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Abstract

In modern engineering finding an optimal design is formulated as an optimization
problem which involves evaluating a computationally expensive black-box function.
To alleviate these difficulties, such problems are often solved by using a metamodel,
which approximates the computer simulation and provides predicted values at a
much lower computational cost. While metamodels can significantly improve the
efficiency of the design process, they also introduce several challenges, such as a high
evaluation cost, the need to effectively search the metamodel landscape and to locate
good solutions, and the selection of which metamodel is most suitable to the problem
being solved. To address these challenges, this chapter proposes an algorithm that
uses a hybrid simulated annealing and SQP search to effectively search the
metamodel. It also uses ensembles that combine prediction of several metamodels to
improve the overall prediction accuracy. To further improve the ensemble accuracy, it
adapts the ensemble topology during the search. Finally, to ensure convergence to a
valid optimum in the presence of metamodel inaccuracies, the proposed algorithm
operates within a trust-region framework. An extensive performance analysis based
on both mathematical test functions and an engineering application shows the effec-
tiveness of the proposed algorithm.

Keywords: simulated annealing, metamodelling, ensembles, trust-region, expensive
optimization problems

1. Introduction

With the advent of high performance computing, intricate computer simulations can now

model real-world physics with high accuracy. This, in turn, transformed the engineering

design process into a simulation-driven process in which candidate designs are evaluated by

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



a computer simulation instead of a laboratory experiment. In this set-up, the design process is

formulated as an optimization problem with several unique features [1]:

• The computer simulation acts as the objective function, since it assigns objective values to

candidate designs. However, the simulation is often a legacy code or commercial software

whose inner workings are inaccessible to the user, and so there is no analytic expression

that defines how candidate designs are mapped to objective values. Such a black-box

function precludes the use of optimization algorithms that require an analytic function.

• Each simulation run is computationally expensive, that is, it requires a lengthy run time, and

this severely restricts the number of candidate designs that can be evaluated.

• Both the real-world physics being modelled and the numerical simulation process may

result in an objective function, which has a complicated landscape, and this further

complicates the optimization process.

An optimization strategy that has proven effective in such problems is that of metamodel-

assisted optimization, namely, where a metamodel approximates the true expensive function

and provides predicted objective values at a lower computational cost [1]. However, the

integration of metamodels and ensembles into the optimization search introduces several

challenges:

• Locating a good solution requires effectively searching the metamodel, which can have a

complicated landscape with multiple local solutions, and hence can be a difficult task.

• Since function evaluations are expensive, only a small number of evaluated vectors will be

available and hence the metamodel will be inaccurate. In severe cases, the optimization

search can converge to a false optimum, namely, which was artificially created by the

metamodel's inaccurate approximation of the true expensive function.

• A variety of metamodels have been proposed, for example, artificial neural networks

(ANNs), Kriging and radial basis functions (RBFs) [2, 3], but the optimal variant is

problem-dependant, and is typically not known a priori. In an attempt to address this

issue, ensembles employ several metamodels concurrently and aggregate their individual

predictions into a single one [4, 5]. However, the effectiveness of ensembles depends on

their topology, namely, which metamodels they incorporate, but the optimal topology is

again typically unknown a priori, and may be impractical to identify by numerical exper-

iments due to the high cost of each simulation run.

To address this issue, this chapter proposes an optimization algorithm that uses a hybrid-

simulated annealing (SA) search followed by a local refinement of solutions based on an SQP

search. In this manner, this set-up achieves both an effective global and local search, which

assists in locating good solutions. To address the issue of inaccurate metamodel predictions,

the proposed algorithm operates within a trust region (TR) approach that manages the

metamodel and ensures convergence to a valid optimum. Finally, to further improve the

prediction accuracy the proposed algorithm uses ensembles and selects the most suitable

topology during the search.
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Accordingly, this chapter presents several contributions: (a) a hybrid SA-SQP metamodel-

assisted search, (b) integration within a TR framework, and (c) continuous selection of the

ensemble topology during the search. An extensive performance analysis based on both

mathematical test functions and an engineering problem of airfoil shape optimization shows

the effectiveness of the proposed algorithm.

