestinal mucosal barrier, inflammation of mucosa, and
increased incidence of bacterial infections [140]. IBD is categorized as ulcerative colitis (UC)
and Crohn’s disease (CD). Both conditions are associated with severe inflammation and
breakdown of intestinal mucosal barrier and chronic gastrointestinal discomfort. Current
therapeutic approaches to IBD include anti‐inflammatory agents mostly targeted at TNF‐α and
immune cell members.

Hypoxia has been shown to be a critical component of inflammation in IBD. Surgical specimens
of intestinal mucosa of IBD patients show increased expression of HIF‐1 and HIF‐2 [141].
Increased vascular proliferation and density has been noted in intestines of IBD patients
secondary to hypoxia‐induced VEGF activity [142]. Additionally microvascular abnormality
and loss of endothelial nitric oxide production are seen in IBD mucosa [143].

The intestinal mucosa is exposed to fluctuating levels of oxygen. On the one hand, the intestinal
lumen is nearly anoxic, and oxygen pressure is generally low on the luminal side of the mucosa.
On the other hand, the rate of perfusion of the subendothelium is dependent upon meal intake,
and PO2 changes dramatically from high to low in between meals. The shift in oxygen tension
in the mucosal layer renders it resistant to hypoxic states. This could be in part due to basal
activity of hypoxic signaling intermediates such as HIF‐1 in the intestinal mucosal. Indeed,
HIF‐1α–null mice in the intestinal epithelium show diminished mucosal protection and
increased clinical symptoms in murine model of colitis [144]. HIF‐1–induced epithelial
protection is shown to be due to induction of several proteins such as mucin, p‐glycoprotein,
and ecto‐5′‐nucleotidase (CD73), an enzyme that converts AMP to adenosine (A2B) receptor
[140]. Adenosine production during hypoxia has shown to decrease vascular leakage and
neutrophil accumulation and thus plays an anti‐inflammatory role [120]. In a case‐control
cohort study, patients with polymorphisms in CD39, a vascular and immune cell ecto‐
nucleotidase that converts extracellular ATP and ADP to AMP, had increased susceptibility to
Crohn’s disease [145]. Therefore, HIF‐1 signaling via adenosine is a key step in protection
against IBD inflammation (Figure 4).
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Figure 4. Hypoxia and IBD pathogenesis.

Aside from HIF‐1, NF‐κB is also involved in inflammatory events of IBD [146, 147]. Nuclear
levels of NF‐κB p65 have long been seen in lamina propria biopsies of patients with Crohn’s
disease [148]. Activation of NF‐κB in mucosal macrophages leads to induction of pro‐inflam‐
matory cytokines such as TNF‐α, IL‐1, and IL‐6, which mediate mucosal tissue damage [149].
NF‐κB activation in intestinal mucosa also plays a role in differentiation of T‐helper cells, which
also play a role in IBD inflammation (Figure 4) [149]. In addition to pro‐inflammatory activity,
some studies have shown a protective role for NF‐κB [146]. Loss of β or γ subunits of the IKK
complex leads to colitis and apoptosis of intestinal mucosa [150, 151]. Additionally, polymor‐
phisms of TLR4 and TLR5, which are involved in NF‐κB activation, have been strongly
associated with IBD in canines [152]. The protective role of NF‐κB in IBD is thought to be in
terms of maintaining mucosal barrier and integrity. Overall, NF‐κB seems to play a dual role
in IBD.

Due to the protective role of HIF‐1 in models of colitis, it has been proposed that induction of
HIF‐1 could serve as a potential therapeutic target for treatment of IBD. The common phar‐
macological method of HIF‐1 induction is via inhibition of PHD enzymes, which break down
the HIF‐1α subunit in the presence of oxygen. In vitro pharmacological inhibition of PHD using
2‐oxoglutarate analogs as co‐substrates of PHDs or dimethyloxaloglycine, has shown to
stabilize HIF‐1α [153–155]. In these studies PHD inhibitors decreased clinical symptoms in
murine models of colitis and thus present promising therapeutic targets for IBD [153, 155,
156]. As mentioned previously blockade of PHDs can also lead to NF‐κB activation. Using
PHD inhibitors has thus been suggested to have dual benefits in treatment of IBD.

