We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

6,900 186,000 200M

ailable International authors and editors Downloads

among the

154 TOP 1% 12.2%

Countries deliv most cited s Contributors from top 500 universities

Sa
S

BOOK
CITATION
INDEX

Selection of our books indexed in the Book Citation Index
in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com

Y

Chapter 5

Energy-Aware Software Engineering

Kerstin Eder and John P. Gallagher

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/65985

Abstract

A great deal of energy in Information and Communication Technology (ICT) systems
can be wasted by software, regardless of how energy-efficient the underlying hardware
is. To avoid such waste, programmers need to understand the energy consumption of
programs during the development process rather than waiting to measure energy after
deployment. Such understanding is hindered by the large conceptual gap from
hardware, where energy is consumed, to high-level languages and programming
abstractions. The approaches described in this chapter involve two main topics: energy
modelling and energy analysis. The purpose of modelling is to attribute energy values
to programming constructs, whether at the level of machine instructions, intermediate
code or source code. Energy analysis involves inferring the energy consumption of a
program from the program semantics along with an energy model. Finally, the chapter
discusses how energy analysis and modelling techniques can be incorporated in
software engineering tools, including existing compilers, to assist the energy-aware
programmer to optimise the energy consumption of code.

Keywords: energy modelling, energy analysis, energy transparency, energy aware,
software engineering

1. Introduction

Energy-aware software engineering concerns the use of tools and methods to allow energy
consumption to be a first-class software design goal. A design goal could be, for instance, to
meet stated energy targets such as battery lifetime or power-supply constraints for a given ICT
application running on a given hardware platform or simply to optimise energy efficiency.

I m E C H © 2017 The Author(s). Licensee InTech. Distributed under the terms of the Creative Commons Attribution-
NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/), which permits use, distribution

and reproduction for non-commercial purposes, provided the original is properly cited. (D) BY-NC]

104

ICT - Energy Concepts for Energy Efficiency and Sustainability

Very few programmers at present have much idea of how much energy their programs
consume or which parts of a program use the most energy. Therefore energy-related design
goals are usually not considered until the programs are deployed; at that point, if energy goals
are not reached, it may result in very long expensive redevelopment cycles.

Although energy is ultimately consumed by physical processes in the hardware, the soft-
ware controls the hardware and indeed typically causes a great deal of energy waste by the
inefficient use of the hardware. This waste cannot be recovered by relying on the develop-
ment of more energy-efficient hardware—increasing the energy efficiency of the software is
an essential part of reducing overall energy consumption [1]. Energy awareness for software
development thus requires an understanding of the implications for energy consumption of
design decisions in the software. In short, there is a need for energy transparency: the ability
of the software developer to “see” the program’s energy consumption, ideally without ac-
tually executing and measuring it.

Chapter outline. Section 1 presents the background and motivation for energy-aware software
engineering. Then the main scientific and technical foundations that support energy transpar-
ency are summarised. These are energy modelling and static energy analysis. Energy modelling
(Section 2) concerns building models of software energy consumption at different levels of
abstraction, attributing energy consumption at the hardware level to software constructs such
as operations, instructions, statements, functions and procedures. Energy analysis (Section 3)
concerns the estimation, using an energy model, of the energy that would be consumed when
running a piece of software, without actually executing it. This estimate can be parameterised
by the input data for the software or other contextual information.

Section 4 contains a summary of the typical sources of energy inefficiency that can be removed
when the programmer has relevant information on energy consumption. Finally, Section 5
describes how software designers and developers can use energy transparency during the
software engineering process and what kind of activities constitute “energy-aware software
engineering.” For example, the programmer can analyse the program to identify which part
of the software consumes most energy or explore the effect on energy consumption of different
algorithms and data structures.

In contrast to much work on energy efficiency of ICT, this chapter adopts a generic approach,
not driven by any particular class of applications, platforms or programming languages. The
topic is currently mainly studied in different application contexts, such as embedded systems,
high-performance systems, mobile systems and so on rather than as a coherent set of techni-
ques applicable to any software-based system.

2. Energy-aware software engineering and Green IT

Concern over the increasing energy consumption and general environmental impact of ICT
systems is growing. As a part of this, there has been a growth of interest in the field of Green
IT [2-5] since approximately 2010; for example, the conference series International Green

Energy-Aware Software Engineering
http://dx.doi.org/10.5772/65985

And Sustainable Computing Conference’ started in 2011 and the IEEE technical area of
green computing’ was launched in 2010. The Energy Aware COmputing workshop series’
was initiated in Bristol in 2011. More recently, dedicated workshops such as GREENS' and
SMARTGREENS' have been launched.

Green IT covers energy aspects of the complete life cycle and context of ICT systems, including
software and hardware, development energy costs, maintenance and deployment energy
costs, cooling costs, the energy costs of communication infrastructure, raw materials and
disposal costs and a host of other energy costs and environmental effects associated directly
or indirectly with software systems.

Energy-aware software development is therefore only one aspect of Green IT; it is only
concerned with the energy efficiency of software, that is, the energy costs directly attributable
to how programs use the hardware during execution. The energy-aware software engineer
cannot in general be aware of the whole Green IT field, which involves complex dependencies
and tradeoffs and goes well beyond software engineering.

2.1. Environmental motivation

The energy consumed by ICT is growing both in absolute terms and as a proportion of the
global energy consumption and thus plays an important role in meeting the targets of the
Europe 2020 Agenda, which includes a goal to reduce greenhouse gas emissions by at least
20% compared to 1990 levels. Every device, from autonomous sensor systems operating at the
milliwatt level to high-performance computing (HPC) systems and data centres requiring tens
of megawatts for operation, consumes a certain amount of energy which results in the
emission of CO,.

As already pointed out, energy is consumed by hardware, but the software often causes a
great deal of energy waste by inefficient use of the hardware. Increasing the energy efficien-
cy of the software is at least as effective as development of more energy-efficient hardware.
Furber remarks that “if you want an ultimate low-power system, then you have to worry
about energy usage at every level in the system design” [1]. Furthermore, in many cases the
energy efficiency of software has a direct positive effect on the efficiency of other energy-re-
lated aspects of systems. Obvious cases are cooling costs and battery costs—cooling require-
ments for data centres are directly related to the power dissipated by the computations,
whereas for mobile systems, the number of battery replacements or recharges is similarly re-
duced if software is more energy efficient.

! http://igsc.eecs.wsu.edu/ (formerly International Green Computing Conference (IGCC))
2 http://sameekhan.org/tagc/

% http://www.cs.bris.ac.uk/Research/eaco/

* http://greens.cs.vu.nl/

® http://www.smartgreens.org/

105

106

ICT - Energy Concepts for Energy Efficiency and Sustainability

2.2, Strategic motivation

The energy efficiency of ICT systems plays a critical role in exploiting the massive amounts of
information available in data centres and the full vision of the so-called Internet of Things. The
power requirement of a data centre is typically measured in tens of megawatts, including
cooling costs, while the Internet of Things generates increasing demand for a huge number of
very low-power devices. The dream of “wireless sensors everywhere” is accompanied by the
nightmare of battery replacement and disposal unless the energy requirements of software
running on devices can be lowered to enable them to be powered by energy harvesters or RF
power sources.