The remainder of this chapter is organized as follows: Section 2 provides the background

information, Section 3 describes the proposed algorithm, then Section 4 provides an

extensive performance evaluation and discussion, and finally Section 5 concludes this

chapter.

2. Background

2.1. Optimization techniques

As mentioned in Section 1, simulation-driven problems often include a challenging objective

function, such as having multiple local optima or lacking an analytic expression. In such

settings, classical gradient-based optimization algorithms can perform poorly, and therefore

researchers have explored various alternative approaches [1]. One class of such algorithms is

the nature-inspired metaheuristics, which include evolutionary algorithms (EAs), particle

swarm optimization (PSO), and SA. The latter was inspired by the physics of the annealing

process in metals: initially a metal has a high temperature and so particles have a high

probability of moving to a higher energy state. As the metal cools in the annealing process,

particles are more likely to move to a lower energy level than to a higher one. The process is

completed once the system has reached the lowest possible energy level, typically its temper-

ature of equilibrium with the environment. In the realm of global optimization, these

mechanics have been translated into a heuristic search, which starts with an initial vector,

namely, a candidate solution. During the search, the current vector is perturbed so that new

vectors in its vicinity are obtained. These vectors are evaluated and replace the original vector

if: (a) they are better, or (b) they are worse and with probability p, which is analogous to the

energy state changes. As p decreases, the search is transformed from being explorative to

being more localized. Two main parameters of the SA algorithm are the annealing schedule,

namely, the duration of the search process, which is determined by the manner that the

temperature is decreased, and the selection probability function, which defines the dynamic

threshold for accepting a worse solution. Algorithm 1 gives a pseudocode of a baseline SA

algorithm, while Section 3 gives the specific parameter settings of the SA implementation

used in this study.

The underlying mechanism of the SA algorithm was originally proposed by Metropolis et al.

[6], while the more common annealing-inspired formulation was later proposed by Černy [7]

and Kirkpatrick et al. [8]. Since then the algorithm has been widely used in the literature, and

some recent examples include [9] in finance, [10] in machine learning, [11] in chemical engi-

neering and [12] in production line machine scheduling.
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2.2. Expensive black-box problems

Computationally expensive optimization problems are common across engineering and sci-

ence. Typically in such problems, candidate designs are parameterized as vectors of design

variables and sent to the simulation for evaluation, as shown in Figure 1.

As mentioned in Section 1, metamodels are often used in such settings to alleviate the high

computational cost of the simulation runs [2, 3]. However, the integration of metamodels into

the search introduces two main challenges:

• Prediction uncertainty: Due to the high cost of the simulation runs only a small number of

designs can be evaluated, which in turn degrades the prediction accuracy of the

metamodel and leads to optimization with uncertainty regarding the validity of the

predicted objective values [13]. To address this, the metamodel needs to be updated

during the search to ensure that its accuracy is sufficient to drive the search to a correct

final result. To accomplish this, the proposed algorithm is structured based on the TR

approach [14]. In this way, the algorithm performs a sequence of trial steps that are

constrained to the TR, namely, the region where the metamodel is assumed to be accurate.

Based on the success of the trial step, namely, if a new optimum has been found, the TR

and the set of vectors are updated. Section 3 presents a detailed description of the TR

approach implemented in this study.

• Metamodel suitability: Various metamodel variants have been proposed, but the optimal

variant is problem dependant and is typically unknown a priori [15]. To address this,

ensembles employ multiple metamodels concurrently and combine their predictions into

a single one to obtain a more accurate prediction [4, 5, 16]. Figure 2 shows an example

based on the Rosenbrock function.

