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Abstract

Throughout recent decades, the incidence of preterm birth has risen worldwide, and 
although the majority of preterm neonates now survive infancy, many suffer from 
debilitating morbidities in the short term and/or increased disease risks in the long term. 
Traditional diagnostic biomarkers suffer from considerable confounders, limiting their 
use in the early identification of diseases. There is a need to develop novel biomark‐
ers that can identify, in real time, the evolution of organ dysfunction in an early diag‐
nostic, monitoring, and prognostic fashion. Use of “omics,” particularly metabolomics, 
may provide valuable information regarding functional pathways underlying different 
pathologies and prediction of clinical outcomes. The emerging knowledge generated by 
the application of metabolomics in neonatology provides new insights that can help to 
identify markers of early diagnosis, disease progression, response to treatment, and new 
therapeutic targets. In this chapter, we review the current knowledge of different metab‐
olomics technologies in neonatal‐perinatal medicine, including biomarker discovery, 
defining as yet unrecognized biologic therapeutic targets, and linking of metabolomics to 
relevant standard indices and long‐term outcomes.
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1. Introduction

“Omics” refers to the collective technologies used to explore the roles, relationships, and 

actions of the various types of molecules that make up the phenotype of an organism. Living 

systems complexity and adaptiveness can be read through self‐organized highly intercon‐

nected networks whose interacting components are dynamically coordinated in hierarchical 

patterns. Systems biology is a scientific discipline that endeavors to quantify all of the molecu‐

lar elements of a biological system to assess their interactions and to integrate that informa‐

tion into network models. Therefore, systems biology reflects the knowledge acquired by 
omics in a meaningful manner [1].

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



From genes to metabolites, the omics technologies have progressed significantly in the medi‐
cal field over the last decade secondary to the remarkable advancement in laboratory method‐

ologies and analytical tools. We discuss in this chapter the current knowledge of metabolomics 

technologies in neonatal‐perinatal medicine including biomarker discovery, defining as yet 
unrecognized biologic therapeutic targets, and linking of metabolomics to relevant standard 
indices.

2. Metabolomics technologies

The two major methodologies applied in metabolomics are nuclear magnetic resonance 

(NMR) spectroscopy and mass spectrometry (MS). Both techniques can deliver high sensi‐
tivity, selectivity, and throughput data with high degree of reproducibility [2]. NMR spec‐

troscopy is a quantitative, nondestructive, reproducible technique that provides detailed 
information on solution‐state molecular structures, based on atom‐centered nuclear interac‐

tions. The advantage of applying NMR is that it uses the magnetic properties of atomic nuclei, 

delivering simultaneous information on both the structure and molecular mobility of metabo‐

lites without the need for the preselection of analytical parameters or sample derivatization 
procedures. However, sensitivity is a limiting factor and often metabolite concentrations in 

the range of 1–10 μmol/L are required for detection and quantification by NMR [3]. Mass 

spectrometry analytical platforms tend to have much higher sensitivity, enabling extensive 

assessment of different metabolites in biological fluids or tissues samples. Figure 1 illustrates 

the flow of the processes of metabolomics.

The first step is sample collection, consistency in collection and processing through standard 
operating procedures is important to avoid iatrogenic biases. Variables to consider in this 

step: (1) circadian variation and time of collection during the day, (2) nutritional impact, and 

(3) gestational age at birth and postnatal days of life. Following collection, samples may be 

stored for extended periods of time. However, metabolites stability over time should be a part 

of quality control measurements in conjunction with analytical variability. Prior to analysis, 
the samples have to be extracted into a suitable solvent using chromatography, commonly 

used method is either gas or liquid chromatography (GC or LC) followed by ionization in a 
fluid or matrix; and subsequently, metabolites are identified using a mass spectrometer on the 
basis of their mass‐to‐charge ratio (m/z) and their representation in the spectrum. Metabolite 

identification in MS is destructive based on fragmentation patterns either through the mea‐

surement of molecular mass (indicative of the molecular formula) or by collection of frag‐

mentation mass spectra (indicative of molecular structure). Therefore, the application of this 

technology has the advantage of identifying novel metabolites not previously described in 

databases. On the other hand, ion suppression in complex biological samples limits the ability 

to quantify metabolites secondary to the interaction of multiple analytes that are present in 
the ionization source at the same time [4, 5].

