
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900



Chapter 7

Thickness and Thermal Conductivities of the Walls and
Fluid Layer Effects on the Onset of Thermal Convection
in a Horizontal Fluid Layer Heated from Below

Ildebrando Pérez‐Reyes,
René Osvaldo Vargas‐Aguilar,
Eduardo Valente Gómez‐Benítez and
Iván Salmerón‐Ochoa

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/66325

Abstract

The thermal boundary conditions have important effects on the hydrodynamics of a
thermo-convective fluid layer. These effects are introduced through the Biot number
under the Robin type boundary conditions. The thermal conductivity and thicknesses
of the walls are key properties to bridge two known ideal situations widely studied: the
fluid layer bounded by two insulating walls and the fluid layer bounded by two perfect
thermal conducting walls. This chapter is devoted to the physical mechanisms involved
in the thermal boundary conditions, its influence on the linear stability of the fluid layer
and its implications with the pattern formation. A review of very important investiga-
tions on the subject is also given. The role of the thermal conductivities and thicknesses
of the walls is explained with help of curves of criticality for the thermoconvection in a
horizontal Newtonian fluid layer.

Keywords: thermal convection, boundary condition, hydrodynamic stability, Biot
number, patterns

1. Introduction

The present work is devoted to the study of some important physical properties and geomet-

rical configurations that may modify the pattern formation in Newtonian fluid layers. The

theory presented here may be of interest for a number of applications such as for the control of

convective motions [1, 2], for the study of movements in the mantle of the earth [3], in the

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



study of convective cell formation in the surface of the sun [3] and in biotechnological appli-

ances involving the Rayleigh convection phenomena [4].

The formation of patterns is a very interesting subject in fluid mechanics. This topic involves

complex physics and mathematics [5]. From the physical point of view, various parameters

influence the onset of convection and later the evolution of the formed patterns. Some vari-

ables affecting the patterns are,

• type of fluid: Newtonian or non-Newtonian

• the properties of the fluid (like density and viscosity) and properties of the bounding

surfaces (like thickness and thermal conductivity), among others

This chapter focuses on the points given in the above-mentioned list. The bounding surfaces

have become an interesting topic of study since the boundary conditions are mathematically

written according to their nature [6, 7]. The thickness and thermal conductivity of the walls

and the fluid layer are strongly related to the familiar eigenvalue Rayleigh number and to the

wavenumber. They are also related to two classical approximations commonly found in

hydrodynamic stability. These two classical approximations are:

• insulating walls and

• perfect thermal conducting walls.

For short, the insulating wall approximation correspond to constant heat flux boundary

conditions while the perfect thermal conducting walls approximation correspond to the constant

temperature boundary conditions. The critical Rayleigh and wavenumber are (Rc = 720,

kc = 0) and (Rc = 1707.96, kc = 3.12), respectively. Then the purpose of considering the

thickness and thermal conductivity of the walls are to bridge ideal approximations to the

problem of thermal convection and to provide critical conditions that better simulate the lab

experiments.

The boundary conditions are of paramount importance for proper understanding of the

physical phenomenon of thermal convection [1, 6, 7], for comparison between theoretical

and experimental data and for its control [1]. As new technologies and appliances develop,

more sophisticated mathematical models are needed. A good example for the previous

statement is that of the manufacturing of corrugated surfaces [8, 9] in which the formed

convective pattern is deposited on the lower boundary after evaporation of the solvent. This

may occur for convection in polymer solutions which are composed of polymeric chains and

solvents.

This chapter is organized as follows. In Section 2, a general formulation for the natural

convection in a horizontal fluid layer heated from below is given along with some data on

the basic state of the temperature. Section 3 presents a brief explanation on how the thermal

boundary conditions are related to the linear hydrodynamic stability. In Section 4, a discus-

sion on the basic state of the temperature is presented. Some points about the effect of the

thermal conductivities and thicknesses of the walls on the pattern formation are discussed in

Section 5. Section 6 is devoted to list some challenges in hydrodynamic stability that are
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connected to the thermal boundary conditions. Finally, in Section 7 a general discussion on

the subject is given.

2. The problem of convection in a fluid layer

The importance of the thermal boundary conditions can be seen from the point of view of the

familiar problem of Rayleigh thermal convection in a horizontal infinite fluid layer vertically

bounded by two solid and rigid walls [10, 11]. Consider the scheme presented in Figure 1

which shows the thermal and geometrical properties of the bounding walls. This extension to

the problem of convection has been presented in Ref. [2], and studied by Cerisier et al. [7] and

Howle [1], among others.