The ensemble topology, namely, which metamodel variants are incorporated, is typically

determined a priori and is unchanged during the search. However, the topology directly

affects the prediction accuracy, and hence an unsuitable topology can degrade the search

effectiveness. As an example, RBFs, RBFN and Kriging metamodels (described in Appen-

dix 1) were used to generate several ensemble topologies. The same testing and training

samples were used with all the topologies (sized 30 and 20 vectors, respectively), such that

each ensemble was trained with training sample and its prediction accuracy was tested on

Figure 1. The layout of an expensive black-box optimization problem. The optimization algorithm generates candidate

solutions, and these are evaluated by the simulation, which acts as a ‘black-box’ function, to obtain their corresponding

objective values.
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the testing sample. The prediction accuracy was measured both with the root mean

squared error (RMSE),

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n
∑
n

i¼1

�

f̂ ðxiÞ−f ðxiÞ
�2

s

(1)

and the R2 indicator,

R2 ¼
St−Sr
St

; (2a)

where

St ¼ ∑ðf ðxiÞ−f ðxiÞÞ
2
;   Sr ¼ ∑ðf ðxiÞ−f̂ ðxiÞÞ

2
; (2b)

Figure 2. An ensemble topology consisting of RBF, RBFN and Kriging metamodels. The overall prediction is the aggre-

gation of the individual predictions.

Ensemble topology

R+RN R+K RN+K

Function RMSE R
2 RMSE R

2 RMSE R
2

Ackley-5D 1.172e+00 -1.830e-02 1.630e+00 -2.613e-02 1.176e+00 -9.521e-01

Rastrigin-10D 3.149e-02 -2.407e-01 2.471e-02 -1.812e-01 2.907e-02 -3.381e-01

Rosenbrock-20D 6.101e-04 -3.566e-01 4.968e-04 -4.541e-01 3.859e-04 -1.410e-01

Schwefel 2.13-30D 1.003e-03 -9.573e-01 2.234e-04 -7.182e-02 3.212e-04 -1.321e-01

Note: R: RBF, RN: RBF network, K: Kriging.

Table 1. Statistics for prediction accuracies of different topologies.
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where f ðxÞ, and f̂ ðxÞ are the true and the ensemble predicted values, respectively, and xi,

i ¼ 1…n are the testing vectors. Table 1 presents the test results, fromwhich it follows that

the prediction accuracy varied with the topology and that no single topology was the

overall best.

Addressing this issue, the algorithm proposed in this study selects the most suitable ensemble

topology during the search, as explained in the following section.

3. Proposed algorithm

This section describes the algorithm proposed in this study, which is designed to address the

issues described in Sections 1 and 2. The proposed algorithm operates in five main steps, as

follows:

Step 1. Initialization: The algorithm begins by generating an initial sample of vectors based on

the optimal Latin hypercube design (OLHD) method [17]. The method ensures that the resul-

tant sample is space-filling, namely, adequately covers the search space, which in turn

improves the prediction accuracy of the metamodels. The OLHD method exploits patterns of

point locations for optimal Latin hypercube designs based on a variation of the maximum

distance criterion to produce near-optimal designs efficiently. After generating the sample, the

vectors are evaluated with the true expensive function.

Step 2. Ensemble selection:

Step 2.1. Following the cross-validation (CV) procedure [18], the vectors that have been evalu-

ated so far are split into a training set and a testing set. In turn, each candidate metamodel

variant is trained with the training set and is tested on the testing set. The prediction accuracy

is measured with the root mean squared error (RMSE), which is calculated as

εj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

l
∑
l

i¼1

�

mjðxiÞ−f ðxiÞ
�2

s

; (3)

where xi, i ¼ 1…l, are the vectors in the testing set, f ðxiÞ is the exact and already known

function value at xi, and mjðxÞ is the prediction of the jth metamodel variant that has been

trained with the training set.

Step 2.2. The evaluated vectors are again split into a training and a testing set. For each

candidate ensemble topology, the following steps are performed:

• Each metamodel variant that is active in the ensemble is assigned an ensemble weight,

which is calculated as

wi ¼
ε
−1
i

∑nm
j¼1ε

−1
j

; (4)

and the overall ensemble prediction is then given by
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ψðxÞ ¼ ∑
nm

i¼1
wimiðxÞ, (5)

where nm is the number of participating metamodels in the ensemble and miðxÞ is a

metamodel that has been trained with the new training sample.