Metabolome characterization can be performed in a targeted manner, or in a nontargeted 
(pattern‐recognition) manner. The target method implicates identification and quantification 
of specific metabolites in a given biofluid or tissue extract by comparing the spectrum of 
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interest to a library of reference spectra of pure compounds. This approach may suffer from 
an inherent bias as it captures only a part of the metabolome. Alternatively, the global nontar‐

geted approach serves as a hypothesis‐generating unbiased tool running as a first screening 
assay in clinical biomarker discovery studies, followed by targeted analysis for the metabo‐

lites that show significant differences or changes. The global pattern‐recognition method can 
also screen for a multitude of key compounds in specific metabolic pathways which provide 

valuable information for metabolic fingerprinting.

The vast amount of data generated by metabolomics methods provides a unique opportunity 
to investigate alterations in metabolic pathways in response to changes in the cellular envi‐

ronment, and/or disease conditions. However, the high complexity of this data introduces a 

challenging aspect of data analysis that requires careful use of statistical methodologies and 
computational tools for efficient data visualization and analysis. Metabolic pathway analy‐

Figure 1. Metabolomics work flow.
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sis implies integration of the identified metabolites into metabolic correlation networks in 
order to better understand the complex relationships among various metabolites. Therefore, 

it allows researchers to correlate observed chemometric changes to the underlying pathologi‐

cal mechanisms.

3. Metabolomics in neonatology

3.1. Preterm birth and postnatal maturation

Preterm birth represents the aggregation of heterogeneous phenotypes, it is a com‐

plex disorder caused by multifactorial influences and the interplay of numerous risk 

factors.

Metabolomic profiling of amniotic fluid was able to distinguish patients who delivered at 

term from patients who delivered preterm. A decrease in carbohydrates was associated with 

preterm delivery in the presence or absence of inflammation whereas an increase in amino 
acid metabolites was a unique feature of preterm labor with inflammation [6].

Wilson et al. examined the associations between the degree of prematurity and the levels of 

amino acids, enzymes, and endocrine markers in a large cohort of infants. They concluded 
that children at different stages of prematurity are metabolically distinct [7]. Similarly 
Atzori et al. found that metabolomic analysis revealed distinct urinary metabolic profiles 

in neonates of different gestational ages, suggesting that gestational age has a strong effect 
on the metabolic profile of neonates, and applying this technology may predict the post‐
maturation of preterm and term neonates [8]. Furthermore, metabolomic analysis showed 

significant alterations in three metabolic pathways: (1) arginine and proline; (2) urea cycle; 
and (3) glycine, serine, and threonine between neonates with intrauterine growth restriction 

(IUGR) and controls [9].

3.2. Maternal chorioamnionitis and preeclampsia

The application of metabolomics methods has shown a clear distinction between preterm 

infants born to mothers with histological chorioamnionitis (HCA) from those born to moth‐

ers without HCA. Metabolites discriminating were the following: mannitol, 4‐hydroxyphen‐

ylacetate, p‐cresol, myo‐inositol, trimethylamine‐N‐oxide, and 1‐methylnicotinamide [10]. 

Similarly, metabolomics has the potential to identify changes under clinical conditions, such 
as preeclampsia (PE), that are associated with placental molecular pathophysiology. Heazell 
et al. have demonstrated that placental tissue from uncomplicated pregnancies cultured in 

1% oxygen (hypoxia) had metabolic similarities to explants from preeclampsia pregnancies 

cultured at 6% oxygen (normoxia). This group of metabolites includes prostaglandins, a num‐

ber of long‐chain fatty acids and several amino acids [11]. Metabolic footprinting offers a 
hypothesis‐generating strategy to investigate factors absorbed by and released from the pla‐

centa. Horgan et al. analyzed the metabolic footprint of placental villous explants cultured 
at different oxygen tensions between women who deliver a small for gestational age (SGA) 
baby and those from normal controls. SGA explant media cultured under hypoxic conditions 
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was noted, on a univariate level, to exhibit the same metabolic signature as controls cultured 

under normoxic conditions for 49% of the metabolites of interest, suggesting that SGA tissue 
is acclimatized to hypoxic conditions in vivo [12].

3.3. Respiratory distress syndrome and bronchopulmonary dysplasia

Respiratory distress syndrome (RDS), formerly also known as hyaline membrane disease, 
is a common problem in preterm newborn infants. Surfactant deficiency or inactivation is a 
major contributing factor for the development of RDS. Metabolic profiling of bronchoalveolar 
lavage fluid (BALF) is a promising tool for assessing novel biomarkers of RDS in preterm 
infants. Applying GC‐MS based metabolomic analysis revealed 10 metabolites that are over‐

expressed in BALF collected during mechanical ventilation following surfactant administra‐

tion [13].