2.3. Development costs of energy-efficient software

In the current state of the art, development costs for energy-efficient systems are higher than
for energy-wasteful systems due to the extra effort required to take energy consumption into
account. This is a significant barrier to making energy efficiency a first-class design goal.

The motivations for research in energy-aware software development can thus be summarised
as follows:

1. To lower the energy costs directly attributable to software execution, helping to reduce
the environmental impact of ICT and to enable the next generation of ambient low-power
devices.

2. To lower energy costs indirectly caused by software, such as the cost of cooling, power
supplies, battery replacement and recharging.

3. To reduce the costs of the process of developing energy-efficient systems, by developing
tools and techniques to assist the energy-aware developer.

3. Energy modelling

An energy model supporting software energy analysis associates energy consumption costs
with basic program constructs such as source code blocks, basic blocks in the intermediate
representation used during compilation or machine code instructions. In addition, other costs
arising from the execution of a program may need to be considered, depending on the micro
architectural features of the hardware; examples are costs associated with the memory
hierarchy, such as the cost of a cache hit and miss or the cost of accessing on-chip and off-chip
memory, and also costs associated with the processor pipeline, such as the cost of pipeline
stalls. In addition, the cost of the processor being idle and the cost of processing multiple
threads concurrently may also need to be considered.

An energy model, as understood in this chapter, is program independent. It captures the
energy costs of basic software constructs in a given language executed on a given hardware
platform. The model is used during program analysis (Section 3) to obtain information about
the energy consumption of a given program.

Energy-Aware Software Engineering
http://dx.doi.org/10.5772/65985

The challenge in energy modelling for software energy analysis is in finding a good compro-
mise between the accuracy of the model and the ease with which the information can be
mapped onto software constructs. Regarding the former, model accuracy tends to be higher
for models at the lower levels of abstraction, i.e. instruction-level energy models are typically
more accurate than energy models at the intermediate representation of the compiler, and
source code energy models are less accurate in comparison. However, understanding which
source code lines or blocks consume most energy is much more useful to software developers
looking to optimise their code for energy efficiency than knowing the energy consumed by the
sequence of machine instructions issued by the compiler. The higher the level of abstraction
at which the information is presented to the software developer, the easier it is for them to
comprehend the impact of algorithms and coding on the energy consumed during program
execution. Yet, taking measurements to characterise energy models is simplest and most
accurate when performed at the lower levels of abstraction, where energy costs of low-level
software constructs such as machine instructions can be determined directly.

3.1. Defining and constructing an energy model at ISA level

The instruction set architecture (ISA) is the interface between hardware and software. It defines
the hardware architecture and its behaviour in terms of low-level programming constructs
such as supported data types, machine instructions, registers, the memory architecture, any
interrupt and exception handling as well as I/O operations. The ISA provides a practical level
of abstraction for energy modelling, because it is possible to directly correlate the energy
consumption of the hardware operations associated with instruction execution to low-level
software constructs.

Energy modelling at ISA level dates back to 1994 when Tiwari et al. [6] first proposed a method
to develop instruction-level power models for arbitrary processor architectures to estimate the
power consumption caused by software. Such models could overcome the limitations of
hardware design power analysis methods, which require access to gate-level design informa-
tion including layout and tend to be impractically slow at producing results for system-level
power analysis. Instruction-level power models, instead, are orders of magnitude faster at
estimating the power consumption of embedded software and can achieve accuracy within
10% of what hardware design power analysis methods deliver. This is a worthwhile trade-off
because software development involves numerous iterations during the coding phase, and
rapid feedback of resource usage is critical for software developers to make energy-aware
decisions.

The model in [36] captures the energy consumption directly associated with processing each
instruction, obtained by measuring the average current drawn while executing a dedicated
loop that only contains independent instances of the respective instruction to be profiled,
multiplied by the supply voltage V. and further multiplied by the number and duration of
the clock cycles required to execute the instruction. Variations in instruction base costs can be
observed during measurements and are due to different operand values being used during
execution. It was observed that different operand registers lead to negligible variation while
using different immediate values, or different memory addresses lead to observable yet small

107

108

ICT - Energy Concepts for Energy Efficiency and Sustainability

variation of no more than 5% for the architectures analysed. Because the exact operand values
for instructions are only known at runtime, the energy model associates a single base cost with
each instruction, representing averaged values. This is a very important feature of a single
instruction cost Tiwari-style energy model as it has implications on the safety of the bounds
inferred by worst-case static analysis techniques. This will be discussed further in Section 2.3.

Instruction base costs intentionally do not include any extra costs arising from executing an
instruction within the context of other instructions, i.e. the overheads of executing arbitrary
instruction sequences. One such cost is associated with switching the circuit state from
executing one instruction to executing the next, termed the circuit state overhead. It captures
the extra energy consumed due to switching on buses, e.g. as a consequence of changing
opcodes and operand values, and using different functional units within the processor. The
circuit state overhead is determined for all pairs of instructions by measuring loops that contain
alternating sequences of the two instructions per pair. While including circuit state overheads
into the energy model improves the accuracy of the model, the variation observed for indi-
vidual instruction pairs was very limited for the architectures considered. It may thus be
sufficient to determine a constant circuit state overhead cost and to use that instead of profiling
all instruction pairs.

The execution of instruction sequences may give rise to other costs beyond the cost of circuit
state switching, depending on the micro architecture of the processor. Resource contention due
to data dependencies between instructions may cause pipeline stalls. Thus, the cost of pipeline
stalls needs to be determined together with the number of stall cycles. In addition, there may
be costs associated with cache misses, which typically cause execution delays of varying
durations, depending on whether the fetch is from other cache levels of main memory. Their
energy consumption also needs to be accounted for in an energy model, potentially sourcing
information from a cache model that can provide cache miss rates for a given program. Thus,
while instruction-level energy modelling techniques can be very accurate for simple architec-
tures, the presence of complex architectural and micro architectural features such as several
layers of caches, pipelines, superscalar processing, speculative execution, etc. can make it very
difficult to achieve acceptable levels of accuracy when modelling at the instruction level.

In Ref. [7], this energy model is used to derive the energy consumption of a program Prog by
Eq. 1:

EProg = Z(Bl X Nl) + Z(Of,,i X Ni’.i) + ZE/‘ (1)
i ij k

According to Eq. 1, the energy consumption of Prog, namely, Ep,,, is calculated as the sum of
three components: the base cost of instruction execution, the circuit state overhead and other
inter-instruction effects. The first term in the sum in Eq. 1 represents the base cost, where B, is
the base cost of instruction i multiplied with the number of times i occurs in program Prog ,
N.. The second term is the circuit state overhead, where O,; represents the cost incurred by
switching the circuit state of the processor from executing instruction i to executing instruction
j- This is multiplied by the number of times instruction i is followed by instruction j during the

Energy-Aware Software Engineering
http://dx.doi.org/10.5772/65985

execution of program Prog, namely N; ;. Finally, the third term in the sum accounts for the cost
of k inter-instruction effects that may impact on software-related energy consumption, e.g.
cache misses or pipeline stalls that can be characterised using external cache models or models
of the micro architecture of the processor.

Equation 1 shows clearly the relation between the energy model and the analysis of the
program. The terms B, O;; and E, are obtained from the energy model and are program
independent. The terms N; and N;; are obtained by the analysis of the program, either dynam-
ically, by profiling and counting the number of times each instruction or pair of instructions is
executed, or statically as will be seen in Section 3.

