
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

15

Learning to Play Soccer with the
SimpleSoccer Robot Soccer Simulator

Jeff Riley
RMIT University

Australia

1. Introduction

The RoboCup simulated soccer league (RoboCupSoccer) is an important and useful tool for
multi-agent and machine learning research which provides a distributed, multi-agent
environment in which agents have an incomplete and uncertain world view
(Kitano et al., 1995; Kitano et al., 1997). The RoboCupSoccer state-space is extremely large,
and the agent perception and action cycles in the RoboCupSoccer environment are
asynchronous, sometimes resulting in long and unpredictable delays in the completion of
actions in response to some stimuli. The large state-space, the inherent delays, and the
uncertain and incomplete world view of the agents can increase the learning cycle of some
machine learning techniques onerously.
There is a large body of work in the area of the application of machine learning techniques
to the challenges of RoboCupSoccer (e.g. Luke, 1998a; Luke, 1998b; Ciesielski & Wilson,
1999; Stone & Veloso, 1999; Uchibe, 1999; Ciesielski & Lai, 2001; Ciesielski et al., 2001;
Riedmiller et al., 2001; Stone & Sutton, 2001; Bajurnow & Ciesielski, 2004; Riley & Ciesielski,
2004; Lima et al., 2005; Riedmiller et al., 2005; Riley, 2005), but because the RoboCupSoccer
environment is so large, complex and unpredictable, the extent to which such techniques
can meet these challenges is not certain. More progress could be made more quickly if the
complexity and uncertainty could be reduced: while tactics may differ due to uncertainty in
the environment, high-level strategies learned in a less complex and more certain
environment should transfer directly to a more complex and less certain environment.
SimpleSoccer1 (Riley, 2003) was developed as an environment that reduces complexity and
uncertainty sufficiently to increase the viability of machine learning techniques, yet retains
sufficient complexity and dynamics to allow learning from SimpleSoccer to be directly
transferrable to the RoboCupSoccer environment.

2. The SimpleSoccer Robot Soccer Simulator

The primary objective when creating the SimpleSoccer environment was to create an
environment complex and dynamic enough that while low-level tactics may differ due to

1 Full documentation and source code is located at http://www.rileys.id.au/SimpleSoccer.html

Source: Robotic Soccer, Book edited by: Pedro Lima, ISBN 978-3-902613-21-9,
pp. 598, December 2007, Itech Education and Publishing, Vienna, Austria

O
pe

n
A

cc
es

s
D

at
ab

as
e

w
w

w
.i-

te
ch

on
lin

e.
co

m

Robotic Soccer 282

West Goal East Goal

the removal of systematic uncertainty, high-level strategies directly applicable to the
RoboCupSoccer environment could be developed, thus providing a simple yet sufficiently
accurate model of the RoboCupSoccer environment that allows rapid learning. The design
objective was achieved by modelling only the attributes of the RoboCupSoccer environment
necessary to allow ball and player interaction with the provision of basic player actions, and
by not modelling the client-server environment and systematic uncertainty inherent in
RoboCupSoccer. The SimpleSoccer environment is comprised of :

• the soccer field

• fixed landmarks - the goals

• the ball

• up to two teams with a maximum of eleven players each.

The SimpleSoccer environment was inspired in part by simplicity of the Ascii Soccer
environment (Balch, 1995), but is a more complex environment which more closely models
the RoboCupSoccer environment.

2.1 The Field

The soccer field in SimpleSoccer is represented by a two-dimensional grid with the goal
markers being the only landmarks available to players (Fig. 1) The goal area for
SimpleSoccer, in keeping with the RoboCupSoccer field and goals, is a defined area at each
end of the field. The boundaries in SimpleSoccer, except for the goal areas, are hard barriers
which impede movement of the ball and players: the ball does not rebound from the
boundaries. Both the field size (length and width expressed as a number of cells) and goal
size (in cells) are configurable.

Fig. 1. Soccer field and landmarks in the SimpleSoccer environment (grid lines not shown)

Learning to Play Soccer with the SimpleSoccer Robot Soccer Simulator 283

Player whose vision perspective is being illustrated

View Angle

View Length

2.2 The Players

Player movement and sensory capabilities in SimpleSoccer are similar to those of
RoboCupSoccer. In the SimpleSoccer environment players may move in any direction,
specified by a real-valued angle from 0.0 to 360.0 degrees relative to the player’s current
facing direction. Similarly, the ball can be kicked in any direction. Player and ball locations
are specified by discrete grid co-ordinates, or cells: while movement and other actions can
be in any direction, at the completion of an action, player and ball final locations are
quantized to discrete cells. A player can only kick the ball if the ball is within a defined
kickable distance (measured in cells) from the player.
Players in SimpleSoccer have a field of vision similar to that of RoboCupSoccer. Fig. 2
shows the range of a player’s vision in the SimpleSoccer environment – players can see
objects in a diamond-shaped area in the direction the player is facing. A player’s viewing
diamond is determined by the view angle and view length, and only objects of interest (ball,
player or goal) within a player’s viewing diamond can be seen by the player. The black
circles shown in Fig. 2 represent objects on the field – only one is visible to the player in the
diagram. At each time interval during a game all players are presented with the cell co-
ordinates of, and direction (relative to the player’s facing direction) and distance (number of
cells) to any object of interest in the player’s field of vision. Note that the information
supplied to the player is limited to object location – no information regarding the movement
of an object, either direction or speed, is supplied. The location, and hence direction to, an
object is only known to a player if that object is visible to the player. Players may infer the
location of objects based on previously known information, but this is likely to be less than
reliable.
The detail of the visual feedback delivered to a player in the SimpleSoccer environment is
the same irrespective of the player’s vision parameters – only the size of the viewing
diamond changes, the amount of detail does not. Unlike the RoboCupSoccer environment,
players are not able to sense objects that are close but not visible to the player – the only
sense available to players in the SimpleSoccer environment is visual.

Fig. 2. The visible range of a player in the SimpleSoccer environment

Robotic Soccer 284

2.2.1 Available Player Actions

The set of player actions provided by the SimpleSoccer simulator is a combination of some
very basic, simple actions and some more complex hand-coded combinations of the basic
actions. The complete set of actions available is listed in Table 1.

Action Description

Turn The player turns through the angle specified.

Argument: direction.