NF‐κB activity, however, is associated with increased inflammation, and therefore, inhibition
of NF‐κB has also been examined and shows promise in treatment of IBD [149]. Selective NF‐
κB inhibitors, antisense oligonucleotides against NF‐κB, and targeting DNA‐binding activity
of NF‐κB using decoy oligodeoxynucleotides have been among the strategies tested that have
produced promising results in murine models of colitis and IBD [157, 158].

Hypoxia and its Emerging Therapeutics in Neurodegenerative, Inflammatory and Renal Diseases
http://dx.doi.org/10.5772/66089

419



2.4. Hypoxia and rheumatoid arthritis (RA)1

Rheumatoid arthritis is the most common type of inflammatory arthritis. As an autoimmune2
disorder, RA is characterized as inflammation of the synovium, loss of cartilage, and bone3
erosion leading to joint pain and dysfunction [159]. The synovial fluid in RA is infiltrated with4
fibroblasts, immune cells, and angiogenesis of new vasculature [159, 160]. Additionally, a key5
feature of synovial fluid in RA is hypoxia. It has been shown that the synovium of knee joints6
of RA patients has significantly less O2 pressure than that of osteoarthritis (OA) patients [161].7
Immunohistochemical analysis of synovial stromal cells and macrophages of RA‐ and OA‐8
affected joints show significant increases in HIF1α and HIF2α expression compared to normal.9
Additionally, the levels of HIFs were directly correlated with VEGF expression in the stromal10
cell lining in these specimens [162]. Other studies have identified HIF‐2α significantly upre‐11
gulated in fibroblast‐like synoviocytes of RA and associated IL‐6 upregulation in these cells12
[163]. These and other similar studies imply HIF signaling as the orchestrator of synovial13
inflammation and secondary joint damage [159, 164, 165]. A large number of HIF‐activated14
inflamamtory mediators have been identified in RA synovial fluid including but not limited15
to stromal cell–derived factor 1 (SDF‐1), VEGF, TNF‐α, IL‐1β, and IL‐8 [166]. Various TLRs are16
also expressed in synovial tissue and macrophages, which further activate NF‐κB pathway and17
increase expression of other inflammatory proteins [167]. Not surprisingly, HIF‐dependent18
pathways have also been implicated in TLR expressions in many tissues including synovial19
cells [117, 118]. Finally, recruitment of CXCR4+ lymphocytes and matrix metalloproteinases20
(MMPs) in the synovial fibroblasts involved in cartilage destruction has also shown to be HIF‐121
mediated and NF‐κB mediated [168, 169]. Overall, a large body of evidence implicates hypoxia22
and HIF signaling as a key underlying mechanism in pathogenesis of RA (Figure 5).23

24

Figure 5. Hypoxia and pathogenesis of rheumatoid arthritis.25
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As discussed above, hypoxia‐ and HIF‐mediated signaling is highly pro‐inflammatory and
destructive in RA. The key approach to treatment of RA is thus inhibition of HIF signaling.
Many HIF inhibitors have been tested in cancer that may show promise in treatment of RA
[170]. The limiting factor in administering HIF inhibitors is pharmacokinetic availability of
these compounds in the synovial space as well as specific targetting of joints rather than
systemic therapy. Gene targetting of HIF molecules using antisense oligonucleotides targetting
HIF‐1α mRNA has also been tested, which may show efficacy in RA treatment [159]. Addi‐
tional approaches including anti‐VEGF antibodies or anti‐VEGF receptor molecules have been
tested in models of arthritis and have shown efficacy in delaying onset and severity of RA in
animal models [159, 171]. These strategies remain to be clinically tested yet show great promise
in novel therapeutics of RA.