Recently, instruction-level energy models have been developed for modern processors such as
the Intel Xeon Phi, a many integrated core architecture for high-performance computing, and
the hardware multi-threaded XMOS XCore embedded microprocessor [8].

The XMOS XCore instruction-level energy model [9] is based on the original model by Tiwari
et al. However, it redefines the notion of base cost to be the power dissipated while the
processor is idle and uses individual instruction costs, scaled by the level of concurrency in
the processor’s pipeline as well as a constant overhead to account for circuit state switching
between instructions. Model characterisation was performed using a measurement setup and
instruction loops similar to those originally proposed in Ref. [6]. The individual instruction
costs represent averages over measurements obtained from running loops with instructions
using operands that were generated pseudo-randomly, constraining values to those valid for
the respective instruction. Evaluation of this multi-threaded instruction-level model showed
average error margins of less than 7%. However, the model was designed to be used for static
energy consumption analysis, requiring static analysis techniques to determine the number of
idle cycles and the level of concurrent thread activity, in addition to the standard instruction
stream statistics.

In contrast, the Xeon Phi instruction-level energy model [10] relies on performance counter
statistics that are obtained at runtime, rather than through static analysis at compile time. This
model is designed to be used with software profiling tools to support energy-efficient software
development. The model is built by characterising the energy per instruction (EPI) of selected
instruction types using microbenchmarks executed on different processor configurations in
terms of numbers of cores and threads per core. Instructions are classified in terms of op-code
and operand locations, both of which influence the EPI. The energy consumption of a given
workload can then be determined by multiplying the runtime instruction statistics with the
respective EPIs. This model achieves an average error rate of less than 5%.

Energy modelling at the ISA level gives us the following benefits: energy costs can be assigned
at the instruction level, which is the same level as is output by the compiler; there are strong
correlations between instruction properties and energy consumption, for example, the number
of operands used in the instruction; and machine instructions can be related back to the original
programming statements written by the software developer, as well as to various intermediate
representations.

109

110

ICT - Energy Concepts for Energy Efficiency and Sustainability

The construction of an energy model at the ISA level also has to address several challenges.
Measurements need to be taken to determine both the base cost for each instruction and also
the circuit state overhead. To achieve this, instructions are placed into infinite loops, i.e. loops
of single instructions to obtain that instruction’s base costs or loops of alternating instructions
to characterise pair-wise circuit state overhead. The average current is measured while the loop
is executed. Care needs to be taken to ensure the loop runs for a sufficiently long time to
minimise measurement errors due to loop overheads. However, typically not all instructions
can be directly profiled, requiring indirect or statistical approaches to their characterisation.

In general, for a modern processor with hundreds of instructions, the characterisation of the
entire ISA is a significant effort. To reduce the measurement effort, rather than determining a
base cost for each instruction, it may be sufficient to group instructions into classes of similar
energy cost and to determine a single instruction class base cost. Likewise, instead of meas-
uring circuit state overheads for individual instruction pairs, a cost that represents switching
between instruction classes or a single constant circuit state overhead may be sufficient.

In addition, other properties such as the cost of running multiple threads and the cost of idle
periods must be determined for multi-threaded architectures, and communication costs must
be considered for interacting multi-threaded programs running on multicore platforms.

3.2. Energy modelling at higher levels of software abstraction

Instruction-level energy models are useful due to the close, almost direct link of measurements
to programming constructs within the ISA. Energy models at higher levels of abstraction,
however, provide more intuitive feedback to software and tool developers, albeit at the cost of
accuracy of the predictions.

Modelling at the level of the intermediate representation (IR) used by compilers can be a useful
compromise between the accuracy of alower-level (ISA) model and the high-level source code.
Since the compiler is a natural place for optimisation, modelling and predicting the energy
consumption at IR level could therefore enable energy-specific optimisations.

IR-level energy models have been built using two distinct techniques. One is based on statistical
methods and the other on mapping a lower-level model, i.e. one at ISA level, up to the IR level
at compile time; both have been developed for LLVM IR [11] in the context of the LLVM
toolchain [12].

In Ref. [13], statistical analysis has been employed to build an energy model for LLVM IR for
the purpose of fast and accurate early-stage prediction of the energy consumption of embed-
ded software at the function level to enable compile-time energy optimisation. Modelling starts
with instrumenting and compiling the source code of a large set of benchmarks into architec-
ture-independent LLVM IR to extract block-level statistics capturing the structural features of
the source code in terms of LLVM instructions. Profiling of the LLVM IR basic blocks is then
performed on a host computer to capture their dynamic behaviour in terms of basic block
execution counts. The final step then factors in the timing and energy consumption of the target
architecture. Using native compilation, back-annotation techniques to associate LLVM IR
instructions with target machine instructions and statistical analysis, the target machine-

Energy-Aware Software Engineering
http://dx.doi.org/10.5772/65985

specific costs are associated with the architecture-independent LLVM IR. This requires a cost
model of the instruction set for the respective target machine, which is assumed to be provided
by the manufacturer. The resulting model can be used to estimate the energy consumption of
code for the target hardware, based solely on its target-independent LLVM IR.

A mapping technique that lifts an energy model at ISA level to LLVM IR level is described in
Ref.[14]. The energy characteristics of LLVM IR instructions are determined from the costs of
the associated machine instructions based on a mapping that tracks which LLVM IR instruc-
tions created which machine instructions during the lowering phase of compilation, i.e. after
optimisation passes.

The approach provides on-the-fly LLVM IR energy characterisation that takes into consider-
ation the context of instructions since there is no program-independent mapping between ISA
instructions and LLVM instructions. Strictly speaking, the energy model is still at the ISA level;
a program-dependent mapping is used to obtain energy costs of LLVM IR instructions and
blocks at compile time. The technique has been used for static energy consumption analysis
at the LLVM IR level in Refs. [14, 15] and also in Ref. [16]. The accuracy of energy consumption
estimation at LLVM IR level is typically within 1-3% of that achieved using ISA-level models.
This indicates excellent potential for exploiting this energy transparency during code genera-
tion. In principle, the same mapping technique may be used to map the energy consumption
of programs to even higher levels, such as source code blocks or functions.

An alternative approach to building a source-level energy model, used in [17] to obtain a source
code energy model for Android code, is to identify basic energy-consuming operations from
the source code and correlate them to energy costs by measuring energy consumption in a
large number of benchmark programs and analysing the results using techniques based on
regression analysis. The resulting energy model of the basic operations implicitly includes the
effect of all the layers of the software stack down to the hardware, including compiled code,
virtual machine and operating system layers. The approach is inherently approximate;
nevertheless such an approach may be the only feasible one in cases where the software stack
has many complex layers, rendering a mapping-based approach difficult or impossible.