The two problems of thermal convection that have been widely studied are that of bounding

insulating walls (see Refs. [11, 12] for more details) and that of bounding perfect thermal

conducting walls (see Refs. [10, 13] form more details). These two cases can be mathematically

expressed as,

• dT/dz = 0 at the boundaries. For insulating walls (according to Chapman et al. [11]).

• T = 0 at the boundaries. For perfect thermal conducting walls (according to Chandrasekhar

[10]).

On the other hand, it is well known that lab experiments and technological developments are

not restricted to these ideal cases. In other words, more general boundary conditions are

needed to satisfy the requirements of intermediate cases, as represented in Figure 2. Mathe-

matically speaking, the proper thermal boundary conditions for non-ideal situations are those

of the Robin type. This is a boundary condition encompassing both cases mentioned above.

Figure 1. Scheme for the problem of Rayleigh convection including the thickness and thermal conductivities of the walls.

TL,U stand for the constant temperature at the lower and upper walls, TL0,U0,F 0 stand for the basic state temperature

profile at the lower wall, upper wall and fluid layer; while XL,U,F represent the thermal conductivities of the lower wall,

upper wall and fluid layer, respectively. Dimensional variables are used.
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When considering bounding walls of non-ideal properties the Biot number appears in the

boundary conditions. The Biot number actually is derived from the geometrical and thermal

properties of the walls and the working fluid allowing mapping the critical conditions (mainly,

critical Rayleigh number, Rc and critical wavenumber, kc) for the onset of convection from the

insulating to perfect conducting walls, as shown in Figure 2. Some of investigations have been

carried out to fill this gap in the theory of hydrodynamic stability in Newtonian [7, 14, 15] and

non-Newtonian fluids [6], as well. Another implication of the thermal conductivities and

thicknesses of the bounding walls and that of the fluid layer is the more general temperature

profile in the basic state. Even, two more temperature profiles in the basic state appear, one for

the lower wall and another one for the upper wall (see Figure 1).

The temperature profiles are then defined as:

TF0 ¼ −zþ TU þ 1þ XU dU (1)

TL0 ¼ −XLzþ TL þ 1−XL dL (2)

TU0 ¼ XU ð1þ dU−zÞ þ TU (3)

where the variables in Eqs. (1)–(3) are in non-dimensional form (the reader may see Refs. [6, 7]

for more details). Here, XU = XF /XU, XL = XF/XL, dU = dU/dF and dL = dL/dF. Notice that Eqs. (2)

and (3) are not considered in studies related to the limiting cases of insulating and perfect

conducting walls.

Eq. (1) represents the temperature profile of the fluid layer, Eq. (2) represents the temperature

profile of the lower bounding wall and Eq. (3) represents the temperature profile of the upper

wall. These temperature profiles may be easily obtained by considering the set of boundary

conditions for the temperature below. These conditions assure the continuity and smoothness

of the temperature across the whole system including the two walls and the fluid layer (as seen

in Figure 1):

TL0 ¼ TL at z ¼ −dL (4)

TU0 ¼ TU at z ¼ dþ dU (5)

TF0 ¼ TL0 at z ¼ 0 (6)

Figure 2. A heuristic explanation about the connection of the thermal and geometrical properties of the walls with the

boundary conditions from one ideal case to the other.

Vortex Structures in Fluid Dynamic Problems118



XL

dTF0

dz
¼

dTL0

dz
at z ¼ 0 (7)

TF0 ¼ TU0 at z ¼ d (8)

XU

dTF0

dz
¼

dTU0

dz
at z ¼ d (9)

where Eqs. (4)–(9) are given in non-dimensional form. As the differential equations to be

solved to calculate TF0, TL0 and TU0 are homogeneous of a single second order term, the

solutions are linear polynomials. This means that the three temperature profiles in the basic

state lie over a straight line going from z = -dL to z = d +dU, if continuity and smoothness are

expected.

3. Importance in the linear stability

In the linear stability of a fluid layer, its basic state is subjected to small perturbations. This is

made to determine whether the fluid layer is stable or not. The linear stability is featured by

two parameters, for steady situations: the critical Rayleigh and wavenumbers. Figures 3 and 4

show the critical points for the two ideal cases mentioned above.