• The prediction accuracy of the ensemble is estimated based on its RMSE on the testing set

ε ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

k
∑
k

i¼1

�

ψðxiÞ−f ðxiÞ
�2

s

; (6)

where xi, i ¼ 1…k, are the vectors in the testing set.

Step 2.3. After repeating the process with all the candidate topologies, the one having the

lowest RMSE, as defined in Eq. (6), is selected for the current optimization iteration. A

new ensemble is then trained based on the selected topology and on all the evaluated

vectors. This ensemble will be used in the following step.

It is emphasized that during the above process, the true expensive function is not used,

and hence the process requires negligible computational resources.

For the specific implementation in this chapter, three well-established metamodels were

considered for the ensembles: RBF, RBFN and Kriging that are all described in Appendix

1, while Table 2 presents the candidate ensemble topologies. Also, the split ratio between

the training and testing vectors was calibrated by numerical experiments, as described in

Appendix 2.

Step 3. Optimization trial step: The proposed algorithm now seeks an optimum based on

the ensemble prediction in the bounded TR around the current best solution (xb), namely

ℑ ¼ {x : ∥x−xb∥2 ≤ Δ}, (7)

where Δ is the TR radius. The search is performed by using a hybrid approach [19], which

is composed of an initial search performed by a SA algorithm, and followed by a localized

refinement of the solution with a sequential quadratic programming (SQP) algorithm. The

main settings of the SA algorithm were based on existing studies [20–22], as follows:

• Initial temperature: Tmax ¼ 1000 � d where d is the function dimension. This was done to

increase the annealing schedule for higher dimensional problems, which require a more

extensive search.

• Final temperature (stopping condition): T ≤ 10−8.

• Temperature decrease function: A 5% decrease, namely

TðtÞ ¼ 0:95 � Tðt−1Þ (8)
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where t is the current time-step counter. This way the temperature initially decreases at a

slow rate, which assists the exploration search, but the reduction is much faster in later

stages when the search is localized.

• Acceptance probability function: A decaying exponent, namely

pðTÞ ¼ exp −
f ðxnÞ−f ðxcÞ

TðtÞ

� �

(9)

where xn is the new vector being examined and xc is the current vector.

During the entire process, objective values are obtained only from the ensemble at a

negligible computational cost, and hence the SA and SQP were able to evaluate a large

number of candidate vectors.

Step 4. TR updates: The best vector found in the previous step (x⋆) is evaluated with the

true expensive function, and the following updates are performed [14]:

• If f ðx⋆Þ < f ðxbÞ: The trial step was successful since the vector found was indeed better

than the current best one. This indicates that the ensemble prediction is accurate, and

accordingly the TR radius is doubled.

• If f ðx⋆Þ ≥ f ðxbÞ and there are sufficient vectors in the TR: The search was unsuccessful since

the solution found is not better than the current best one. However, since there are enough

vectors in the TR to train the metamodels the failure is attributed to the TR being too large,

and accordingly the TR radius is halved.

• If f ðx∗Þ ≥ f ðxcÞ and there are insufficient vectors in the TR: As above but now the failure is

attributed to having too few vectors in the TR to train the metamodels with. Therefore, a

new vector is sampled in the TR, as explained below.

The implementation described above differs from the classical TR framework in two main

aspects:

Metamodels participating in the ensemble

Index RBF RBFN Kriging

1 •

2 •

3 •

4 • •

5 • •

6 • •

7 • • •

Table 2. Candidate ensemble topologies.
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• The TR is contracted only if the number of vectors in the TR is above a threshold n, which

is done to avoid premature convergence. The threshold parameter was calibrated through

numerical experiments, as described in Appendix 2.

• In Step 4, a new vector may be sampled in the TR to improve the prediction accuracy. This

vector should be located in a region that is sparse with vectors, namely away from existing

TR vectors. To accomplish this efficiently, the proposed algorithm generates a Latin

hypercube design (LHD) sample of vectors in the TR and selects the one having the largest

minimal distance (max-min criterion) from the existing TR vectors.