3.3. The impact of data on the energy model

The classic instruction-level energy model as described in Section 2.1 does not capture the
impact of data on software energy consumption. For instance, a single energy cost is assigned
to each instruction or instruction type. In practice, however, energy consumption is dependent
on the data being processed, and for simple processors, data can make a significant contribu-
tion to energy consumption. This is illustrated in Figure 1, which shows the dynamic power,
in mW, for the single-cycle XMOS XCore bitwise AND instruction for all 65,536 combinations
of 8-bit operands from 0 to 255. The colours in the “heatmap” range from dark blue, indicating
low power, to dark red, indicating high power. In Ref. [18], 15% data-induced variation has
been reported for the 8-bit AVR processor, while up to 1.7x data-dependent variation was
observed for the 32-bit XMOS XCore in [19]. Variation of as much as 50% is reported in [19]
for an ST20 32-bit microprocessor.

111

112

ICT - Energy Concepts for Energy Efficiency and Sustainability

However, static resource consumption-bound analyses must provide bounds on resource
consumption that are both safe and tight, i.e. sufficiently close to the actual values. A good
example is worst-case execution time (WCET) analysis [20], where under-approximation is not
acceptable, i.e. unsafe, and significant over-approximation is considered not useful. Thus, for
bound analysis, models must support the derivation of safe and tight bounds. A key prereq-
uisite to achieve this for WCET analysis is timing predictability within a system, which enables
precise bounds to be established with acceptable effort, without sacrificing performance of the
computation in the general case. In fact, the architecture of processors can significantly impact
on the design of analysis tools and the properties of the analysis results these can deliver [21]
in terms of safety and precision. This is equally important for static energy consumption
analysis, i.e. predictable architectures enable precise models to be developed.

256
240
224

208

192
176 :
160 EHBHREEE b . .:‘ i i RN
144 " e

128

Operand 1

112

32 48 64 80 96 112 128 144 160 176 192 208 224 240 256
Operand 2

Figure 1. Dynamic power in milliwatts for the XMOS XCore AND instruction.

These observations naturally lead to the question of which energy cost should be associated
with an instruction in a single-cost instruction-level energy model. Assigning the averages
measured using randomly generated, valid data for the given instructions is a popular choice.
Estimations based on such models may overpredict or underpredict the energy consumption
of a program when compared to measurements. Error margins reported in the literature are
typically below 10%, and overprediction and underprediction are both acceptable when the
model is used to obtain estimations of energy consumption, and no guarantees are required.

It may be tempting to assign to an instruction the lowest or highest values observed during
measurements to support best and worst-case analyses, respectively. However, this approach

Energy-Aware Software Engineering
http://dx.doi.org/10.5772/65985

has been shown to lead to high over-approximation [22] in worst-case energy consumption
static analysis, so this may not be a suitable option. In fact, the estimations based on such
models may never be reachable in practice. Intuitively, this is because the data that causes the
highest energy consumption for one instruction is very unlikely to produce output that will
trigger the highest energy consumption also in subsequent instructions.

This leads us to the question of which input data causes the worst energy consumption for a
given program. This question is investigated in [23], where the problem of data-dependent
energy consumption during program execution is formalised in terms of circuit switching and
a formal proof is presented demonstrating that in general analysing switching in processor
datapaths is NP-hard. Thus, optimal data-sensitive worst-case energy consumption analysis
of programs is, in general, not achievable efficiently, and alternative approaches giving good
approximations must be developed. This is an area of ongoing research.

In Ref. [18], energy modelling for worst-case energy consumption analysis has been explored.
The most promising approach uses probabilistic energy distributions to characterise individ-
ual instruction pairs and proposes techniques to compose these to block-level instruction
sequences. In Ref. [19], activity indices were introduced into a single-cost instruction-level
model to achieve higher precision of energy consumption predictions and to enable bound
analysis for architectures where data significantly impacts on energy consumption.

4. Static analysis of energy consumption

Static analysis is the other key component of energy transparency. Given an energy model
assigning energy costs to some basic units of the program, the task of analysis is to determine
the overall energy consumption of the program or the distribution of energy consumption over
the parts of the program. Static analysis infers information about energy consumed by
programs without actually running them, in contrast to dynamic analysis, which collects
information about the program’s behaviour while executing it. Here we consider only static
analysis.

As with energy modelling, analysis can be performed on program representations at different
levels in the software stack, ranging from source code (in different programming languages)
through intermediate compiler representations down to ISA level and employing an appro-
priate energy model at that level.

4.1. Semantic representations of programs

Static analysis of a program, and in general any formal treatment of programs, requires
reference to a semantic model of the program derived from the semantics of the programming
language in which it is written. Several different semantic styles and notations are used,
including denotational semantic, small-step or structured operational semantics and big-step
or natural operational semantics. All of these can be applied to code at various levels such as
source code, intermediate compiler representations or ISA.

113

14

ICT - Energy Concepts for Energy Efficiency and Sustainability

A common representation language, suitable mainly for operational semantics, is constrained
Horn clauses (CHCs), a subset of first-order logic which is widely used in software verification
[24]. CHCs can represent code semantics at any level of abstraction. In this section we outline
the key aspects of resource analysis using CHCs as a representation, but space does not allow
a fully detailed presentation. More information can be found in the references given in the text.

A constrained Horn clause has the form V x; ... x,(pi(x1) A ... A p,(xy) A @ — po(x)). When
representing program semantics, each predicate p,, p,, ..., p, typically corresponds to a program
point, and its respective arguments x,, x,, ..., x, are tuples representing the state before and/or
after those points. A clause thus represents a relationship between program states, and the
constraint ¢ expresses the relationship between the values of the state variables. A special case
of a Horn clause is where n < 1, that is, there is at most one atomic formula on the left of the
clause. Such a clause often represents a transition from the state at one program point to the
next.

Figure 2 illustrates the use of Horn clauses to represent an imperative program in a C-like
language (a). The constrained Horn clauses (b) represent a transition system (c) induced by
the program’s small-step operational semantics (the quantifiers in the Horn clauses are
omitted). The predicates r,, ..., r, represent the program points 1, ..., 4 and r,(x;) means that
program point i is reachable with state x,, where x; is the tuple of variables in scope at that
point.

true — ri(n)

1: void f(int n) { (ri(n) Az =1) = ra(n, 2)
z = 1: (ra(n,z) A
9. while (n > 0) { n<OAZ =zxnAn' =n-1)
Z = zxn; — r3(n/,2)
n=n—1: (rs(n’,2YAn=n'ANz=2)
3: } — 1ra(n, 2)
print(z); (ro(n,z) Am >0 Aprint(z))
4: } — T4

(@) (b)

n<0, print(z)
nz stop

©

Figure 2. Transition system and constrained Horn clauses representing a program.

Energy-Aware Software Engineering
http://dx.doi.org/10.5772/65985

Lower-level programs such as ISA or intermediate code can be translated in a similar fashion,
where typically each predicate represents a basic block in the code. Examples of the translation
of XCore ISA programs to Horn clauses are given in Ref. [25]. Semantics-based methods for
translating sequential imperative programs to Horn clauses are explained in Ref. [26]. Fur-
thermore techniques for representing multi-threaded code as Horn clauses have been devel-
oped [27].

4.2. Techniques for energy analysis

Given such a representation of a program, techniques based on abstract interpretation [28] can
derive safe approximations of program behaviour. In terms of CHCs, abstract interpretation
canyield safe approximations of the values of the arguments of each predicate, which represent
the set of possible states at some program point. A branch of abstract interpretation focuses
on automatic complexity analysis, yielding complexity functions on the execution time of the
program [29-33]. These techniques have been widely applied to analysis of Horn clauses and
have been extended to analysis of energy and other resources [32, 33]. Tools, such as CiaoPP
[34] and COSTA [35], have inbuilt facilities for resource analysis of programs including CHCs.