The basic state for the fluid temperature as given in Eq. (1) conveys information not only of the

fluid properties but also of the walls through the parameters XU, dU and TU. Unfortunately, the

information of the thermal and geometrical properties pass only to the boundary conditions

and leaving the governing differential unchanged. This is valid for cases in which the structure

of the equations allows only the derivative of the basic state temperature profile in the equa-

tion for the perturbation of the temperature.

An example case is that of the convection of Rayleigh. The differential equations for this

problem are:

Pr
−1
σ

d

dz2
−k

2

� �

WðzÞ−
d

dz2
−k

2

� �2

WðzÞ ¼ Rk
2
θðzÞ (10)

σ−
d

dz2
−k

2

� �

θðzÞ

� �

¼
dTF0

dz
WðzÞ (11)

whereW and θ are the perturbations for the velocity and the temperature of the fluid, and Pr is

the Prandtl number. σ ¼ σRþiσi, with σR being the growth rate of the perturbations and σi, the

frequency of oscillation. It is well known that there is no frequency of oscillation in the case of

Rayleigh convection, so that if σR ¼ 0 is set, then Rc = 720, 1707.96, for the insulating and

perfect thermal conducting walls are obtained.

At this point, no information of the basic state is given to Eqs. (4) and (5) since only dTF0/dz is

required. This may represent a limitation to the model since the linear stability of the system
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comes from the basic state. The only way to introduce the effect of the thermal conductivities

and thickness of the walls and the fluid layer is through the Biot number in the Robin type

boundary conditions. These can be expressed as:

dθ

dz
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k
2 þ κLσ

p

θ

XL tanh½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k
2 þ κLσ

p

dL �

" # !

z¼0

¼ 0 (12)

dθ

dz
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k
2 þ κUσ

p

θ

XU tanh½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k
2 þ κUσ

p

dU �

" # !

z¼1

¼ 0 (13)

where κL ¼ κL=κF and κU ¼ κU=κF are ratios of the thermal diffusivities of the walls to that of

the fluid layer. The Biot number is a key component of the Robin type thermal boundary

conditions and according to Eqs. (12) and (13), the Biot number for the lower wall is:

BL ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k
2 þ κUσ

p

XU tanh½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k
2 þ κUσ

p

dU �
(14)

while for the upper bounding wall, its corresponding Biot number is

Figure 3. A curve showing the critical point (kc, Rc) for steady convection of a fluid layer bounded by two insulating

walls.
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BU ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k
2 þ κUσ

p

XU tanh½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k
2 þ κUσ

p

dU �
(15)

The set of Eqs. (4)–(7) represent the complete eigenvalue problem for the Rayleigh number R.

Then, by mapping with the thermal conductivity ratios XL and XU from limiting values of zero

to infinity it is possible to bridge the two ideal case mentioned above. The importance of the

thermal and geometrical properties are shown in the following set of curves of criticality, given

in Figures 5 and 6.

The middle region of the curves in Figures 5 and 6 show two graphs that collapse in the

extremes. This middle region clearly shows the effect of the walls thicknesses which disap-

pears as the thermal conductivities ratio approaches zero or a very large magnitude. This

behaviour can be easily explained by recalling the two occurring ideal situations when the

thermal conductivity ratios XL and XU are zero or infinity, for an insulator or a perfect thermal

conductor. No matter how large the thicknesses of the perfect thermal conducting or perfect

insulating walls are, the heat shall be transferred instantaneously. This can be also mathemat-

ically seen from Eqs. (12) and (13) since in the limit of insulating walls, the boundary condi-

tions reduce to dθ

dz
¼ 0 and in the limit of perfect thermal conducting walls, these conditions

give θ ¼ 0. In this last sentence, it should be remarked that the thicknesses of the bounding

walls, and that of the fluid, vanish.

Figure 4. A curve showing the critical point (kc, Rc) for steady convection of a fluid layer bounded by two perfect thermal

conducting walls.
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As it can be seen, from Figure 5, in the extremes of the horizontal axis, Rc = 720 and 1707.96.

Correspondingly, from Figure 6, in the extremes of the horizontal axis kc = 0 and Rc = 3.12. The

data presented in the set of curves of criticality were first reported by Riahi [14, 15] and later by

Cerisier et al. [7].

Pérez-Reyes and Dávalos [6] presented a study of the influence of the thermal and geometrical

properties on the convection of viscoelastic Maxwell fluids. They found a behaviour similar to

that shown in Figures 5 and 6 and reported the appearance of a codimensional-two point. This

is due to the competition between stationary and oscillatory convection to destabilize the

system. Besides, if the linear stability is changed, then the nonlinear stability results are to be

changed too.