Dash The player dashes in the direction specified with the power
specified.

Arguments: direction, power, face.

Kick If the ball is within a kickable distance from the player, the player
kicks the ball in the direction specified with the power specified.

Arguments: direction, power, face.

RunTowardGoal If the direction to the player’s goal is known, the player dashes once
in that direction, otherwise no action is taken.

Argument: power.

RunTowardBall If the direction to the ball is known, the player dashes once in that
direction, otherwise no action is taken.

Argument: power.

GoToBall If the direction to the ball is known, the player dashes towards the
ball and continues to dash in that direction until the ball is within
the kickable distance, otherwise no action is taken.

Argument: power.

KickTowardGoal If the direction to the player’s goal is known, and the ball is within
the kickable distance, the player kicks the ball once in the direction
of its goal, otherwise no action is taken.

Argument: power.

DribbleTowardGoal If the direction to the player’s goal is known, and the ball is within
the kickable distance, the player kicks the ball once in the direction
of its goal, then dashes once in the same direction.
If the direction to the player’s goal is not known, or the ball is not
within the kickable distance, no action is taken.

Argument: power.

Dribble If the ball is within the kickable distance, the player kicks the ball
once in the direction it is facing, then dashes once in the same
direction.
If the ball is not within the kickable distance, no action is taken.

Argument: power.

DoNothing The player takes no action.

Table 1. Available player actions

Learning to Play Soccer with the SimpleSoccer Robot Soccer Simulator 285

For each of the actions shown in Table 1:

• direction is specified in degrees in a clockwise direction relative to the direction the
player is facing.

• power is specified as a percentage of maximum power and determines the number
of cells the player or ball will travel as a result of the action.

• face, where specified, if true causes the player to turn to face in the direction
specified after the completion of the action performed.

2.2.2 Player Default Action

If a player is unable to determine an action to be taken based on the information known, the
player may, if so configured, perform a hand-coded default hunt action - on the basis that
the most likely cause for a player not being able to determine an action is that the ball is not
visible. The hand-coded hunt actions available as default actions are listed in Table 2.

Default Action Description

Hunt Action 1
Goto Ball

if the ball is not visible then
dash in a randomly chosen direction

else
if ball is not in kickable distance then

dash toward the ball
else

do nothing

Hunt Action 2
Locate Ball

if the ball is not visible then
dash in a randomly chosen direction

else
do nothing

Hunt Action 3
Random Turn

turn 90° in a randomly chosen direction

Table 2. Player default actions.

2.3 The Game

A SimpleSoccer game is played between two teams, each with a minimum of zero and a
maximum of eleven players. There must be at least one player present on the field, and the
team sizes may be unequal, thus allowing for single player or single team training. The East
team starts the game on the right-hand (or east) side of the playing field (as viewed by the
observer) and kicks towards the East Goal (Fig. 1). Similarly, the West team starts the game
on the left-hand (or west) side of the playing field and kicks towards the West Goal. At the
start of play the ball is placed at the centre of the field, and only the team kicking-off may
enter the centre circle until contact is made with the ball.
There is no referee in the SimpleSoccer environment, thus there are no free kicks for offside
or other rule violations. The ball is never out of bounds; the boundaries (except for the goal
areas) are hard barriers which impede movement of the ball and players. There is no

Robotic Soccer 286

concept of player momentum and stamina as implemented in the RoboCupSoccer
environment.

Fig. 3. SimpleSoccer program flow

Learning to Play Soccer with the SimpleSoccer Robot Soccer Simulator 287

When the ball is kicked, the distance it will travel is calculated (as a number of cells) and the
ball will travel that distance at a constant speed and direction unless it is kicked again, or it
encounters a barrier (the field boundary or a player) or reaches a goal. Similarly, when a
player dashes, the distance the player will travel is calculated (as a number of cells) and the
player will travel that distance at a constant speed and direction unless it initiates a new
action or encounters a barrier (the field boundary, a goal or a player).
The SimpleSoccer environment provides players with a single sensor that detects visual
information about the field, such as the distance and direction to objects in the player's
current field of view – no other information is provided to the player. There is no coach,
and there is no communication of any kind between players. In contrast to the
RoboCupSoccer environment, no random “noise” is introduced to the visual sensor
information provided to the player – thus the information provided is complete and certain,
and there is no loss of clarity of vision over distance.
A SimpleSoccer unit of time is a single tick corresponding to one iteration of the program’s
main loop (Fig. 3). At each tick the ball and players are moved, if necessary, a single cell (as
a result of a previous action) and each player is presented with their new (visual) view of
the state of the game, whereupon each player determines what action, if any, is to be taken
and that action is begun (any previous action still in progress is superseded by the new
action).
After each goal scored the ball is replaced at the centre of the field and the players replaced
to their side of the field, and the game continues. The game is terminated when one of the
following conditions is met:

• the maximum game time, measured in ticks, expires.

• the target number of goals is scored by any team.

• a period of no player action, measured in ticks, occurs.

3. Evolving Goal-Scoring Behaviour

The usefulness of the SimpleSoccer simulator as a simplified model for the robot soccer
environment is demonstrated by using the environment to train a simulated robot soccer
player to exhibit goal-scoring behaviour.

3.1 Overview

A messy-coded genetic algorithm (Holland, 1975; Goldberg et al., 1989) is used to evolve a
population of simulated robot soccer players, with the SimpleSoccer simulator being used to
evaluate the players’ ability. The behaviour of the players is governed by a fuzzy inferencing
system (Zadeh, 1965; Jang et al., 1997) with the ruleset for the fuzzy inferencing system being
evolved by the genetic algorithm.
Players being evolved are endowed with a configurable subset of soccer-playing skills taken
from the full set of skills shown in Table 1. In addition, if a player is unable to determine an
action to be taken based on the information known to it, the player will perform one of the
hand-coded default actions listed in Table 2.
Players perform one of the available actions, or the configured default action, in response to
external stimulus; the specific response being determined by the fuzzy ruleset and the fuzzy
inferencing system. The external stimulus used as input to the fuzzy inference system is the

Robotic Soccer 288

Perception

Modelling

Planning

Task Execution

Movement

Actions

Sensors

visual information supplied by the soccer simulator. The output of the fuzzy inference
system is an (action, value) pair which defines the action to be taken by the player and the
degree to which the action is to be taken. For example:

(KickTowardGoal, power)
(RunTowardBall, power)
(Turn, direction)

where power and direction are crisp values representing the defuzzified fuzzy set
membership of the action to be taken. An example rule developed by the genetic algorithm
is:

if Ball is Left and Goal is Left then Turn SlightlyLeft

The fuzzy inferencing system and messy-coded genetic algorithm are described briefly in
the following sections, and in more detail in (Riley, 2005).