To conclude the description, Algorithm 2 gives the pseudocode of the proposed algorithm.

4. Performance analysis

4.1. Benchmark tests based on mathematical test functions

To evaluate its effectiveness, the proposed algorithm was applied to the established set of

mathematical functions [23]: Ackley, Griewank, Rastrigin, Rosenbrock, Schwefel 2.13 and

Weierstrass in dimensions 5–40, as listed in Table 3. These test functions represent challenging

features such as high multimodality, deceptive landscapes and noise, and are therefore ade-

quate for the testing purpose.

For a comprehensive evaluation, the proposed algorithm was benchmarked against the fol-

lowing four reference algorithms:

• V1: A variant of the proposed algorithm, which is identical to it in operation, except that it

used a single metamodel (RBF), but no ensembles.

• V2: A variant of the proposed algorithm, which is identical to it in operation, except that it

used a fixed ensemble, which consisted of the RBF, RBFN and Kriging metamodels, but

without any topology selection.

Function Definition, f ðxÞ¼ Domain

Ackley
−20exp ð−0:2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑d
i¼1x

2
i =d

q

Þ−
exp

�

∑d
i¼1 cos ð2πxiÞ=d

�

þ 20þ e

½−32; 32�d

Griewank ∑d
i¼1{x

2
i =4000}−∏

d
i¼1{ cos ðxi=

ffiffi

i
p

Þ}þ 1 ½−100; 100�d

Rastrigin ∑d
i¼1fx2i −10 cos ð2πxiÞ þ 10g ½−5; 5�d

Rosenbrock ∑d−1
i¼1f100ðx2i −xiþ1Þ2 þ ðxi−1Þ2g ½−10; 10�d

Schwefel 2.13
∑
d

i¼1

�

∑
d

j¼1
½
�

ai;j sin ðαjÞ þ bi;j cos ðαjÞ
�

−
�

ai;j sin ðxjÞ þ bi;j cos ðxjÞ
�

�
�2 ½−π;π�d

Weierstrass ∑d
i¼1

n

∑20
k¼00:5

k cos
�

2π3kðxi þ 0:5Þ
�o

−

d∑20
k¼00:5

k cos ðπ3kÞ
½−0:5; 0:5�d

Table 3. Mathematical test functions.
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• Evolutionary algorithm with periodic sampling (EA-PS): The algorithm leverages on the

concepts in references [24, 25]. It uses a Kriging metamodel and a real-coded evolutionary

algorithm (EA). The accuracy of the metamodel is maintained by periodically evaluating a

small subset of the EA population with the true objective function, and using these

sampled vectors to update the metamodel.

• Expected improvement with covariance matrix adaptation evolutionary strategy (CMA-ES) (EI-

CMA-ES) [26]: The algorithm combines a covariance matrix adaptation evolutionary

strategy (CMA-ES) algorithm with a Kriging metamodel, and uses the expected improve-

ment (EI) framework to select new vectors for evaluation based both on the response and

uncertainty in the metamodel prediction. This way the algorithm balances between a local

search around the current best solution, and an explorative search in less-visited regions

of the search space.

This testing set-up was used for several reasons: (i) any gains brought by using ensembles are

highlighted through the comparisons to the V1 and V2 algorithms and (ii) the performance of

the proposed algorithm is benchmarked against representative metamodel-assisted algorithms

from the literature, namely, the EA-PS and EI-CMA-ES algorithms. Each algorithm-objective

function combination was tested over 30 runs to support a valid statistical analysis, and the

number of evaluations of the true objective function was limited to 200, to represent the tight

optimization budget in expensive problems.

Tables 4 and 5 give the resultant test statistics of mean, standard deviation (SD), median,

minimum (best) and maximum (worst) objective value for each algorithm-objective function

combination. It also gives the statistic α that indicates the significance level at which the

results of the proposed algorithm were better than those of the competing algorithms,

measured at either the 0.01 or 0.05 levels, while an empty entry indicates no such statistically

significant advantage. The α statistic was obtained by using the Mann-Whitney non-para-

metric test [27].