4. About the basic state for the temperature

At this point, some qualitative information may be given about the basic state for the temper-

ature given in Eqs. (1)–(3). The obvious question is: are the parameters XL and XU , and the

Eqs. (1)–(3) useless? It should be mentioned that these are not used in the computation of the

data shown in Figures 5 and 6. This is a direct consequence of the symmetry of the equations

and of the adimensionalization of the problem. In fact, the Rayleigh number in Figures 5 and 6

is modified by a factor 1/ð1þ XLdL þ XUdU Þ. This is a shortcut in the solution to the problem.

Furthermore, the proper basic state should be one including the three basic states, Eqs. (1)–(3)

which would have the same form as that of Eq. (3).

This last equation may become important for problems represented by differential equations

with additional terms to the base model as shown in Eqs. (10) and (11). For example, a

Figure 6. Curves of criticality for the wavenumber number showing the effect of the thermal conductivities and thickness

of the walls on the Rayleigh convection in a Newtonian fluid. For these curves of criticality XL = XU and dL ¼ dU was set.

Figure 5. Curves of criticality for the Rayleigh number showing the effect of the thermal conductivities and thickness of

the walls on the Rayleigh convection in a Newtonian fluid. For these curves of criticality XL = XU and dL ¼ dU was set.
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comparison of the basic state for the temperature in any of the ideal cases would show that at

the boundaries TF0 = TL and TF0 = TU, respectively. Eq. (3) does not match these results at the

boundaries due to the effect of the thickness of the walls. However TF0 may satisfy the same

requirements through TL0 and TU0.

The additional terms to the base, shown in Eqs. (10) and (11), model equations for the hydro-

dynamics in the fluid layer could come from variations in the viscosity of the fluid, for

example. In situations where the viscosity varies with temperature, its effect appears in the

viscous term of the momentum balance equation. This type of problems has been studied by

Palm et al. [16], by Wall and Nagata [17] and by Wall and Wilson [18], among others. The

working equations of these studies show that a temperature dependent viscosity may intro-

duce terms requiring TF0and dTF0/dz. This can be seen in the following set of equations

corresponding to the problem of thermal convection in a fluid layer with temperature depen-

dent viscosity being heated from below:

C1
d
4
W

dz4
þ γ

d
3
W

dz3
þ C2

d
2
W

dz2
−k

2γ
dW

dz
þ C3W þ Rk

2θ ¼ 0 (16)

W þ
d
2θ

dz2
þ C4θ ¼ 0 (17)

where the coefficients are defined as:

C1 ¼ γðTF0−TLÞ−1 (18)

C2 ¼ Pr
−1σþ k

4½γðTF0−TLÞ−1� (19)

C3 ¼ −Pr
−1σk2−2k2½γðTF0−TLÞ−1� (20)

C4 ¼ −ðσþ k
2Þ (21)

So that the second and third terms in right-hand side of Eq. (1) should appear in the final

eigenvalue problem explicitly. These additional terms may be of interest for a proper under-

standing of the convective phenomena.

5. Influence on the pattern formation

The pattern formation in convective systems is a subject widely studied. One common

approach to the study of convective patterns is the problem of pattern selection in a given

geometry [5]. The formation of convective cells is highly dependent on the boundary condi-

tions. This is true not only because of the mathematical structure of the boundary conditions

but also because of the nature of the bounding surfaces. In the limiting case of insulating

walls are very large convection cells of slow motion. A good example of this system is the

mantle convection occurring between the earth core and its surface. Figure 7 shows a simple

scheme of a convection cell driven by the difference of temperature between the core and the
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surface. It has been demonstrated that these convection cells are very large and that the

liquid rock material moves slowly [3, 12, 19]. Thus, a feature of this type configuration is

the presence of large convection cells of slow moving fluid, since the critical wave number is

zero (kc = 0).

The case of perfect conducting walls is quite different. In this configuration, more than one

convection cell appear since the critical wavenumber is finite (kc = 3.12). A representation of

this case is given in Figure 8. Another consequence of the idealized perfect thermal conducting

walls is a faster re-circulating fluid motion in comparison with the previous described situa-

tion. The study of these ideal cases includes a variation in which one of the walls is a perfect

thermal conductor while the other is considered an insulating wall.