3.2 Player Architecture

The traditional decomposition for an intelligent control system is to break processing into a
chain of information processing modules proceeding from sensing to action (Fig. 4).

Fig. 4. Traditional control architecture

The control architecture implemented in this work is similar to Brooks’ subsumption
architecture (Brooks, 1985). This architecture implements a layering process where simple
task achieving behaviours are added as required. Each layer is behaviour producing in its
own right, although it may rely on the presence and operation of other layers. For example,
in Fig. 5 the Movement layer does not explicitly need to avoid obstacles: the Avoid Objects
layer, if present, will take care of that. This approach creates players with reactive
architectures and with no central locus of control (Brooks, 1991).

Learning to Play Soccer with the SimpleSoccer Robot Soccer Simulator 289

Detect Ball

Detect Players

Movement

Avoid Objects

ActionsSensors

F
u

zz
if

ie
r

A
g

g
re

g
at

o
r

D
ef

u
zz

if
ie

r

x is A1
y is B1

Rule 1

x is A2
y is B2

Rule 2

x is An
y is Bn

Rule n S
o

cc
er

 S
er

v
er

 I
n
fo

rm
at

io
n

A
ct

io
n

 S
el

ec
to

r

Player

Action

Fig. 5. Soccer player layered architecture

For the soccer player implemented for this work, the behaviour producing layers are
implemented as fuzzy if-then rules and governed by a fuzzy inference system comprised of :

• the fuzzy rulebase.

• definitions of the membership functions of the fuzzy sets operated on by the rules
in the rulebase.

• a reasoning mechanism to perform the inference procedure.

The fuzzy inference system is embedded in the player architecture, where it receives input
from the soccer server and generates output necessary for the player to act (Fig. 6).

Fig. 6. Player architecture detail

3.2.1 Soccer Server Information

The application by the inferencing mechanism of the fuzzy rulebase to external stimuli
provided by the soccer server results in one or more fuzzy rules being executed and some
resultant action being taken by the player. The external stimuli used as input to the fuzzy
inference system are a subset of the visual information supplied by the soccer server: only
sufficient information to situate the player and locate the ball is used.
The SimpleSoccer server delivers only regular visual messages to the players: there are no
aural or sense equivalents of the aural and sense messages delivered by the RoboCupSoccer

Robotic Soccer 290

0.1

0.6

1

0

A1 A2 A3

Crisp Input
x

x X

µA1
(x) = 0.6

µA2
(x) = 0.1

server in that environment. Information supplied by the SimpleSoccer server is complete, in
so far as the objects actually in the player’s field of vision are concerned, and certain.
Players in the SimpleSoccer environment are aware at all times of their exact location on the
field, but are only aware of the location of the ball and the goal if they are in the player’s
field of vision. The SimpleSoccer server provides the object name, distance and direction
information for objects in a player’s field of vision. The only state information kept by a
player in the SimpleSoccer environment is the co-ordinates of its location and the direction
in which it is facing.

3.2.2 Fuzzification

Input variables for the fuzzy rules are fuzzy interpretations of the visual stimuli supplied to
the player by the soccer server: the information supplied by the soccer server is fuzzified to
represent the degree of membership of one of three fuzzy sets: direction, distance and power;
and then given as input to the fuzzy inference system. Output variables are the fuzzy
actions to be taken by the player. The universe of discourse of both input and output
variables are covered by fuzzy sets (direction, distance and power), the parameters of which
are predefined and fixed. Each input is fuzzified to have a degree of membership in the
fuzzy sets appropriate to the input variable.
The SimpleSoccer server provides crisp values for the information it delivers to the players.
These crisp values must be transformed into linguistic terms in order to be used as input to
the fuzzy inference system. This is the fuzzification step: the process of transforming crisp
values into degrees of membership for linguistic terms of fuzzy sets. An example of input
variable fuzzification is shown in Fig. 7. In this example the crisp input variable x has a

degree of membership (µ) of both fuzzy sets A1 (0.6) and A2 (0.1).

Fig. 7. Input variable fuzzification

The membership functions shown in Fig. 8 are used to associate crisp values with a degree
of membership for the fuzzy sets direction, distance and power. The parameters for these
fuzzy sets were not learned by the evolutionary process: they were fixed empirically. The

Learning to Play Soccer with the SimpleSoccer Robot Soccer Simulator 291

initial values were set having regard to SimpleSoccer parameters and variables, and fine-
tuned after minimal experimentation in the SimpleSoccer environment.

Fig. 8. Direction, distance and power fuzzy set membership

Robotic Soccer 292

3.2.3 Implication and Aggregation

The core section of the fuzzy inference system is the part that combines the facts obtained
from the fuzzification with the rule base and conducts the fuzzy reasoning process: this is
where the fuzzy inferencing is performed.
After the input values are fuzzified they are applied to the antecedents of the fuzzy rules.
For fuzzy rules with multiple antecedents, the fuzzy operators AND and OR are used as
appropriate to obtain a single number that represents the result of the antecedent
evaluation. This value is the degree to which the rule is true and is then applied to the
consequent membership function. The evaluation of the antecedents is as follows:

• for the disjunction of rule antecedents, the fuzzy operator OR is defined by the
fuzzy set operation union:

() () ()[]xxx BABA µµµ ,max=∪

• for the conjunction of rule antecedents, the fuzzy operator AND is defined by the
fuzzy set operation intersection:

() () ()[]xxx BABA µµµ ,min=∩

The method implemented to correlate the result of the antecedent evaluation to the
membership function of the consequent is the correlation minimum, or clipping method,
where the consequent membership function is truncated at the level of the antecedent truth
(Fig. 9).