The essence of the techniques is to extract constraints from the Horn clauses representing the
energy consumed. These constraints represent an abstraction of the behaviour of the program,
in which the energy (or other resources being considered) can be considered as an implicit
extra argument in the predicates of the Horn clauses (in some approaches, the extra-resource
arguments are actually inserted into the Horn clauses, yielding a so-called “instrumented”
representation). These constraints are then solved or approximated, to yield explicit formulas
giving the consumption.

4.2.1. Linking analysis to an energy model

The Horn clauses in the semantic representation can be associated with energy values, using
an energy model. For example, if the clauses are obtained from the source code, then each
clause represents the execution of one statement or source code expression, and a correspond-
ing source code energy model is associated with that clause. If the clauses are obtained from
lower level code such as ISA, a clause typically represents the execution of an instruction or
basic block; the corresponding energy consumption from the model can be mapped to the
clause. The energy from a lower level model such as an ISA model can also be mapped to a
Horn clause representing a higher level construct, possibly via an intermediate level as
indicated in Figure 3.

Once this is done, constraints representing the energy consumption of the program are
extracted from the Horn clause representation. To make the explanation more intuitive, we
explain the process in terms of the transition system rather than the Horn clause representation.
In the case of the loop at point 2, a recursive equation is obtained, e.g.:

cost,(n) = e+ cost,(n—1) (if n>0), cost,(n) =0 ({1f n<0) ()

115

116

ICT - Energy Concepts for Energy Efficiency and Sustainability

where e is the energy cost of one iteration of the loop, obtained from the energy model. A
dependency analysis also determines that the variable 7 is the relevant input parameter in this
case. These equations can be solved to yield the expression giving the cost of the loop as a
function of n, namely, cost,(n) =n * ¢, and the cost of the whole program (a path from 1 to 4) is
cost(n) =e, + n * e + e, where e,, e, are the respective energy costs of the transitions before and
after the loop.

z=1
v €
n<0, print(z) e,
nz stop
. €Lvm
n>0
n’=n-1
Z’=z*n
€isa

LLVM

nz block
ISA block

Figure 3. Combining an energy model with program analysis.

4.2.2. More complex analyses

The example shown is very simple, but the method generalises to more complex control and
data structures. As the data and control-flow analysis of abstract interpretation is inherently
approximate, the analysis in general gives safe upper and lower bounds on the number of
times each part of the program is executed. This in turn gives upper and lower bounds on the
energy consumed by the program. However, recall that the upper and lower bounds are also
relative to the energy model, as discussed in Section 2.3. If the energy model supplies average
costs for the basic instructions or operations, then the upper and lower bounds on the energy
given by the analysis might not be safe, since the actual costs of executing the instructions
might be respectively higher or lower than the average.

A further extension of the method of generating constraints and solving them yields static
energy profiling [36], which shows the distribution of energy usage over the parts of the code,
rather than a single function giving the total consumption of the program.

5. Software energy optimisation

One of the first works to stress the general importance of software energy efficiency, and
identify aspects of software that affect energy consumption, was by Roy and Johnson [37].
More recent software-based approaches to achieving lower energy consumption are covered
in [38, 39].

Energy-Aware Software Engineering
http://dx.doi.org/10.5772/65985

5.1. Computational efficiency

Firstly, there is a strong correlation between time and energy consumption for a given platform
running a single computation thread. There are two reasons for this: less time means fewer
instructions, and secondly when the task is finished, the processor can revert to a lower-power
state for the excess time that a less efficient algorithm would use. The latter is called the “race
to idle” in Ref. [39]. The correlation between time and energy is especially strong when
asymptotic complexity is considered. It is highly likely, for example, that a single-threaded
task that has O(n?) time consumption also has O(n?) energy consumption. Thus one of the main
concerns of the energy-aware programmer, even with no knowledge of the energy consump-
tion of the hardware, is to find computationally efficient algorithms and data structures suited
to the task at hand.

5.2. Low-level or intermediate code optimisation

There is a range of techniques for low-level code energy optimisations, which could in principle
be carried out by a compiler. These range from register allocation policies to avoid overheating
a few intensively used registers, the use of very long instruction word (VLIW) instructions and
vectorisation, to exploitation of low-power processor states using frequency and voltage
scaling (DVES). Note that such optimisations, in contrast to computational efficiency, are highly
platform dependent and rely on a platform energy model expressed at the level of low-level
code. Computational efficiency as described in Section 4.1 is also important in that low-level
code optimisations are most effective when applied to frequently executed sections of code,
such as tight inner loops, where a small saving in energy can make a significant difference to
the overall computation.

Some energy optimisations rely on advanced compile-time (i.e. static) analysis. For example,
knowledge of thread load imbalance and knowledge of predictable idle periods when
processors can be put into low-power states are difficult to apply in the current compiler state
of the art, since the analyses providing this knowledge are still emerging research areas.

5.3. Parallelism

The relationship between computational efficiency, time consumption and energy consump-
tion is more complex for parallel than for sequential code. A multi-threaded solution using
multiple cores can be more energy efficient than a single-threaded solution, even when the
total amount of work done by the multi-threaded code is greater than that done by the single-
threaded code. The savings are mainly due to the fact that the overall task time is reduced and
so the processor(s) can revert sooner to a low-power state (the “race to idle” mentioned earlier).

Secondly, there can be energy savings if one or more cores can be run more slowly and still
achieve the same overall task time as the sequential code. This is because power (P), frequency
(f) and voltage (V) are related by the equation P = cV?*f where cis a constant. Thus slowing down
the processor (reducing f) saves power but not overall energy since the computation time is
increased proportionally. However, a lower frequency is typically accompanied by a lower
voltage, and the power/energy savings are quadratic in relation to voltage reduction.

17

118

ICT - Energy Concepts for Energy Efficiency and Sustainability

5.4. Data and communication efficiency

Energy can be saved by minimising data movement. This can be achieved by writing software
that reduces data movement using appropriate data structures, by understanding and
exploiting the underlying system’s memory hierarchy and by designing multi-threaded code
that reduces the cost of communication among threads.

For example, the size of blocks read and written to memory and external storage can have a
major impact on energy efficiency, while memory layout of compound data structures should
match the intended usage in the algorithm, so that consecutively referenced data items are
stored adjacently if possible. In multi-threaded code, consolidating all read-writes to or from
disk to a single thread can reduce disk contention and consequent disk-head thrashing [39].
Furthermore, knowledge of the relative communication distances for inter-core communica-
tion can be used to place frequently communicating threads close to each other [40], thus
reducing communication energy costs.

Synchronisation mechanisms can also have a serious impact on energy consumption. Waiting
for events using polling loops is a notorious example as pointed out by Furber (“a polling loop
[is] just burning power to do nothing”) [1].

6. Software engineering activities and scenarios

Wenow look at energy-aware software from the designer’s and developer’s point of view. What
are the activities that distinguish energy-aware design and development from standard
approaches in which energy is considered at the end of the development process, if at all? In
Section 5.1, we identify a number of generic activities that play an important role in energy-
aware software engineering. In Section 5.2, we make the discussion a little more concrete by
sketching scenarios in which these activities are applied.