Bronchopulmonary dysplasia (BPD) is the most common chronic lung disease in infants with 

a multifactorial pathogenesis arising from a complex interaction between genetic and envi‐

ronment factors. Comparing the urinary metabolic profiles at birth of preterm neonates, Fanos 
et al. found five discriminant metabolites: lactate, taurine, trimethylamine‐N‐oxide (TMAO), 
myo‐inositol (which increased in BPD patients), and gluconate (which was decreased) [14]. 

The increase in urinary lactate in the BPD group may represent a process of anaerobic respira‐

tion. Taurine and TMAO have anessential biological role for osmoregulation and membrane 

stabilization. Additionally, taurine has essential roles in calcium homeostasis, renal cell cycle 
and apoptosis, nerve cell activity and detoxification [15]. The data emerging from this study 

provide better insights into the pathophysiological mechanisms of BPD development.

3.4. Hypoxic ischemic encephalopathy

Hypoxic ischemic encephalopathy (HIE) is a complex neurological injury, characterized by 
biphasic depletion in high energy phosphates, with an estimated incidence of two per 1000 

deliveries. Walsh et al. performed metabolomic analysis on umbilical cord blood from new‐

borns that were divided into three groups: those with confirmed HIE (n = 31), asphyxiated 

infants without encephalopathy (n = 40) and matched controls (n = 71). Targeted metabolo‐

mic analysis showed a significant alteration between study groups in 29 metabolites from 3 
distinct classes (amino acids, acylcarnitines, and glycerophospholipids). A logistic regression 

model using five metabolites clearly delineates severity of asphyxia andclassifies HIE infants 
with area under the curve (AUC) = 0.92 [16].

3.5. Necrotizing enterocolitis/late onset sepsis

Necrotizing enterocolitis (NEC) and late onset sepsis (LOS) are the leading causes of death 
among preterm infants. Stewart et al. compared the serum proteomic and metabolomic 
profiles longitudinally in preterm infants with NEC or LOS, matched to controls. While 
no single protein or metabolite was detectedin all NEC or LOS cases which was absent in 
controls; several proteins were identified which were associated with disease status. The 

expression of these proteins generally varied between diseased infants, potentially relating 

to differing pathophysiology ofdisease [17]. Similarly, Wilcock et al. found metabolomic 
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differences in preterm babies at risk of NEC. However, sample sizes were insufficient to 
confidently identify a biomarker. Additionally, network modeling of preterm and term 
metabolomes suggested possible nutritional deficiency and altered pro‐insulin action in 
preterm babies [18].

3.6. Neonatal kidney injury

Acute Kidney Injury (AKI) is common in neonates undergoing cardiac surgery, and is 

associated with increased mortality and ICU length of stay [19]. Mass spectrometry‐based 

metabolomics was used in a prospective cohort of pediatric cardiac surgery patients (n = 40). 

Twenty‐one of these children developed acute kidney injury defined as an increase in serum 
creatinine concentrations 50% or greater from baseline after 48–72 h. Homovanillic acid sul‐

fate (HVA‐SO
4
), a dopamine metabolite was identified as a marker indicating AKI with 90% 

sensitivity and 95% specificity using a cutoff value of 24 ng/ml at 12 h after surgery [20]. Atzori 
et al. showed a correlation between urinary metabolic profiles and neutrophil gelatinase‐asso‐

ciated lipocalin (NGAL) concentration in a cohort of young adults born with extremely low‐

birth weight (ELBW), using partial least‐squares discriminant analysis [21].

3.6.1. Drug‐induced nephrotoxicity

Nephrotoxic‐medications are becoming increasingly recognized as a common and potentially 
modifiable cause of AKI in neonates. In a single center retrospective cohort 87% of very low 
birth weight infants (VLBW) were exposed to at least one nephrotoxic medication and on 
average these neonates were exposed to 14 days of nephrotoxic medications during their 

NICU stay [22]. Early identification of renal injury through omics technologies implicates 

defining different biomarkers that rely on the mechanisms of toxicity of each drug or drug 
class [23]. In our experimental study, gentamicin‐induced acute kidney injury in newborn 

rats resulted in a distinct urinary metabolic profile characterized by glucosuria, phosphatu‐

ria, and aminoaciduria that preceded changes in serum creatinine. Additionally, lower lev‐

els of kynurenic acid were noted in the urine of gentamicin injected rats, coinciding with 

higher levels of tryptophan, suggesting a degrading effect of gentamicin toxicity on trypto‐

phan metabolism pathway [24]. Xu et al. applied integrated pathway analysis and metabo‐