Fig. 9. Correlation minimum example

Aggregation is the process of combining the correlated fuzzy sets to produce a composite
fuzzy region that represents the solution variable. The solution fuzzy region is then
defuzzified if a crisp solution is required (as is the case in this work). The aggregation
method used in this work is the min/max aggregation method. This method ORs the
correlated consequent fuzzy set for each rule with the contents of the solution variable’s
output fuzzy region. This process takes the maximum of the consequent fuzzy set and the
solution fuzzy set at each point along their mutual membership functions.
Fig. 10 is an illustration of a two-rule Mamdani Fuzzy Inferencing System (FIS) which
implements the correlation minimum implication method and the min/max method of
aggregation (Mamdami & Assilian, 1975).

1.0

0.0

0.4

Learning to Play Soccer with the SimpleSoccer Robot Soccer Simulator 293

Fig. 10. 2-rule Mamdani FIS using Correlation Minimum implication and min/max
aggregation. Reproduced from (Jang et al., 1997)

3.2.4 Defuzzification

The defuzzification method used is the mean of maximum method. This technique takes the
output distribution and finds its mean of maxima in order to compute a single crisp number.
This is calculated as follows:

where z is the mean of maximum, zi is the point at which the membership function is
maximum, and n is the number of times the output distribution reaches the maximum level.
An example outcome of this computation is shown in Fig. 11.

Fig. 11. Mean of Maximum defuzzification method. Adapted from (Jang et al., 1997)

=

=
n

i

i

n

z
z

1

Robotic Soccer 294

3.2.5 Action Selection

Only one action is performed by the player in response to stimuli provided by the soccer
server. Since several rules with different actions may fire, the action with the greatest level
of support, as indicated by the value for truth of the antecedent, is selected.

3.3 Player Learning

This work employs an evolutionary technique in the form of a messy-coded genetic
algorithm to evolve the rulebase that defines the behaviour of a robot soccer player. A
genetic algorithm (GA) is an adaptive search technique which maintains a population of
potential solutions that evolves over time in accordance with the rules of the genetic
operators implemented by the algorithm. Each member of the population has its fitness as a
solution to the problem evaluated against some known criteria, and members of the
population are then selected for reproduction based upon that fitness, with a new
generation of potential solutions being generated from the offspring of (typically) the most
fit individuals. The process of evaluation, selection, reproduction, recombination and
mutation is iterated until an acceptable solution is shown (Fig. 12).

Fig. 12. The GA evolutionary cycle

The evaluation of the worth of an individual as a solution is achieved by the use of a fitness
function. The objective of the fitness function is to numerically encode the performance of
the individual with reference to the problem for which it is a potential solution. This is an
extremely important part of the process, for without a fitness function which accurately
evaluates the performance of potential solutions, the search will fail.

Evaluate

Population

Check Termination

Condition

Selection &

Reproduction
Recombination

Mutation

Generate

Initial Population

Stop

Learning to Play Soccer with the SimpleSoccer Robot Soccer Simulator 295

The flexibility provided by the messy-coded genetic algorithm is exploited in the definition
and format of the genes on the chromosome, thus reducing the complexity of the rule
encoding from the traditional genetic algorithm. Learning is achieved through testing and
evaluation of the fuzzy rulebase generated by the genetic algorithm.
The fitness function used to determine the fitness of an individual rulebase takes into
account the performance of the player based upon the number of goals scored, or attempts
made to move toward goal-scoring, during a game.
The genetic algorithm implemented in this work is implemented using the Pittsburgh
approach, where each individual in the population is a complete ruleset (Smith, 1980).

3.3.1 Representation of the Chromosome

For these experiments, a chromosome is represented as a variable length vector of genes,
and rule clauses are coded on the chromosome as genes. The encoding scheme implemented
exploits the capability of messy-coded genetic algorithms to encode information of variable
structure and length. The mutation operator is analogous to the mutation operator for
classic genetic algorithms, whereas the classic crossover operation is replaced by a cut-and-
splice operation (Goldberg et al., 1989). It should be noted that while the encoding scheme
implemented is a messy encoding, the algorithm implemented is the classic genetic
algorithm: there are no primordial or juxtapositional phases implemented.
The basic element of the coding of the fuzzy rules is a tuple representing, in the case of a
rule premise, a fuzzy clause and connector; and in the case of a rule consequent just the
fuzzy consequent. The rule consequent gene is flagged to distinguish it from premise genes
thus allowing multiple rules, or a ruleset, to be encoded onto a single chromosome.
For single-player trials, the only objects of interest to the player are the ball and the player’s
goal, and what is of interest is where those objects are in relation to the player. A premise is
of the form:

(Object, Qualifier, {Distance | Direction}, Connector)

and is constructed from the following range of values:

Object : { BALL, GOAL }

 Qualifier : { IS, IS NOT }

 Distance : { AT, VERYNEAR, NEAR, SLIGHTLYNEAR,
 MEDIUMDISTANT, SLIGHTLYFAR, FAR, VERYFAR }

 Direction : { LEFT180, VERYLEFT, LEFT, SLIGHTLYLEFT, STRAIGHT,
 SLIGHTLYRIGHT, RIGHT, VERYRIGHT, RIGHT180 }

 Connector : { AND, OR }

Each rule consequent specifies and qualifies the action to be taken by the player as a
consequent of that rule firing thus contributing to the set of (action, value) pairs output by
the fuzzy inference system. A consequent is of the form:

 (Action, {Direction | Null}, {Power | Null})

Robotic Soccer 296

and is constructed from the following range of values (depending upon the skillset with
which the player is endowed):

 Action : { TURN, DASH, KICK, RUNTOWARDGOAL,
 RUNTOWARDBALL, GOTOBALL, KICKTOWARDGOAL,
 DRIBBLETOWARDGOAL, DRIBBLE, DONOTHING }

 Direction : { LEFT180, VERYLEFT, LEFT, SLIGHTLYLEFT, STRAIGHT,
 SLIGHTLYRIGHT, RIGHT, VERYRIGHT, RIGHT180,
 TOWARDBALL, TOWARDBOAL}

 Power : { VERYLOW, LOW, SLIGHTLYLOW, MEDIUMPOWER,
 SLIGHTLYHIGH, HIGH, VERYHIGH }

Fuzzy rules developed by the genetic algorithm are of the form:

if Ball is Near and Goal is Near then DribbleTowardGoal Low
if Ball is Far or Ball is SlightlyLeft then Run TowardBall High

In the example chromosome fragment shown in Fig. 13 the shaded clause has been specially
coded to signify that it is a consequent gene, and the fragment decodes to the following rule:

if Ball is Left and Ball is At or Goal is not Far then Dribble Low

In this case the clause connector OR in the clause immediately prior to the consequent clause
is not required, so ignored.