2.5. Conclusion

Section 2 discussed the complex relationship between hypoxia and inflammatory process and
highlighted the key intermediates and pathways involved in this relationship. The discovery
of hypoxic‐inflammatory pathways has led to a greater understanding of inflammatory and
autoimmune diseases such as IBD and RA and the use of novel pharmacological approaches
targetting HIF and hypoxic signaling intermediates in these conditions. So far, these agents
have been mostly studied in cancer clinical trials. Additional clinical studies are needed to
examine the safety and efficacy of new HIF‐modulating agents in treatment of inflammatory
disease states.

3. Hypoxia and renal diseases

3.1. Introduction

Approximately 26 million Americans have some evidence of chronic kidney disease (CKD)
and are at risk to develop kidney failure. The number of Americans with end‐stage renal
diseases (ESRD) is expected to grow to 785,000 by 2020 (currently 485,000). The annual cost of
treating ESRD is currently over $32 billion. It is estimated that healthcare system can save up
to $18.5 to $60.6 billion by reducing rate of progression of chronic kidney disease (CKD) by
10–30% over the next decade.

In acute setting acute kidney injury (AKI) has been shown to be associated with bad outcome,
for instance, mortality rate of hospitalized patients with AKI increases more than fourfold
[172]. Due to high medical and economic impact of AKI and CKD, finding new therapeutic
tools in treatment of CKD is becoming of an increasing importance.

Hypoxia‐inducible factor (HIF) has become the focus of medical community as a putative
target because its augmentation is likely to ease the burden of kidney disease. The following
sections discuss the evidence regarding the role of HIF molecules in various kidney pathologies
and potential therapeutic approaches with respect to the HIF system.
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3.1.1. Pathophysiology

Kidneys have a rich blood supply. In fact human kidneys receive 20% of cardiac output, while
they weigh less than 1% of the total body weight. However, renal medulla, physiologically, has
low oxygen tension and hence is very sensitive to hypoxia.

Hypoxia is the final common pathway to irreversible renal damage and eventually ESRD [173].
Since Fine et al. introduced chronic hypoxia hypothesis for the first time, it has been confirmed
in several studies [174]. Also, hypoxia plays a role in pathogenesis of AKI as well as transfor‐
mation of AKI to CKD.

Three phases of cell damage have been recognized following hypoxic insult to kidneys (by
ligation of a branch of renal artery) [175]:

• Phase I: 1–6 h post hypoxic damage; in this phase parenchymal cells still appear viable.

• Phase II or intermediate phase: 1–3 days following insult; in this phase tissue damage is
completed.

• Phase III or late phase: after 3 days; when tissue repair and remodeling are initiated.

In order to survive hypoxemia or regional hypoxia, the kidneys adopt a set of sophisticated
defense mechanisms, which include expression of HIF. HIF is the cornerstone of adaptation to
hypoxia. This master regulator of the cellular response to hypoxia orchestrates several hundred
target genes affecting metabolism, the cell cycle, and inflammation [176]. The hypoxia‐
inducible transcription factors have been extensively studied in the kidneys [177]. HIF‐1α is
mainly expressed in tubular cells, while HIF‐2α is found in peritubular, interstitial, endothelial,
and glomerular regions [178]. Likewise, PHD1 and PHD3 are mostly present in glomeruli, and
PHD1, PHD2, and PHD3 express more in the distal tubules than in the proximal tubules [179].

Numerous studies have found critical roles for HIF molecules in hypoxic adaptation of the
kidneys as well as pathophysiology of various kidney diseases [177]. Given the fact HIF is the
key step in renal response to hypoxia targeting HIF and its regulatory mechanisms is a
plausible approach to prevent and treat hypoxic insults to kidney. In quest for novel therapeutic
tools for treatment and prevention of kidney diseases, HIF‐related pathways have shown
promising results.

3.2. HIF in acute kidney injury

AKI is defined by rapid decline in renal function. AKI has multitude of causes. One of the most
common causes of AKI is ischemia as a result of decreased renal perfusion, which leads to
acute tubular necrosis (ATN) [180]. With renal ischemia several mechanisms in small arterioles
will perpetuate regional hypoxia (Figure 6); these mechanisms include:

a. Decreased generation of nitric oxide (vasodilator) by endothelial cells [181]

b. Enhanced reactivity to endogenous mediators of vasoconstriction [182]

c. Small vessel occlusion due to activation of coagulation system interaction between the
endothelium and leukocytes [183]
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Figure 6. Diagram summarizing the interrelation between different factors causing hypoxia and CKD.