Test results show that the proposed algorithm performed well, as it obtained the best mean

and median statistics in 8 out of 12 cases. Its results also had a statistically significant advan-

tage over the other algorithms in 30 out of 48 cases. The performance advantage of the

proposed algorithm was particularly pronounced in the high-dimensional cases, where it

obtained the best mean and median in five out of six test functions. In terms of repeatability

of performance, its SD was often slightly higher but was competitive with the best SD in each

test case.

Overall, the proposed algorithm consistently outperformed the V1 and V2 variants, which

shows that selecting the ensemble topology during the search improved the search effective-

ness, both when compared to using a fixed metamodel or a fixed ensemble topology. Also, the

proposed algorithm consistently outperformed the two reference algorithms from the litera-

ture, which shows that it compares well with existing approaches.

The analysis of the experiments also examined how the ensemble topology was updated, to

examine if either a single or multiple topologies were predominantly selected. Accordingly,

Figure 3 shows representative plots of the ensemble topologies selected during a run with the

Ackley-10D function and another with the Rosenbrock-20D function. It follows that in both

Computational Optimization in Engineering - Paradigms and Applications56



Proposed V1 V2 EA-PS EI-CMA-ES

Ackley-10 Mean 7.576e+00 1.415e+01 1.320e+01 5.241e+00 1.796e+01

SD 8.218e+00 4.522e+00 7.843e+00 5.590e-01 1.529e+00

Median 2.274e+00 1.547e+01 1.855e+01 5.408e+00 1.797e+01

Min(best) 8.677e-02 2.362e+00 3.381e+00 4.098e+00 1.443e+01

Max(worst) 1.779e+01 1.778e+01 2.046e+01 6.010e+00 1.988e+01

α 0.01 0.01

Griewank-10 Mean 1.253e-01 1.920e-01 8.625e-01 9.579e-01 9.338e-01

SD 1.759e-01 1.643e-01 1.401e-01 1.076e-01 2.435e-01

Median 7.507e-02 1.267e-01 8.834e-01 9.862e-01 1.007e+00

Min(best) 9.163e-03 3.485e-02 5.304e-01 7.146e-01 2.441e-01

Max(worst) 6.194e-01 5.401e-01 1.022e+00 1.046e+00 1.050e+00

α 0.01 0.01 0.01

Rastrigin-5 Mean 6.259e+00 9.031e+00 7.828e+00 7.631e+00 2.131e+01

SD 3.695e+00 7.483e+00 8.286e+00 4.811e+00 4.890e+00

Median 5.844e+00 7.273e+00 4.246e+00 7.226e+00 2.139e+01

Min(best) 1.950e+00 1.005e+00 3.224e+00 1.621e+00 1.353e+01

Max(worst) 1.189e+01 2.653e+01 3.046e+01 1.456e+01 3.006e+01

α 0.01

Rosenbrock-5 Mean 1.443e+01 3.247e+01 1.358e+02 2.074e+02 3.701e+02

SD 3.839e+01 7.480e+01 2.784e+02 1.640e+02 2.320e+02

Median 2.508e+00 3.522e+00 6.636e+00 1.796e+02 3.498e+02

Min(best) 2.465e-02 1.730e+00 4.085e+00 1.368e+01 7.677e+01

Max(worst) 1.236e+02 2.388e+02 8.787e+02 5.617e+02 6.719e+02

α 0.01 0.01 0.01

Schwefel-5 Mean 5.379e+02 3.809e+02 3.663e+02 5.598e+02 3.333e+02

SD 8.894e+02 9.297e+02 6.567e+02 4.995e+02 3.227e+02