 (Ball, is Left, And) (Ball, is At, Or) (Goal, is not Far, Or) (Dribble, Null, Low)

Fig. 13. Messy-coded genetic algorithm example chromosome fragment

Chromosomes are not fixed length: the length of each chromosome in the population varies
with the length of individual rules and the number of rules on the chromosome. The
number of clauses in a rule and the number of rules in a ruleset is only limited by the
maximum size of a chromosome, which for this work was 64 genes. The minimum size of a
rule is two clauses (one premise and one consequent), and the minimum number of rules in
a ruleset is one. Since the cut-and-splice and mutation operations implemented guarantee no
out-of-bounds data in the resultant chromosomes, a rule is only considered invalid if it
contains no premises. Any invalid rules are ignored when the ruleset is applied. A complete
ruleset is considered invalid only if it contains no valid rules.
An example complete chromosome and corresponding rules are shown in Fig. 14 (with
appropriate abbreviations). Some advantages of using a messy encoding in this case are:

• a ruleset is not limited to a fixed size

• a ruleset can be over specified (clauses may be duplicated)

• a ruleset can be under specified (not all genes are required to be represented)

• clauses may be arranged in any way

Learning to Play Soccer with the SimpleSoccer Robot Soccer Simulator 297

Premise Consequent

Rule 1: if Ball is Near or Ball is not Far and Goal is Near then RunTowardBall Low
Rule 2: if Ball is At and Goal is VeryNear then KickTowardGoal MediumPower
Rule 3: if Ball is Left then Turn Left

Fig. 14. Example chromosome and corresponding rules

In contrast to classic genetic algorithms which use a fixed size chromosome and require
“don’t care” values in order to generalise, no explicit “don’t care” values are, or need be,
implemented for any attributes in this method. Since messy-coded genetic algorithms
encode information of variable structure and length, not all attributes, particularly premise
variables, need be present in any rule or indeed in the entire
ruleset. A feature of the messy-coded genetic algorithm is that the format implies
“don’t care” values for all attributes since any premise may be omitted from any or all rules,
so generalisation is an implicit feature of this method.

3.3.2 Selection and Reproduction

Selection and reproduction are important processes for evolutionary algorithms.
Individuals from the population are selected according to some criteria to be reproduced for
the next generation. GA reproduction is essentially a cloning operation in which the
individuals selected for reproduction are copied, and it is during the recombination process
that the copies are mated to form new individuals. For genetic algorithms, selection and
reproduction alone cannot introduce new individuals into the population: that is achieved
throug the genetically-inspired recombination operators of crossover (cut-and-splice in the case
of messy-coded GAs) and mutation. The purpose of selection and reproduction is to favour
fitter individuals on the basis that the fitter an individual the more likely it will produce
even more fit offspring.
A fitness-proportionate method of selection (Holland, 1975; Goldberg, 1989) known as
“roulette wheel“ selection was implemented for this work. With this method the number of
times an individual is expected to be selected to reproduce is the ratio of the individual’s
fitness to the average fitness of the population. The implementation can be likened to a
biased roulette wheel, where each individual in the current population has a slot on the
roulette wheel proportional to that individual’s fitness. The roulette wheel is spun once for
each parent required, with the winning individuals being paired for reproduction.

3.3.3 Cut-and-Splice for Variable Length Chromosomes

Since the messy-coding implemented allows chromosomes of different lengths the crossover
operation of the classic genetic algorithm needs to be modified. For messy-coded genetic
algorithms the crossover operation is considered in its two distinct steps: the cut operation
and the splice operation. The cut operator cuts each chromosome at a randomly chosen

(B,N,O) (B,nF,A) (G,N,A) (RB,-,L) (B,A,A) (G,vN,O) (KG,-,M) (B,L,A) (T,L,-)

Robotic Soccer 298

0 0 1 0 1 0 0 0 0 1 0 1 0 1 0

Cut points Splice points

1 1 0 1 0 0 0

Parents

1 1 1 1 0

0

Offspring

1 1

0

0

position, and since the chromosomes may be of different lengths, the resultant fragments
may also be of different lengths. The splice operator concatenates the fragments produced
by the cut operator, resulting in two new chromosomes of possibly different lengths from
the original chromosomes. The cut-and-splice operation implemented in this work
guarantees the operations will not result in out-of-bounds data in the resultant
chromosomes. Fig. 15 is an example of the cut-and-splice operation for messy-coded
chromosomes.

Fig. 15. Example cut-and-splice operation

3.3.4 Mutation

Mutation, which helps to maintain diversity in the population, is the arbitrary modification
of individuals. The mutation scheme implemented in this work is a variation of random
single-bit mutation, but in this case it is random single-allele mutation since the genes
encoded in this work are integer values rather than single bits. This is a method in which a
single allele is chosen randomly for modification to a random value. The mutation operator
implemented guarantees mutations will not result in out-of-bounds data in the resultant
chromosome.

3.4 Experimental Evaluation

A series of 20 trials was performed in order to test the viability of the fuzzy inferencing
system for the control of the player, and the genetic algorithm to evolve the fuzzy ruleset.
The following sections describe the trials performed, the parameter settings for each of the
trials and other fundamental properties necessary for conducting the trials.

3.4.1 Fitness Evaluation

The objective of the fitness function for the genetic algorithm is to reward the fitter
individuals with a higher probability of producing offspring, with the expectation that
combining the fittest individuals of one generation will produce even fitter individuals in
later generations. The fitness function used in these trials rewarded individuals for, in order
of importance:

• the number of goals scored in a game

Learning to Play Soccer with the SimpleSoccer Robot Soccer Simulator 299

• minimising the distance of the ball from the goal
This combination was chosen to reward players primarily for goals scored, while players
that do not score goals are rewarded on the basis of how close they are able to move the ball
to the goal, on the assumption that a player which kicks the ball close to the goal is more
likely to produce offspring capable of scoring goals. This decomposes the problem of
evolving goal-scoring behaviour into the two less difficult problems:

• evolve ball-kicking behaviour that minimises the distance between the ball and
goal, and

• evolve goal-scoring behaviour from the now increased base level of skill and
knowledge

The actual fitness function implemented was:

(1)

where
goals = the number of goals scored by the player during the trial
kicks = the number of times the player kicked the ball during the trial
dist = the minimum distance of the ball to the goal during the trial
fieldLen = the length of the field

Note that this fitness function indicates better fitness as a lower number, in effect
representing the optimisation of fitness as a minimisation problem.