It has been shown that after renal ischemic attack, the number of capillaries in the medulla will
decrease, which in turn leads to chronic ischemia, fibrosis, and progression to CKD [184].
Therefore, AKI is a risk factor for development of CKD. At the same time, patients with CKD
have more incidence of AKI. In fact the most important risk factor of AKI is CKD [185]. AKI
carries high risk of mortality; among patients older than 66 years with a first AKI hospitaliza‐
tion, the in‐hospital mortality rate in 2013 was up to 14.4% (2015 USRDS Annual Data Report).
Mortality rate in patients with AKI admitted to intensive care unit may surpass 50%. These
data obviated the need for finding new therapies in AKI focused on renal hypoxia.

The key hypoxic intermediates mostly studied in animal models of AKI are HIF‐1 and HIF‐2.
Rosenberger et al. showed that upregulation of HIF‐1α occurs up to 7 days following ligation
of a branch of the renal artery. HIF‐2α expression has also been noted but to a lesser degree
than HIF‐1α and was confined to resident and infiltrating peritubular cells in the cortex [186].
Numerous studies have shown the involvement of HIF proteins in protection against acute
renal injury [177]. Induction of HIF‐1 or its target genes have shown to reduce injury secondary
to various types of acute renal insult [187, 188].

3.2.1. HIF in contrast-induced nephropathy

The exact mechanism of contrast‐induced nephropathy (CIN) remains elusive. Among
possible mechanisms are renal vasoconstriction and decreased vasodilatation, which leads to
tubular hypoxemia, decreased mitochondrial function and generation of reactive oxygen
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species (ROS), increased prostaglandins, decreased NO levels, and increased oxygen con-
sumption due to osmotic demand of contrast media on tubular Na/K ATPase, all of which lead
to medullary cell damage [189, 190]. Clearly, a direct link with hypoxia and CIN exists.
Reversible renal vasoconstriction has been demonstrated in animal studies [191]. In an animal
study, Rosenberger et al. induced renal hypoxia by a combination of COX inhibition, radio-
contrast material, and blockade of nitric oxide synthase. In this study generalized HIF
induction (tubules, interstitium, and endothelial cells) initiated within minutes of regional
renal hypoxia. They showed medullary thick ascending limb (TAL) of Henle had less HIF
expression, which may explain the higher susceptibility of this region to hypoxia [175]. These
findings render regional hypoxia a plausible cause for CIN pathophysiology and a potential
role for preventative HIF induction therapy in this condition.

3.2.2. Ischemic acute kidney injury

Ischemic injury in thick ascending limb of Henle is believed to play a pivotal role in patho-
genesis of AKI due to regional renal low oxygen tension. Activation of HIF-1 has shown to be
protective in models of ischemia-reperfusion injury. Schley and his colleagues showed that
deletion of the von Hippel-Lindau (VHL) protein in thick ascending limb (TAL) of Henle
preserved its function following ischemia-reperfusion. Notably, this study demonstrated
better recovery in VHL-knocked-out animals by showing higher number of proliferating cells
[192]. Furthermore, preconditional activation of HIF-1 via carbon monoxide or PHD1 inhibitor
has shown to ameliorate the degree of renal ischemic damage in rat models of ischemia-
reperfusion injury [188]. Others have shown activation of HIF-1 via cobalt chloride leads to
reduction of tubulointerstitial damage secondary to acute renal injury in rats [187].

3.3. HIF in chronic kidney disease (CKD)

Chronic renal hypoxia causes apoptosis and also differentiation of tubular cells to myofibro-
blasts. Under hypoxic condition renal fibroblasts will also get activated. These together will
lead to progressive renal failure and eventually ESRD. Glomerulosclerosis as a result of chronic
high blood pressure or high blood sugar can also cause tubular ischemia by impairing tubular
perfusion.