Median 7.371e+01 2.749e+00 1.715e+02 4.804e+02 2.050e+02

Min(best) 2.508e-02 5.862e-02 4.835e+01 5.685e+01 3.426e+01

Max(worst) 2.202e+03 2.955e+03 2.215e+03 1.817e+03 1.080e+03

α

Weierstrass-10 Mean 6.620e+00 8.936e+00 8.168e+00 3.706e+00 5.909e+00

SD 1.970e+00 1.731e+00 2.042e+00 5.593e-01 2.777e+00

Median 6.395e+00 9.023e+00 8.494e+00 3.702e+00 5.805e+00

Min(best) 3.786e+00 6.875e+00 5.234e+00 2.787e+00 1.657e+00

Max(worst) 1.052e+01 1.236e+01 1.108e+01 4.627e+00 9.409e+00

α 0.01

Table 4. Test statistics: test functions—low dimension.
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Proposed V1 V2 EA-PS EI-CMA-ES

Ackley-20 Mean 6.446e+00 8.795e+00 1.947e+01 6.814e+00 1.863e+01

SD 5.712e+00 6.302e+00 2.836e-01 2.461e-01 1.921e+00

Median 3.885e+00 5.524e+00 1.944e+01 6.744e+00 1.934e+01

Min(best) 2.683e+00 3.574e+00 1.909e+01 6.468e+00 1.493e+01

Max(worst) 1.802e+01 1.804e+01 1.998e+01 7.203e+00 2.044e+01

α 0.05 0.01 0.05 0.01

Griewank-40 Mean 1.045e+00 1.270e+00 8.192e+00 1.461e+00 1.102e+00

SD 2.942e-02 1.185e-01 1.151e+00 6.031e-02 3.032e-02

Median 1.040e+00 1.246e+00 8.068e+00 1.454e+00 1.096e+00

Min(best) 1.013e+00 1.120e+00 6.567e+00 1.387e+00 1.071e+00

Max(worst) 1.114e+00 1.475e+00 1.035e+01 1.595e+00 1.157e+00

α 0.01 0.01 0.01 0.01

Rastrigin-20 Mean 6.490e+01 6.501e+01 1.492e+02 1.223e+02 2.105e+02

SD 3.753e+01 1.703e+01 2.754e+01 1.219e+01 3.914e+01

Median 4.808e+01 6.683e+01 1.449e+02 1.230e+02 2.296e+02

Min(best) 3.924e+01 4.203e+01 1.144e+02 1.046e+02 1.395e+02

Max(worst) 1.568e+02 8.807e+01 1.983e+02 1.429e+02 2.507e+02

α 0.01 0.01 0.01

Rosenbrock-20 Mean 5.653e+02 1.005e+03 9.013e+03 8.435e+02 3.967e+03

SD 2.067e+02 5.794e+02 5.142e+03 3.012e+02 9.406e+02

Median 5.807e+02 8.295e+02 8.112e+03 7.782e+02 3.685e+03

Min(best) 2.042e+02 5.281e+02 4.165e+03 4.676e+02 3.141e+03

Max(worst) 8.756e+02 2.497e+03 2.271e+04 1.439e+03 6.144e+03

α 0.01 0.01 0.05 0.01

Schwefel-40 Mean 7.503e+05 8.786e+05 2.322e+06 1.774e+06 1.667e+06

SD 2.173e+05 2.506e+05 5.317e+05 2.509e+05 6.520e+05

Median 7.074e+05 8.420e+05 2.369e+06 1.744e+06 1.528e+06

Min(best) 4.989e+05 5.815e+05 1.666e+06 1.415e+06 8.933e+05

Max(worst) 1.126e+06 1.348e+06 3.186e+06 2.104e+06 2.871e+06

α 0.01 0.01 0.01

Weierstrass-40 Mean 2.730e+01 4.048e+01 5.105e+01 2.343e+01 3.598e+01

SD 4.414e+00 4.106e+00 2.138e+00 1.265e+00 1.463e+01

Median 2.445e+01 4.100e+01 5.135e+01 2.304e+01 2.597e+01

Min(best) 2.365e+01 3.351e+01 4.817e+01 2.214e+01 2.100e+01

Max(worst) 3.419e+01 4.685e+01 5.333e+01 2.567e+01 5.817e+01

α 0.01 0.01

Table 5. Test statistics: test functions—high dimension.
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cases, different topologies were selected, which indicate that no single topology was the

overall optimal, and further justifies the proposed approach.