6.1. Energy-aware software engineering activities

In this section we describe the most important activities involved in energy-aware software
engineering. Some of these activities are extensions or modifications of conventional software
engineering practices; others are new activities that only exist when energy efficiency is a
design goal. Figure 4 shows a number of activities and (some of) the interdependencies that
arise in the context of different scenarios.

6.1.1. Specify application, including energy

The process of developing application software starts with a requirement specification that
expresses not only functional properties, as in the classical approach, but also non-functional
properties, including energy consumption and other resources. Classical methods for require-
ment specification need to be extended to allow non-functional specifications to be expressed.

Satisfying functional properties (in the sense of the classical concept of correctness with respect
to a test suite or a formal input-output specification) is as important as doing so for non-

Energy-Aware Software Engineering
http://dx.doi.org/10.5772/65985

functional properties: an application that makes a device run out of batteries before a task is
completed is as erroneous and useless as an application that does not compute the right result.

>
; Emmmm— < | platforms
1 \\
1

Construct
energy
models

Provide
energy
spec

orithms
1 ,' Design space

Choose/
configure
platform

1 exploration
\

N.'————

energy
specs

Initial energy
profiling

CODE € ===z

Optimise/
reconfigure

energy

\

1

1

1
y/

Identify
energy bugs

Verify/certify
energy

Detailed
energy
analysis

Figure 4. Energy-aware software engineering activities.

6.1.2. Construction of energy models

Creating energy models for different combinations of hardware platforms and programming
languages is a part of the energy-aware development process. At one end of the spectrum, one
might expect future hardware manufacturers to deliver an energy model for their instruction
set architecture, and thus the model would be available “off the shelf.” At the other end, some
projects might require the construction of an energy model specific to that project, perhaps
because the hardware or software environment was not standard. In between these two
extremes, energy modelling for energy-aware software development is becoming a more well-
understood process.

6.1.3. Resource model of deployment platform

If energy efficiency is a design goal, we need to obtain an energy model of the platform on which
the system is to be deployed (even though the software might be developed on a different
platform).

Thus, obtaining the appropriate energy model is a vital task in energy-aware software
engineering. Not only should an appropriate platform be selected, but its energy model should
be available during software development to support other activities (see, e.g., Sections 5.1.6—
5.1.9). We note also that several different energy models for a given platform might be selected,
at different levels of abstraction suitable for different activities. For instance, high-level
approximate models might be suitable for design space exploration (Section 5.1.6) and initial

119

120

ICT - Energy Concepts for Energy Efficiency and Sustainability

energy profiling (Section 5.1.7), while more precise low-level models are needed for detailed
energy analysis (Section 5.1.8) and optimisation (Section 5.1.10).

6.1.4. Selection of deployment platform

The choice of deployment platform itself might depend on its resource-usage model; thus, this
activity and Section 5.1.3 are interdependent. By “platform” here is meant both the hardware
and the software platforms; thus, the model should be capable of predicting the energy usage
of software (in a given language and with a given runtime environment) being executed on a
given piece of hardware.

6.1.5. Configure platform

Some platforms allow configuration that can have implications for energy consumption.
Among such settings are clock frequency and voltage, the number of cores and the commu-
nication paths among them. At the software level, operating system settings can also be
considered, such as the settings for power saving and the resolution of OS timer processes that
can send interrupts to other processes.

6.1.6. Design space exploration

Choices taken early on in the design process can have a profound effect on the energy efficiency
of the final result. Design space exploration as an energy-aware software development activity
refers to the process of estimating energy implications of different possible design solutions,
before they are implemented. It may involve especially activities such as selection of deploy-
ment platform (Section 5.1.4), platform configuration (Section 5.1.5) and initial energy profiling
(Section 5.1.7). This involves energy modelling and analysis tools as in some other activities
but with the difference that one is likely to be more satisfied with approximate models and
thus rougher estimates of energy consumption rather than precise predictions.

6.1.7. Initial energy profiling

At early stages of energy-aware software design and implementation, tools are needed to
perform an initial energy analysis. The purpose of this is to produce statically an energy profile
that identifies the overall complexity of the energy consumption of the software and how
energy consumption is distributed over the parts of the program. It could also at this stage
identify energy bugs (parts of the application software that do not meet their energy con-
sumption specification).

Initial energy analysis requires an energy model of the deployment platform at an appropriate
level of abstraction. At early stages, parts of the software may be missing, and it might not be
possible to compile it to machine instructions; thus, an approximate model based on a model
of source code might have to suffice.

Energy-Aware Software Engineering
http://dx.doi.org/10.5772/65985

6.1.8. Detailed energy analysis

During more advanced stages of energy-aware software implementation, detailed energy
analyses at finer levels of granularity are needed. These are provided by tools containing more
precise low-level energy models of the platform, able to give precise estimates of the energy
consumption of critical parts of the code, which could be targets for energy optimisation.

6.1.9. Identify energy bugs

Energy bugs occur when software does not conform to an energy specification. The specifica-
tion might state some overall resource requirement in which energy consumption is implicit,
for example, on the length of battery life. The bug in such a case could be some energy-
consuming process that is more expensive than necessary, a service that is not switched off
when required, threads that synchronise badly and spend too much time waiting and so on.

6.1.10. Energy optimisation or reconfiguring

The broad concept of energy optimisation is applied throughout the whole software engineer-
ing process and starts right at the beginning with design space exploration and selection of
appropriate platform, algorithms and data structures.

The specific energy optimisation performed in this activity is driven by the detailed energy
analysis and the energy model of the platform. Both manual and automatic optimisations can
be applied; the energy analysis should point to the sections of code that use the most energy,
either because they involve costly energy operations or because they are frequently executed
(e.g., tight inner loops). This activity also includes application of energy-optimising compilers.

6.1.11. Verify or certify energy consumption

Energy-critical applications need to be certified with respect to an energy specification. Tools
combining detailed energy models and precise energy analysis are required in order to
compare the inferred energy consumption with the specification, either verifying conformance
or certifying that it holds within some specified limits of behaviour such as input ranges.

6.2. Energy-aware software engineering scenarios

In this section, we sketch scenarios in which the activities described in the previous section are
applied.

6.2.1. Embedded system development on xCORE

The ENTRA project’ considered energy analysis of embedded systems implemented in the XC
language and deployed on the xCORE multicore architecture. An energy-aware software
development strategy for such applications involves the following energy-aware activities:

¢ http://entraproject.eu

121

122

ICT - Energy Concepts for Energy Efficiency and Sustainability

* Energy specification by writing pragma comments in the XC source code. Such pragmas
could express energy constraints derived from customer requirements on the power supply.

* Platform selection and configuration. The xCORE architecture is highly configurable both
in terms of the number of cores and their interconnection. The choice and configuration are
guided by an energy model applied to proposed solutions, taking into account thread
communication energy costs in a given configuration, as described in more detail in [40].

* Detailed program-independent energy models of the platform at ISA level are available.
Program-dependent energy models are obtained for XC and LLVM IR code for the appli-
cation from the ISA model and used to perform more precise and detailed energy analysis
of the application.

* Optimisations of expensive or frequently executed code is performed on the basis of the
energy analysis.