The study of the effect of the boundaries on the pattern formation has called the attention of a

number of researchers and diverse cases have been studied. Chapman and Proctor [20] were

interested in the behaviour of the system when non-ideal walls were considered so that they

applied an analytical approximation for poorly thermal conducting boundaries. Chapman and

Proctor [20] were able to calculate critical wavenumbers different from zero which made more

sense for experimentalists. Additionally, Proctor [21] studied the selection of patterns in finite

domains for rolls, square, rectangles and hexagonal patterns. The approximation of poorly

thermal conducting walls becomes so interesting and tractable that these ideas were extended

to problems of double diffusion by Proctor [22] and by Cox [23] for example. Other areas of the

fluid mechanics have used similar ideas like in magnetohydrodynamics by Dávalos-Orozco

[24] and in convection of second order fluids by Dávalos-Orozco [25], for example.

Figure 7. A simple representation of the mantle convection.

Figure 8. A simple representation of the thermal convection in a fluid layer bounded by two perfect conducting walls.
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The pattern formation is studied as a nonlinear problem which is linked to the results of the

linear hydrodynamic stability of the system. Therefore, introducing more general thermal

boundary conditions shall convey more information to the study of the behaviour of the

moving fluid. Some efforts have been made including the thermal and geometrical properties

of the walls by Riahi [14], for example. The thermal conductivities and thicknesses of the walls

shall clearly modify the convective cells. One clear effect would be on the size of the patterns. It

is possible that the selected structure remains at least not for set domains like squares, rectan-

gles, etc.

6. Some problems to engage

Most of the problems with analytical solutions and interesting physical mechanisms in it have

already been studied. In fact, fluid mechanics is called a mature area of physical sciences. The

remaining problems are complex, mostly without analytical solutions and with many variables

involved.

Some interesting problems to study in hydrodynamic stability, linked to the thermal boundary

conditions, are mentioned here.

• There is lack of information about the role of the thermal diffusivities of the walls and the

fluid layer for intermediate values of the ratio of thermal conductivities. In the literature, it

has been assumed that the fluid layer and the bounding walls have the same thermal

diffusivities.

• The Robin type thermal boundary conditions are assumed to convey pore physical infor-

mation to the eigenvalue problem. To the best knowledge of the author, there are no reports

about experiments to corroborate this.

• Nonlinear problems about pattern selection shall become more difficult to handle. Perhaps,

more efficient numerical computations would be needed.

7. Discussion

A number of problems have been discussed here. The physical implications of the thermal

boundary conditions were highlighted in terms of the thermal conductivities and thicknesses

of the bounding walls. Although only the classical horizontal infinite two-plate configuration

was considered, the main ideas can be used to understand more complex geometries.

The ratio of thermal conductivities allow the mapping of the critical conditions for the onset of

convection from insulating walls (X!∞) to perfect thermal conducting walls ðX!0Þ. On the

other hand, small thicknesses ratio destabilize the system while large thicknesses ratio help to

stabilize the fluid layer. The physical mechanisms behind this behaviour is explained through

thermal diffusion times across the bounding walls and the fluid layer. These observations are

valid for fixed values of the thermal diffusivities.
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It is shown from the qualitative point of view, that additional terms in the base model equa-

tions of the problem of Rayleigh convection may carry more information from the temperature

basic states of the bounding walls and fluid layer to the eigenvalue problem. The temperature

basic states of the walls may help to understand the physical mechanisms involved in diverse

thermal convection problems.

Acknowledgements

Professor Pérez-Reyes would like to thank the financial support of the Mexican Consejo

Nacional de Ciencia y Tecnología (CONACyT) through the basic science project number

255839 for young researchers.

Author details

Ildebrando Pérez-Reyes1*, René Osvaldo Vargas-Aguilar2, Eduardo Valente Gómez-Benítez1

and Iván Salmerón-Ochoa1

*Address all correspondence to: ildebrando3@gmail.com

1 Chemical Sciences Faculty, Autonomous University of Chihuahua, New Universitary

Campus, Chihuahua, Mexico

2 SEPI ESIME Azcapotzalco, National Polytechnic Institute, Santa Catarina, Azcapotzalco,

Mexico City, Mexico

References

[1] L. E. Howle. The effect of boundary properties on controlled Rayleigh-Bénard convec-

tion. J. Fluid Mech., 411:39–58, 2000.

[2] L. E. Howle. Active control of Rayleigh-Bénard convection. Phys. Fluid, 9(7):1861–1863,

1997.