Several pharmacological means of reducing renal hypoxia are already widely available for use
in daily clinical practice. Treatment with erythropoietin (EPO)-stimulating agents has been
shown to slow down the progression of CKD [193]. Renin-angiotensin system (RAS) blockade
can also be protective against hypoxia. RAS blockade will improve perfusion of peritubular
capillaries by decreasing tone of efferent arteriols in parent glomerulus [194]. Yu et al. studied
the effect of HIF activation (via a nonselective PHD inhibitor, l-mimosine) in rats with CKD.
Animals underwent subtotal nephrectomy. In this study they demonstrated HIF activation can
have different (beneficial or deleterious) effects on renal tissue. It was also shown that function
of remnant kidney is also dependent upon the timing of HIF activation. Early activation of HIF
in CKD caused increased fibrosis (rise in mRNA of collagen type III) and inflammation, while
late activation of HIF showed anti-fibrotic effects [195].

Hypoxia and Human Diseases424



3.3.1. HIF in diabetic nephropathy

Diabetic kidney disease (diabetic nephropathy (DN)) is the leading cause of ESRD. Hypergly‐
cemia and resultant hyperfiltration will increase renal oxygen consumption. Eighty percent of
the total renal oxygen consumption is related to sodium‐potassium pump in cortical proximal
tubule. Diabetes causes decreased renal oxygen tension by increasing oxygen consumption.
Inoue et al. by using diffusion‐weighted (DW) and blood oxygen level‐dependent (BOLD) MRI
showed tissue hypoxia in diabetic kidneys [196]. Palm et al. also demonstrated lower paren‐
chymal oxygen tension along with higher oxygen consumption in diabetic rats [197]. In the
setting of hypoxia, paradoxically, the activity of HIF‐1α seems to be decreased or altered in
diabetic rat kidneys [198, 199]. Polymorphism of pro582ser in HIF‐1α gene, which results in
altered response of HIF‐1α to low oxygen, is associated with increased incidence of diabetic
nephropathy in diabetic patients [199]. It appears from this evidence that HIF‐1α‐protective
activity in the kidney is compromised in the setting of diabetes. This is further supported by
the finding that pharmacologic activation of HIF pathway decreases renal damage in diabetic
rats by decreasing proteinuria, improving tubulointerstitial damage and normalizing glomer‐
ular hyperfiltration [200]. There is thus indication for the use of HIF‐1–activating approaches
in prevention of diabetic nephropathy.

3.4. HIF in anemia of kidney disease

HIF plays a role in anemia of CKD and ESRD. Erythropoietin is secreted from human kidneys
after birth. The kidney accounts for ∼90% of the total EPO production in the adult human
[201]. Renal erythropoietin‐producing cells are fibroblasts in peritubular capillaries in the
cortex and outer medulla [202].

Kidneys are the perfect choice to be responsible for erythropoietin secretion due to their
regional low oxygen tension. Any minute changes in renal oxygen tension will lead to
adjustments of serum hematocrit. In subcellular level HIF binds to the EPO enhancer, the
hypoxia‐responsive element, and activates the transcription of EPO. Renal EPO synthesis is
regulated by HIF‐2 [203]. HIF‐2 exerts its multipronged effect by increasing EPO production,
increasing iron absorption, and also increasing maturation of erythroid progenitors in the bone
marrow. Studies indicate that in ESRD patients erythropoietin concentration is below normal
due to dysfunctional EPO‐producing cells (not due to cell death) [204]. Erythropoietin‐
producing cells in renal fibrosis remain alive and preserve their plasticity: although the exact
mechanism of erythropoietin production in ESRD remains elusive, it is possible plasticity of
erythropoietin‐producing cells plays a role when signals for HIF pathway are augmented.
Pathways to stabilize or even augment HIF response will mimic the state of hypoxia, which
will lead to erythropoietin production; this is considered a novel therapeutic tool in our
armamentarium to treat anemia of CKD. HIF stabilizers inhibit PHDs, which will subsequently
cause accumulation of HIF, and as a result erythropoietin production ensues.