3.4.2 GA Control Parameters

The genetic algorithm parameters used in all 20 trials are shown in Table 3.

Parameter Value

Maximum Chromosome Length 64 genes

Population Size 200

Maximum Generations 25

Selection Method Roulette Wheel

Crossover Method Single point cut-and-splice

Crossover Probability 0.8

Mutation Rate 10%

Mutation Probability 0.35

{=f

goals×0.2

0.1

fieldLen

dist

×
+

0.2
5.0

0, >goals

0, =goals

0, >kicks

0, =kicks01.

{

Robotic Soccer 300

Table 3. Genetic algorithm control parameters
3.4.3 Simulator Control Parameters

The SimpleSoccer simulator parameters used in all 20 trials are shown in Table 4.

Parameter Value

Field Length 61 cells

Field Width 31 cells

Goal Width 7 cells

Kickable Distance 1.0 cells

View Angle 90 degrees

View Length 5 cells

Maximum DASH distance 7.5 cells

Maximum KICK distance 15 cells

Player Skillset All skills listed in Table 1

Default action Hunt action 3: Random turn

Table 4. SimpleSoccer control parameters

3.4.3 Trial Results

For the results reported, each trial consisted of one complete execution of the genetic
algorithm during which multiple simulated games of soccer were played, with the only
player on the field being the player under evaluation.
For each game, the player was placed at a randomly selected position on its half of the field
and oriented so that it was facing the end of the field to which it was kicking, and the ball
was placed at a randomly selected position along the centre line of the field. A game was
terminated when one of the following conditions was met:

• the maximum game time of 1000 ticks expired.

• the target of 10 goals was scored, reflecting a fitness value of 0.05. This figure was
chosen to allow the player a realistic amount of time to develop useful strategies
yet terminate the search upon finding an acceptably good individual.

• a 100 tick period of no player action occured.

A randomly generated population of players was generated and evolved over time by the
genetic algorithm, with the evaluation of each member of the population being performed in
the SimpleSoccer environment. The evolutionary search was stopped:

• after a specified maximum number of generations, or

Learning to Play Soccer with the SimpleSoccer Robot Soccer Simulator 301

• when the specified target fitness was reached by any player.

Fig. 16. SimpleSoccer: Best individual fitness

0

0.25

0.5

0.75

1

1 5 9 13 17 21 25

Generation

F
it

n
es

s

1
5

9
1 3

1 7
2 1

2 5

0

0 . 2 5

0 . 5

0 .7 5

1

F
it

n
es

s

G e n e r a t io n

Robotic Soccer 302

Fig. 17. SimpleSoccer: Population average fitness
Fig. 16 shows the best individual fitness from the population after each generation for each
of the 20 trials. This graph shows that individuals able to score goals were found after very
few generations, with some individuals being capable of scoring multiple goals in the
allotted time.
Fig. 17 shows the average fitness of the population after each generation for each of the 20
trials. This graph shows that the average performance of the population improves steadily
and plateaus, but while individual players do score goals, the population does not approach
an average fitness of 0.5, or goal-scoring behaviour.
These results show that the method presented is capable of training a simulated robot soccer
player to develop goal-scoring behaviour. The method uses a genetic algorithm to evolve
the fuzzy rulesets that drive the soccer player’s behaviour, with the evolutionary process
being allowed to run for a maximum of only 25 generations which, while sufficient to
demonstrate the effectiveness of the method, is probably not sufficient to evolve players
with robust, consistent goal-scoring behaviour.

3.4.4 SimpleSoccer as a Model for RoboCupSoccer

To gauge the effectiveness of the SimpleSoccer environment as a model for RoboCupSoccer
a further series of 20 trials was performed in the RoboCupSoccer environment. Similar
simulator and GA control parameters were used. Game times for the RoboCupSoccer
environment were limited to 120 seconds (real time) rather than a number of program ticks.
The results of these trials are shown below.
Fig. 18 shows the best individual fitness from the population after each generation for each
of the 20 trials. It is evident from a comparison of Fig. 16 and Fig. 18 that while good
individuals are found quickly in both environments, the algorithm seems to produce more
consistent behaviour in the RoboCupSoccer environment. These data show that once a good
individual is found in the RoboCupSoccer environment, good individuals are then more
consistently found in future generations than in the SimpleSoccer environment.
Fig. 19 shows the average fitness of the population after each generation for each of the 20
trials. This graph shows that the performance of the population does improve steadily and,
in some of the trials, plateaus towards a fitness of 0.5, or goal-scoring behaviour. Fig. 19 also
shows that the average fitness curves for the RoboCupSoccer trials are less tightly clustered
than those of the SimpleSoccer trials (see Fig. 17), probably reflecting the more stochastic
nature of the environment.
While the difference in the results of the experiments in the RoboCupSoccer and
SimpleSoccer environments indicate that SimpleSoccer is not an exact model of
RoboCupSoccer, as indeed it is not intended to be, there is sufficient similarity in the results
to indicate that the SimpleSoccer environment is a good simplified model of the
RoboCupSoccer environment.
Much of the motivation for creating the SimpleSoccer environment was the prohibitive time
to train players in the real-time RoboCupSoccer environment and the need to reduce that
training time to improve the efficiency and effectiveness of machine learning methods for
training simulated robot soccer players. Table 5 shows the average number of seconds of
real time for a single fitness evaluation in each of the environments used to evolve players
for robot soccer, and from the data shown in Table 5 it is evident that the goal of creating a
more efficient environment for machine learning techniques has been achieved.