[3] M. Lapa. Thermal Convection: Patterns, Evolution and Stability. John Wiley and Sons,

Singapore, 2010.

[4] R. Muddu, Y. A. Hassan, and V. M. Ugaz. Rapid PCR thermocycling using microscale

thermal convection. J. Vis. Exp., 49:e2366, 2011.

[5] R. Hoyle. Pattern Formation: An Introduction to Methods. Cambridge University Press,

Cambridge, 2006.

Vortex Structures in Fluid Dynamic Problems126



[6] I. Pérez-Reyes and L. A. Dávalos-Orozco. Effect of thermal conductivity and thickness of

the walls in the convection of a viscoelastic Maxwell fluid layer. Int. J. Heat Mass Transfer,

54:5020–5029, 2011.

[7] P. Cerisier, S. Rahal, J. Cordonnier, and G. Lebon. Thermal influence of boundaries on the

onset of Rayleigh-Bénard convection. Int. J. Heat Mass Transfer, 41:3309–3320, 1998.

[8] Z. Nie, A. Petukhova, and E. Kumacheva. Properties and emerging applications of self-

assembled structures made from inorganic nanoparticles. Nat. Nanotech., 5:15–25, 2010.

[9] S. Sakurai, C. Furukawa, A. Okutsu, A. Miyoshi, and S. Nomura. Control of mesh pattern

of surface corrugation via rate of solvent evaporation in solution casting of polymer film

in the presence of convection. Polymer, 43:3359–3364, 2002.

[10] S. Chandrasekhar. Hydrodynamic and Hydromagnetic Stability. Dover Publications, Inc.,

New York, USA, 1981.

[11] S. Chapman, C. J. Childress and M. R. E. Proctor. Long wavelength thermal convection

between non-conducting boundaries. Earth Plane. Sci. Let., 51(2):362–369, 1980.

[12] J. M. Hewitt, D. P. McKenzie, and N. O. Weiss. Large aspect ratio cells in two-dimensional

thermal convection. Earth Planet. Sci. Lett., 51:370–380, 1980.

[13] A. Pellew and R. V. Southwell. On maintained convective motion in a fluid heated from

below. Proc. R. Soc. London A, 176(966):313–343, 1940.

[14] N. Riahi. Nonlinear thermal convection with finite conducting boundaries. J. Fluid Mech.,

152:113–123, 1985.

[15] N. Riahi. Nonlinear convection in a porous layer with finite conducting boundaries. J.

Fluid Mech., 129:153–171, 1981.

[16] E. Palm, T. Ellingsen, and B. Gjevik. On the occurrence of cellular motion in Bénard

convection. J. Fluid Mech., 30(04):651–661, 1967.

[17] D. P. Wall and M. Nagata. Nonlinear equilibrium solutions for the channel flow of fluid

with temperature-dependent viscosity. J. Fluid Mech., 406:1–26, 2000.

[18] D. P. Wall and S. K. Wilson. The linear stability of channel flow of fluid with temperature-

dependent viscosity. J. Fluid Mech., 323:107–132, 1996.

[19] G. Schubert, D. L. Turcotte, and P. Olson. Mantle Convection in the Earth and Planets.

Cambridge University Press, New York, 2001.

[20] C. J. Chapman and M. R. E. Proctor. Nonlinear Rayleigh-Bénard convection between

poorly conducting boundaries. J. Fluid Mech., 101(4):759–782, 1980.

[21] M. R. E. Proctor. Planform selection by finite-amplitude thermal convection between

poorly conducting slabs. J. Fluid Mech., 113:469–485, 1981.

[22] M. R. E. Proctor. Steady subcritical thermohaline convection. J. FluidMech., 105:507–521, 1981.

Thickness and Thermal Conductivities of the Walls and Fluid Layer Effects on the Onset of Thermal Convection...
http://dx.doi.org/10.5772/66325

127



[23] S. M. Cox. Thermosolutal convection between poorly conducting plates. J. Eng. Math.,

28:463–482, 1994.

[24] L. A. Dávalos-Orozco. Magnetoconvection in a rotating fluid between walls of very low

thermal conductivity. J. Phys. Soc. Jpn., 53(7):2173–2176, 1984.

[25] L. A. Dávalos-Orozco and Octavio Manero. Thermoconvective instability of a second-

order fluid. J. Phys. Soc. Jpn., 55(2):442–445, 1986.

Vortex Structures in Fluid Dynamic Problems128