lite‐transcript correlation analysis to define perturbed biochemical pathways and molecular 
functions that may be relevant to the mechanisms of nephrotoxicity. They concluded that 

transcriptional downregulation of luminal sodium‐dependent transporters SLC5A1, SLC5A2, 
SLC6A18, and SLC16A7 might be the central mediators of drug‐induced kidney injury and 
adaptive response pathways. The integrated pathway analysis performed on these studies 

indicates that cisplatin‐ or gentamicin‐induced renal Fanconi‐like syndromes manifested by 

glucosuria, hyperaminoaciduria, lactic aciduria, and ketonuria might be better explained by 
the reduction of functional proximal tubule transporters rather than by the perturbation of 

metabolic pathways inside kidney cells [25].

An alternative approach implicatesdiscoveryof a limited number of biomarkers that identify 

injury specific to primary sites in the kidney, such as the glomerulus or the proximal tubule. 
A prospective observational trial showed that the urinary excretion of biomarkers that signify 
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proximal tubular damage was higher in the gentamicin group compared with control and pre‐

ceded the peak of SCr and urine output decrease [26]. The application of different omics technolo‐

gies in vitro systems and preclinical models to predict nephrotoxicity allows testing of the safety 

and efficacy of novel therapies and enhances the development and implementation of new drugs.

Askenazi et al. demonstrated that urinary biomarkers can predict AKI and mortality in very 

low birth weight infants independent of gestational age and birth weight [27]. We found that 

urinary NGAL, osteopontin(OPN) and cystatin C (Cys C) increased significantly in infants 
who developed AKI, in contrast, urinary epidermal growth factor (EGF) and uromodulin 
(UMOD) decreased significantly in this group. Urinary biomarkers demonstrated a signifi‐

cant change 24 h prior to contemporary creatinine‐based neonatal AKI definition [28]. It is 

particularly important to recognize the differences in omics biomarkers across different gesta‐

tional ages, postnatal days, and fluid balance status when designing future validation studies 
[29–32].

4. Future directions

The application of metabolomics approaches in neonatology is currently experimented on dif‐

ferent platforms due to its unique ability to generate functional readouts of systems biology, 
setting the ground for future personalized prenatal, neonatal, and pediatric care. Yet the clini‐

cal translation of this unprecedented large amount of data into clinical practices for neonatal 

health care requires addressing of the inherent interindividual variability [33]. Metabolomics 

has the greatest potential in the field of biomarker discovery because this technique defines 
the signature of the actual processes that are occurring within the body rather than just merely 

examining compounds (such as untranscribed DNA or pre‐ or post‐translationally modified 
proteins) that may be redundant to these processes. Although currently omics studies are 

mainly descriptive in nature, the goal is that through integration of experimental approaches 

and computational modelling, better models for personalized health care delivery will be 
generated. The following stages delineate how to translate the biomarker(s) discovery asso‐

ciation studies into clinical applications in a stepwise approach:

1. Defining a clear clinical question

2. Selection of appropriate patient group(s), samples, and clinical data collection

3. Identification of specific biomarkers

4. Validation in a separate group of patients/samples

5. Validation on a large scale

6. Delineation of the interaction of nutrition, gene expression, and metabolism throughinte‐

gration of pathophysiology using pathway analysis tools

Experimental work in model systems and integration with other omics approaches are 
essential steps to provide insight into the pathophysiologic interactions between selected 
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 biomarkers and disease pathogenesis. Finally, large epidemiological cohort studies are 

needed to assess whether metabolomic biomarkers improve upon existing disease markers 

and to determine the validity of their application in different clinical settings.

5. Summary

The rapidly expanding field of metabolomics has been driven in recent years byadvances 

in the analytical methods. Metabolomics will have major implications in the field of per‐

sonalized health care in the future. After establishing metabolomic profiles in the neonatal 
population, the next step is metabolic fingerprinting. In such metabolomic investigations, 
the intention is not to identify each observed compound but to compare patterns or finger‐

prints of metabolites that change in response to disease or drug exposure. The combination 

of metabolic profiling and fingerprinting will lead to the maximum utilization of metabo‐

lomics. In one approach, changes in fingerprints correlating with metabolite profiles may 
be linked to a physiological or pathological state. As more quantitative metabolomic data‐

bases evolve, they can be integrated with data sets from the other “omics” technologies to 

enhance the data value and provide greater biological insight than anyone “omics” technique 
alone can offer. The promise of this emerging technology is focusing on translational metabo‐

lomics for the identification of biomarkers, monitoring postnatal metabolic maturation, and 
the implementation of a tailored management of neonatal disorders.
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