Learning to Play Soccer with the SimpleSoccer Robot Soccer Simulator 303

0

0.25

0.5

0.75

1

1 5 9 13 17 21 25

Generation

F
it

n
es

s

Fig. 18. RoboCuSoccer: Best individual fitness

1
5

9
1 3

1 7
2 1

2 5

0

0 .2 5

0 . 5

0 .7 5

1

F
it

n
es

s

G e n e r a t io n

Robotic Soccer 304

Fig. 19. RoboCupSoccer: Population average fitness
The RoboCupSoccer simulator used throughout this work was version 7.10, compiled and
executed on an HP 9000/777 workstation running version 11.0 of the HP-UX operating
system. The SimpleSoccer simulator was originally developed on an HP9000/777
workstation running HP-UX version 11.0, and was later ported to an Intel Pentium-based
PC running Windows XP. Evaluation times are quoted for each of those systems. No trials
using the RoboCupSoccer simulator were performed on the PC. Note that although the
SimpleSoccer evaluation time is two orders of magnitude smaller on the PC, RoboCupSoccer
evaluation times would not enjoy the same improvement if executed on the PC – the
RoboCupSoccer evaluation times are constrained by the real-time nature of the simulator,
and the training game times were 60 seconds. Any benefit from running the
RoboCupSoccer simulations on faster hardware would be evident in the few seconds of
overhead time only, and would not significantly reduce the evaluation time.

Simulator Platform Seconds/Evaluation

RoboCupSoccer
HP 9000/777 workstation. 120MHz PA-7200 CPU,
256MB RAM, HP-UX 11.0 Operating System

70.65

SimpleSoccer
HP 9000/777 workstation. 120MHz PA-7200 CPU,
256MB RAM, HP-UX 11.0 Operating System

10.20

SimpleSoccer
Compaq PC. 1.6GHz Pentium M CPU, 512MB
RAM, Windows XP Operating System

0.112

Table 5. Evaluation times

4. Summary and Discussion

The goal of this work was to create an environment with similar complexity and dynamics
to the RoboCupSoccer environment, but with reduced uncertainty, both in player
perception and in the player’s interaction with the environment. The motivation was to
create an environment in which the training times of machine learning techniques would be
reduced sufficiently so as to improve the viability of such techniques, and to show that
players could be trained in this environment to display reasonable goal-scoring behaviour.
The SimpleSoccer environment was developed for this purpose, and through some sample
experiments it was shown that the SimpleSoccer environment does aid in the reduction of
training times for some machine learning techniques.
The implementation of a messy-coded genetic algorithm which successfully evolves the
ruleset for a fuzzy logic-based simulated robot soccer player was described. Several trials
were performed to test the capacity of the method to produce goal-scoring behaviour. The
results of the trials performed indicate that the player defined by the evolved fuzzy rules of
the controller is capable of displaying consistent goal-scoring behaviour.
Furthermore, tests in which the initial population for RoboCupSoccer was seeded with
players evolved in the SimpleSoccer environment suggest that there is significant benefit in
using the SimpleSoccer environment as an heuristic to generate high quality initial solutions
for the RoboCupSoccer environment (Riley, 2003; Riley, 2005). The evolution of players
displaying reasonable goal-scoring behaviour is achievable in the SimpleSoccer

Learning to Play Soccer with the SimpleSoccer Robot Soccer Simulator 305

environment in a fraction of the time it would take in the RoboCupSoccer environment, and
only a few generations are required in RoboCupSoccer to refine the behaviours evolved in
the SimpleSoccer environment. High-level strategies learned in the more certain
SimpleSoccer environment are directly transferrable to the RoboCup environment, and
when used as the starting point for further learning can help to reduce the training time in
the RoboCup environment.

5. References

Bajurnow, A. & Ciesielski, V. (2004). Layered Learning for Evolving Goal Scoring Behaviour
in Soccer Players, Proceedings of the 2004 Congress on Evolutionary Computation,
Vol. 2, pp. 1828-1835, Portland OR, June 2004, G. Greenwood (Ed.), IEEE,
Piscataway NJ.

Balch, T. (1995). The Ascii Robot Soccer Home Page. http://www.cs.cmu.edu/~trb/soccer/, 1995.

Brooks, R. (1985). Robust Layered Control System for a Mobile Robot, A.I. Memo 864,
Massachusetts Institute of Technology, Artificial Intelligence Laboratory,
Cambridge MA.

Brooks, R. (1991). Intelligence Without Representation. Artificial Intelligence, vol. 47, 1991,
pp. 139-159.

Ciesielski, V. & Lai, S.Y. (2001). Developing a Dribble-and-Score Behaviour for Robot Soccer
using Neuro Evolution, Proceedings of the Fifth Australia-Japan Joint Workshop on
Intelligent and Evolutionary Systems, pp. 70-78, Dunedin, New Zealand, November
2001, Wigham, P.; Richards, K.; McKay, B.; Gen, M.; Tujimura, Y. & Namatame, A.
(Eds.).

Ciesielski, V., Mawhinney, D. & Wilson, P. (2001). Genetic Programming for Robot Soccer,
Proceedings of the RoboCup 2001 Symposium, Lecture Notes in Artificial Intelligence,

pp. 319-324, Seattle WA, August 2001, Birk, A.; Coradeschi, S. & Tadokoro, S.

(Eds.), Springer NY.

Ciesielski, V. & Wilson, P. (1999). Developing a Team of Soccer Playing Robots by Genetic
Programming, Proceedings of the Third Australia-Japan Joint Workshop on Intelligent
and Evolutionary Systems, pp. 101-108, Canberra, Australia, November 1999.

Goldberg, D. (1989). Genetic Algorithms in Search, Optimization and Machine Learning.
Addison-Wesley, ISBN 0-201-15767-5.

Goldberg, D., Korb, B. & Deb, K. (1989). Messy Genetic Algorithms: Motivation, Analysis,
and First Results. Complex Systems, vol. 3, 1989, pp. 493-530.

Holland, J. (1975). Adaptation in Natural and Artificial Systems. The University of Michigan
Press, Ann Arbor: MI.

Jang, J.-S.; Sun, C.-T. & Mizutani, E. (1997). Neuro-Fuzzy and Soft Computing, Prentice Hall,
ISBN 0-13-261066-3, Upper Saddle River NJ.

Kitano, H.; Asada, M.; Kuniyoshi, Y.; Noda, I. & Osawa, E. (1995). RoboCup: The Robot
World Cup Initiative, Proceedings of the Fourteenth International Joint Conference on
Artificial Intelligence, Workshop on Entertainment and AI/ALife, Montréal, Québec,
Canada, August 1995, Morgan Kaufmann, San Francisco CA.