* The energy-optimising compiler for XC is applied to the application.

* Pragmas in the code are verified using comparison of the energy consumption predicted by
the analysis with the constraints in the specification.

6.2.2. Android app development

A case study on Android app energy optimisation was carried out [41]. The study involved
energy modelling and optimisation of applications based on an established game engine. An
energy specification was not given; the aim of the study was to use a source code-level energy
model to identify the most energy-intensive parts of the code in a number of typical use cases
and then apply manual optimisations, reducing energy usage directly and thus prolonging
battery life.

QO 2000 B In Application = o2 B Assignment
= B 3000-Times-Execution £ O Declaration
QO 1750 ~—0.175
— g H Control Ops
c 0.15
'E 1500 _g- O Array Reference
Q. 1250 50.4% Energy Consumption £ 0125 M Fuction.Ops
g QI' S M Boolean Ops
v 01
2 1990 {] c O Arithmetic Ops
8 750 8 0.075 OLib Functions
> >
80 500 90 oos
b]
C 0.025
250
. i =
————rr i1 GF [1il, 0
o rerrpee e AR T LH 0 BT b O TR S IS
Blocks Blocks

Figure 5. Energy distribution over basic blocks in an Android application. Blocks are sorted by the order of their con-
tribution to runtime energy costs. The green bars indicate the relative costs of the blocks.

Energy-aware software engineering activities included:

Energy-Aware Software Engineering
http://dx.doi.org/10.5772/65985

* Building a fine-grained source code energy model by regression analysis from energy
measurements on the target hardware and Android software platform of a set of test cases
exercising the functions of the underlying game engine.

* Dynamic profiling of the code, which provided an energy profile that allowed the most
energy-expensive basic blocks to be identified. For example, Figure 5 from Ref. [41] shows
an example of how the relative energy cost of basic source code blocks enable the pro-
grammer to focus optimisation effort on the most energy-consuming blocks.

* Manual refactoring of the source code, targeted at the most expensive blocks, which
succeeded in increasing energy efficiency by a factor of 6-50% in various use-case scenarios.

7. Summary

The purpose of this chapter was to motivate energy-aware software engineering and to outline
the principles and methods underlying it. We discussed why it is worth focusing on energy
efficiency during software development and why energy efficiency should be a first-class
software design goal.

A key concept is energy transparency, which makes the energy consumption of a program
explicit at the level of code, rather than at the level of hardware, where the energy is actually
consumed. A substantial part of the chapter described the two main fields of study relevant to
energy transparency, namely, energy modelling and static analysis. Energy transparency is
achieved by analysis of a program with respect to an energy model. The model associates
energy consumption costs with basic units of the software, such as instructions or statements,
and includes also other costs and overheads. Static analysis for energy consumption is a
semantics-based formal technique, extending methods for automatic complexity analysis of
programs, which is a branch of abstract interpretation.

The last part of the chapter considered the various features of software that can affect energy
consumption. An energy-aware developer can use energy transparency to focus energy-aware
design and optimisation in the most effective way. The field of energy-aware software engi-
neering is only just emerging, and we described a number of activities that characterise energy-
aware software engineering, extending or modifying conventional practices. The chapter
concluded with a description of two short scenarios of energy-aware software engineering;
however, a great deal of further experience and tool development is needed to realise the full
vision.

Acknowledgements

This chapter is largely based on work done in the EU 7th Framework project ENTRA: Whole-
Systems Energy Transparency (318337). Thanks are due to all the participants in the project,

123

124

ICT - Energy Concepts for Energy Efficiency and Sustainability

especially Pedro Lopez Garcia, Henk Muller, Steve Kerrison, Kyriakos Georgiou and Xueliang
Li for material incorporated in the chapter.

Author details

Kerstin Eder! and John P. Gallagher*

*Address all correspondence to: jpg@ruc.dk

1 University of Bristol, Bristol, United Kingdom

2 Roskilde University, Roskilde, Denmark

References

[1]

[2]

[3]

[4]

[7]

(8]
9]

S. Furber. Interview with Steve Furber: The Designer of the ARM Chip Shares Lessons
on Energy-Efficient Computing. ACM Queue, 8(2), 2016.

PJ. Krause, K. Craig-Wood, and N. Craig-Wood. Green ICT: Oxymoron, or Call to
Innovation? In Proceeding Green IT, Singapore, 2010.

S. Naumann, E. Kern, and M. Dick. Classifying Green Software Engineering-the
GREENSOEFT Model. Softwaretechnik-Trends, 33(2), 2013.

E. Capra, C. Francalanci, and S. Slaughter. Is Software “Green”? Application Develop-
ment Environments and Energy Efficiency in Open Source Applications. Information &
Software Technology, 54(1):60-71, 2012.

S.S. Mahmoud and I. Ahmad. A Green Model for Sustainable Software engineering.
International Journal of Software Engineering and Its Applications, 7(4), July 2013.

V. Tiwari, S. Malik, and A. Wolfe. Power Analysis of Embedded Software: A First Step
Towards Software Power Minimization, pages 222-230. Kluwer Academic Publishers,
1994. 567021.

V. Tiwari, S. Malik, A. Wolfe, and M. Tien-Chien Lee. Instruction Level Power Analysis
and Optimization of Software. The Journal of VLSI Signal Processing, 13:223-238, 1996.
10.1007/BF01130407.

XMOS. xcore: Architecture Overview. Technical report, XMOS Ltd., 2013.

S. Kerrison and K. Eder. Energy Modeling of Software for a Hardware Multithreaded
Embedded Microprocessor. ACM Transactions on Embedded Computing Systems, 14(3):
56, 2015.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Energy-Aware Software Engineering
http://dx.doi.org/10.5772/65985

Y. Sophia Shao and D. Brooks. Energy Characterization and Instruction-Level Energy
Model of Intel’s Xeon Phi processor. In International Symposium on Low Power Electronics
and Design (ISLPED), pages 389-394. IEEE, November 2013.

C. Lattner and V.S. Adve. LLVM: A Compilation Framework for Lifelong Program
Analysis and Transformation. In Proceeding of the 2004 International Symposium on Code
Generation and Optimization (CGO), pages 75-88. IEEE Computer Society, March 2004.

LLVMorg. The LLVM Compiler Infrastructure, November 2014.

C. Brandolese, S. Corbetta, and W. Fornaciari. Software Energy Estimation Based on
Statistical Characterization of Intermediate Compilation Code. In Low Power Electronics
and Design (ISLPED) 2011 International Symposium on, pages 333-338, Aug 2011.

K. Georgiou, S. Kerrison, Z. Chamski and K. Eder. Energy Transparency for Deeply
Embedded Programs. CoRR, abs/1609.02193, 2016.

U. Liqat, K. Georgiou, S. Kerrison, P. Lopez-Garcia, M. V. Hermenegildo,]. P. Gallagher,
and K. Eder. Inferring Parametric Energy Consumption Functions at Different Software
Levels: ISA vs. LLVM IR. In M. Van Eekelen and U. Dal Lago, editors, Foundational and
Practical Aspects of Resource Analysis. Fourth International Workshop FOPARA 2015,
Revised Selected Papers, volume 9964 of Lecture Notes in Computer Science, pages
81-100. Springer, 2016.