In 2010 a phase 1 clinical trial revealed PHD inhibitor (FG‐2216) led to increased EPO produc‐
tion and plasma EPO levels in patients with ESRD [205]. In a phase 2‐b study of nondialysis‐
dependent patients with chronic kidney disease, related anemia treatment with an oral PHD
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inhibitor (Roxadustat) was shown to increase EPO level and correct anemia. Clinical response
was independent of iron intake (oral or IV) [206].

3.5. HIF in renal transplant

As of January 2016, there are 100,791 people waiting for renal transplants in the United States.
Every 14 min a patient is added to the kidney transplant waiting list. In 2012, the probability
of 1‐year graft survival was 92% and 97% for deceased and living donor kidney transplant
recipients, respectively. The estimated US average charges for a kidney transplant in 2011 is
$262,900. This data emphasizes on the need for exploring new ways to save and preserve more
allografts.

In the process of renal transplantation, harvested organ is subjected to hypoxia. Hypoxia‐
reperfusion occurs during organ procurement, preservation, and after implantation. Ischemia‐
Reperfusion injury (IRI) has prognostic implications for the allograft and kidney recipient. As
mentioned before HIF has been shown to be a renoprotective agent and may alter transplan‐
tation outcome.

Conde et al. found HIF‐1α increases in human proximal tubular cells (in vitro) after hypo‐
xia and also during reoxygenation period. A similar biphasic pattern was observed in IRI
model in SD rats (en vivo). The en vivo part of the study proved that HIF‐1α induction
during reperfusion phase was required for survival of proximal tubule cells and expedited
recovery. Conde and his colleagues also studied human allograft biopsies (7–15 days post‐
transplant): HIF‐1α expression was more robust in proximal tubule cells with minimal is‐
chemic damage. Again, this finding indicate a protective role of HIF in IRI. AN interesting
finding in this study was demonstration of the role of Akt/mTOR signaling in HIF‐1α in‐
duction. Using rapamycin (mTOR inhibitor) during reoxygenation period prevented
HIF‐1α stabilization [207].

Renal ischemia‐reperfusion injury is an important factor in determination of the fate of a renal
allograft. Immunological response is potentiated under ischemia‐reperfusion. CD4+ T cells
play the main role in pathogenesis of IRI and natural killer (NK) cells are part of the immediate
response to IRI. Regulatory family differentially affect the immune response to the of HIF affect
allograft’s during ischemia‐reperfusion. While HIF‐1α plays a crucial role in T‐cell survival
and function , HIF‐2α has a protective function in T‐cell mediated renal IRI [208]. In an animal
study, Zhang et al. showed the role of HIF‐2α in mitigating NK T‐cell–mediated cytotoxicity
in IRI. In this study HIF‐2α and adenosine A2A receptor (adora2a) worked in concert with
each other (so‐called hypoxia‐adenosinergic immunosuppression) to restrict NK T‐cell
activation [209]. This finding is of clinical importance as pharmacologic activation of HIF‐2α
can potentially limit allograft IRI and subsequently improve the outcome of renal transplan‐
tation.

3.6. Conclusion

The overwhelming clinical and economical impact of renal disease and the limited thera‐
peutic options available have placed a great demand on finding additional therapeutic ap‐
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proaches. The evidence discussed in this section suggests a widespread role of hypoxia and
HIF signaling in a range of acute and chronic renal diseases and a clear indication for HIF‐
targeted therapies. It appears that HIF‐1 activity is protective in acute renal injury, while
prolonged activity of HIF‐1 may lead to worsened outcomes in CKD. The protective versus
deleterious roles of HIF‐1 thus complicate the use of HIF‐1–targeted approaches. On the
other hand, HIF‐2 therapies may be more promising especially in terms of anemia of kidney
disease and renal allograft rejection. In either case, additional clinical research is needed in
the use and efficacy of both HIF‐1 and HIF‐2 therapies in prevention or treatment of various
renal diseases.
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