Robotic Soccer 306

Kitano, H.; Tambe, M.; Stone, P.; Veloso, M.; Coradeschi, S.; Osawa, E.; Matsubara, H.;
Noda, I. & Asada, M. (1997). The RoboCup Synthetic Agent Challenge 97,
Proceedings of the Fifteenth International Joint Conference on Artificial Intelligence,
pp. 24-29, Nagoya, Japan, August 1997, Morgan Kaufmann, San Francisco CA.

Lima, P.; Custódio, L.; Akin, L.; Jacoff, A.; Kraezschmar, G.; Ng, B.K.; Obst, O.; Röfer, T.;
Takahashi, Y. & Zhou, C. (2005). RoboCup 2004 Competitions and Symposium: A
Small Kick for Robots, a Giant Score for Science. AI Magazine 26(2), 2005, pp. 36-61.

Luke, S. (1998a). Genetic Programming Produced Competitive Soccer Softbot Teams for
RoboCup97, Genetic Programming 1998: Proceedings of the Third Annual Conference,
Madison WI, July 1998, Koza, J.R.; Banzhaf, W.; Chellapilla, K.; Deb, K.; Dorigo, M.;
Fogel, D.B.; Garzon, M.H.; Goldberg, D.E.; Iba, H. & Riolo, R.L. (Eds.), Morgan
Kaufmann, San Francisco CA.

Luke, S. (1998b). Evolving SoccerBots: A Retrospective, Proceedings of the Twelfth Annual
Conference of the Japanese Society for Artificial Intelligence, Tokyo, Japan, June
1998.

Mamdani, E. & Assilian, S. (1975). An Experiment in Linguistic Synthesis with a Fuzzy Logic
Controller. International Journal of Man-Machine Studies, vol. 7(1), 1975, pp. 1-13.

Riedmiller, M.; Merke, A.; Meier, D.; Hoffman, A.; Sinner, A.; Thate, O. & Ehrmann, R.
(2001). Karlsruhe Brainstormers – a Reinforcement Learning Approach to Robotic
Soccer. In: RoboCup-2000: Robot Soccer World Cup IV, Stone, P.; Balch, T. &
Kraetszchmar, G. (Eds.), Springer Verlag, Berlin.

Riedmiller, M.; Gabel, T.; Knabe, J. & Strasdat, H. (2005). Brainstormers 2D - Team
Description 2005. In: RoboCup 2005: Robot Soccer World Cup IX., Bredenfeld, A.;
Jacoff, A.; Noda, I. & Takahashi, Y. (Eds.), Springer Verlag, Berlin.

Riley, J. (2003). The SimpleSoccer Machine Learning Environment, Proceedings of the First
Asia-Pacific Workshop on Genetic Programming, pp. 24-30, Canberra, Australia,
December 2003, Cho, S-B.; Nguen, H.X. & Shan, Y. (Eds.).

Riley, J. & Ciesielski, V. (2004). Evolution of fuzzy rule based controllers for dynamic
environments, In: Recent Advances in Simulated Evolution and Learning, volume 2 of
Advances in Natural Computation, Tan, K.C.; Lim, M.H; Yao, X. & Wang, L. (Eds.),
chapter 23, pp. 426-445. World Scientific, ISBN 981-238-952-0, Singapore.

Riley, J. (2005). Evolving Fuzzy Rules for Goal-Scoring Behaviour in a Robot Soccer
Environment, PhD Thesis, RMIT University: Melbourne, Australia.

Smith, S. (1980). A Learning System Based on Genetic Adaptive Algorithms, PhD Thesis,
Department of Computer Science, University of Pittsburgh: Pittsburgh PA.

Stone, P. & Sutton, R. (2001). Scaling Reinforcement Learning Toward RoboCup Soccer,
Proceedings of the Eighteenth International Conference on Machine Learning,
Williamstown MA, July 2001, Brodley, C.E. & Danyluk, A.P. (Eds.), Morgan
Kaufmann, San Francisco CA.

Stone, P. & Veloso, M. (1999). Team-partitioned, Opaque-transition Reinforcement Learning,
Proceedings of the Third International Conference on Autonomous Agents, pp. 206-212,
ISBN 1-58113-066-X, Seattle WA, May 1999, Etzioni, O.; Müller, J. & Bradshaw, J.
(Eds.), ACM Press, NY.

Uchibe, E. (1999). Cooperative Behavior Acquisition by Learning and Evolution in a Multi-
Agent Environment for Mobile Robots, PhD thesis, Osaka University: Osaka, Japan.

Zadeh, L. (1965). Fuzzy Sets. Journal of Information and Control, vol. 8, 1965, pp. 338-353.

Robotic Soccer

Edited by Pedro Lima

ISBN 978-3-902613-21-9

Hard cover, 598 pages

Publisher I-Tech Education and Publishing

Published online 01, December, 2007

Published in print edition December, 2007

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

Many papers in the book concern advanced research on (multi-)robot subsystems, naturally motivated by the

challenges posed by robot soccer, but certainly applicable to other domains: reasoning, multi-criteria decision-

making, behavior and team coordination, cooperative perception, localization, mobility systems (namely omni-

directional wheeled motion, as well as quadruped and biped locomotion, all strongly developed within

RoboCup), and even a couple of papers on a topic apparently solved before Soccer Robotics - color

segmentation - but for which several new algorithms were introduced since the mid-nineties by researchers on

the field, to solve dynamic illumination and fast color segmentation problems, among others. This book is

certainly a small sample of the research activity on Soccer Robotics going on around the globe as you read it,

but it surely covers a good deal of what has been done in the field recently, and as such it works as a valuable

source for researchers interested in the involved subjects, whether they are currently "soccer roboticists" or

not.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Jeff Riley (2007). Learning to Play Soccer with the SimpleSoccer Robot Soccer Simulator, Robotic Soccer,

Pedro Lima (Ed.), ISBN: 978-3-902613-21-9, InTech, Available from:

http://www.intechopen.com/books/robotic_soccer/learning_to_play_soccer_with_the_simplesoccer_robot_socc

er_simulator

© 2007 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the

Creative Commons Attribution-NonCommercial-ShareAlike-3.0 License, which permits use,

distribution and reproduction for non-commercial purposes, provided the original is properly cited

and derivative works building on this content are distributed under the same license.