N. Grech, K. Georgiou, J. Pallister, S. Kerrison, J. Morse, and K. Eder. Static Analysis of
Energy Consumption for LLVM IR Programs. In Proceedings of the 18th International
Workshop on Software and Compilers for Embedded Systems, SCOPES 2015, pages 12-21,
ACM. New York, NY, USA, 2015.

X. Liand J. P. Gallagher. Fine-grained energy modeling for the source code of a mobile
application. In T. Hara and H. Shigeno, editors, 13th Annual International Conference
on Mobile and Ubiquitous Systems: Computing, Networking and Services (MobiQui-
tous 2016), pages 180-189. ACM. 2016.

J. Pallister, S. Kerrison, J. Morse, and K. Eder. Data dependent energy modeling for
worst case energy consumption analysis. CoRR, abs/1505.03374, 2015.

G. Ascia, V. Catania, M. Palesi, and D. Sarta. An Instruction-Level Power Analysis
Model with Data Dependency. VLSI DESIGN, 12(2):245-273, 2001.

R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D.B. Whalley, G. Bernat,
C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller, 1. Puaut, P.P. Puschner, J. Staschulat,
and P. Stenstrom. The Worst-Case Execution-Time Problem—Overview of Methods and
Survey of Tools. ACM Transactions on Embedded Computing Systems, 7(3), 2008.

R. Heckmann, M. Langenbach, S. Thesing, and R. Wilhelm. The Influence of Processor
Architecture on the Design and the Results of Wcet Tools. Proceedings of the IEEE, 91(7):
1038-1054, July 2003.

125

126

ICT - Energy Concepts for Energy Efficiency and Sustainability

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

P. Wagemann, T. Distler, T. Honig, H. Janker, R. Kapitza, and W. Schroder-Preikschat.
Worst-Case Energy Consumption Analysis for Energy-Constrained Embedded
Systems. In Real-Time Systems (ECRTS), 2015 27th Euromicro Conference on, pages 105—
114, July 2015.

J. Morse, S. Kerrison, and K. Eder. On the infeasibility of analysing worst-case dynamic
energy. CoRR, abs/1603.02580, 2016.

N. Bjorner, A. Gurfinkel, K.L. McMillan, and A. Rybalchenko. Horn Clause Solvers for
Program Verification. In L.D. Beklemishev, A. Blass, N. Dershowitz, B. Finkbeiner, and
W. Schulte, editors, Fields of Logic and Computation II-Essays Dedicated to Yuri Gurevich
on the Occasion of His 75th Birthday, volume 9300 of Lecture Notes in Computer Science,
pages 24-51. Springer, 2015.

U. Liqgat, S. Kerrison, A. Serrano, K. Georgiou, P. Lopez-Garcia, N. Grech, M.V. Her-
menegildo, and K. Eder. Energy Consumption Analysis of Programs based on XMOS
ISA-level Models. In G. Gupta and R. Pea, editors, Logic-Based Program Synthesis and
Transformation, 23rd International Symposium, LOPSTR 2013, Revised Selected Papers,
volume 8901 of Lecture Notes in Computer Science, pages 72-90. Springer, 2014.

E. De Angelis, F. Fioravanti, A. Pettorossi, and M. Proietti. Semantics-Based Generation
of Verification Conditions by Program specialization. In M. Falaschi and E. Albert,
editors, Proceedings of the 17th International Symposium on Principles and Practice of
Declarative Programming, Siena, Italy, July 14-16, 2015, pages 91-102. ACM, 2015.

S. Grebenshchikov, N.P. Lopes, C. Popeea, and A. Rybalchenko. Synthesizing Software
Verifiers from Proof rules. In J. Vitek, H. Lin, and F. Tip, editors, ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI'12, pages 405-416.
ACM, 2012.

P. Cousot and R. Cousot. Abstract Interpretation: A Unified Lattice Model for Static
Analysis of Programs by Construction or Approximation of Fixpoints. In R.M. Graham,
M.A. Harrison, and R. Sethi, editors, POPL, pages 238-252. ACM, 1977.

B. Wegbreit. Mechanical Program Analysis. Communications of the ACM, 18(9):528-539,
1975.

M. Rosendahl. Automatic Complexity Analysis. In 4th ACM Conference on Functional
Programming Languages and Computer Architecture (FPCA’89), pages 144-156. ACM
Press, 1989.

S.K. Debray and N.W. Lin. Cost Analysis of Logic Programs. ACM Transactions on
Programming Languages and Systems, 15(5):826-875, November 1993.

J. Navas, E. Mera, P. Lopez-Garcia, and M. Hermenegildo. User-Definable Resource
Bounds Analysis for Logic Programs. In International Conference on Logic Program-
ming (ICLP’07), Lecture Notes in Computer Science, pages 348-363. Springer, 2007.

E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini. COSTA: A Cost and
Termination Analyzer for Java Bytecode. In Proceedings of the Workshop on Bytecode

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

Energy-Aware Software Engineering
http://dx.doi.org/10.5772/65985

Semantics, Verification, Analysis and Transformation (BYTECODE’08), Electronic Notes in
Theoretical Computer Science, Budapest, Hungary, Elsevier, April 2008.

M. Hermenegildo, G. Puebla, F. Bueno, and P. Lopez-Garcia. Integrated Program
Debugging, Verification, and Optimization Using Abstract Interpretation (and The
Ciao System Preprocessor). Science of Computer Programming, 58(1-2):115-140, October
2005.

E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini. COSTA: A Cost and
Termination Analyzer for Java Bytecode. In Proceedings of the Workshop on Bytecode
Semantics, Verification, Analysis and Transformation (BYTECODE'08), Electronic
Notes in Theoretical Computer Science, Budapest, Hungary, Elsevier, April 2008.

R. Haemmerlé, P. Lopez-Garcia, U. Ligat, M. Klemen,].P. Gallagher, and M.V. Herme-
negildo. A Transformational Approach to Parametric Accumulated-cost Static Profil-
ing. In O. Kiselyov and A. King, editors, 13th International Symposium on Functional and
Logic Programming (FLOPS 2016), volume 9613 of LNCS, pages 163-180. Springer,
March 2016.

K.Roy and M.C. Johnson. Software Design for Low Power. In W. Nebel and J.P. Mermet,
editors, Low Power Design in Deep Submicron Electronics, volume 337, pages 433—460.
Kluwer Academic, 1997.

P. Larsson. Energy-Efficient Software Guidelines. Technical report, Intel Software
Solutions Group, 2011.

B. Steigerwald and A. Agrawal. Green software. In S. Murugesan and G.R. Gangad-
haran, editors, Harnessing Green IT: Principles and Practices, Chapter 3. John Wiley &
Sons, Hoboken, NJ, USA, 2012.

S.J. Hollis and S. Kerrison. Swallow: Building an Energy-Transparent Many-Core
Embedded Real-Time System. In L. Fanucci and]. Teich, editors, 2016 Design, Auto-
mation & Test in Europe, pages 73-78, IEEE, March 2016.

X. Li and J. P. Gallagher. A source-level energy optimization framework for mobile
applications. In G. Bavota and M. Greiler, editors, 16th IEEE International Working
Conference on Source Code Analysis and Manipulation (SCAM 2016), pages 31-40. IEEE
Computer Society, 2016.

127

ntechOpen

ntechOpen