4.2. Engineering test problem

The proposed algorithm was also applied to a representative simulation-driven engineering

problem, where the goal is to find an airfoil shape, which maximizes the lift L and minimizes

the drag (aerodynamic friction) D at some prescribed flight conditions. In practise, the design

requirements for airfoils are specified in terms of the non-dimensional lift and drag coefficients, cl
and cd, respectively, defined as

cl ¼
L

1
2ρV

2S
(10a)

cd ¼
D

1
2ρV

2S
(10b)

where L and D are the lift and drag forces, respectively, ρ is the air density, V is the aircraft

speed, and S is the reference area, such as the wing area. The relevant flight conditions are the

aircraft altitude, speed and angle of attack (AOA) that is the angle between the aircraft velocity

and the airfoil chord line. Figure 4 gives a schematic layout of the airfoil problem.

Candidate airfoils were represented with the Hicks-Henne method [28], such that an airfoil

profile was defined as

y ¼ yb þ ∑
h

i¼1
αibiðxÞ  ; (11)

where yb is a baseline profile taken here to be the NACA0012 symmetric profile, and bi are the

shape basis functions [29].

Figure 3. Ensemble topologies selected during two test runs. Abbreviations: K: Kriging, R: RBF, RN: RBF network.
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biðxÞ ¼ sin πx
logðð0:5Þ

logði=ðhþ1ÞÞ

� �h i4

  ; (12)

where αi∈½−0:01; 0:01� are the variables, as shown in Figure 4. Ten basis functions were used

for the upper and lower airfoil profiles, respectively, which resulted in a total of 20 variables

per airfoil. Also, for structural integrity the thickness of an airfoil between 0.2 and 0.8 of its

chord line was required to be greater than a critical thickness t⋆ ¼ 0:1. The lift and drag

coefficients of candidate airfoils were obtained by using XFoil, an aerodynamics simulation

code for subsonic isolated airfoils [30]. Each airfoil evaluation required up to 30 s on a desktop

computer, so evaluations were not prohibitively expensive and the tests could be completed

within a reasonable time.

Based on the above discussion, the objective function used was

f ¼ −

cl
cd

þ p  ;   p ¼
  t⋆

t
� j

cl
cd
j if   t <   t⋆

0 otherwise

8

<

:

(13)

where p is the penalty for violation of the thickness constraint. The flight conditions were an

altitude of 30,000 ft, a speed of Mach 0.7, namely 70% of the speed of sound, and an AOA of 2°.

Tests were performed along the set-up of Section 4.1, and Table 6 gives the resultant test

statistics. The trends are consistent with those of the test functions, and the proposed algorithm

Figure 4. The layout of the airfoil problem: main components (left) and parameterization (right).

Proposed V1 V2 EA-PS EI-CMA-ES

Mean -3.376e+00 -3.279e+00 -3.368e+00 -3.231e+00 -3.278e+00

SD 1.242e-01 6.683e-02 1.008e-01 7.164e-02 9.597e-02

Median -3.355e+00 -3.274e+00 -3.352e+00 -3.227e+00 -3.267e+00

Min(best) -3.624e+00 -3.393e+00 -3.533e+00 -3.335e+00 -3.395e+00

Max(worst) -3.158e+00 -3.161e+00 -3.214e+00 -3.134e+00 -3.098e+00

α 0.01 0.01 0.05

Table 6. Test statistics for the airfoil problem.
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outperformed the other candidate algorithms also here. It obtained the best mean and median

statistics, and had a competitively low SD.

5. Conclusion

While computer simulations can improve the efficiency of the engineering design process, they

also introduce new optimization challenges. Metamodels aim to alleviate the challenge of a

high evaluation cost by providing computationally cheaper approximations of the true expen-

sive function.

While metamodels can significantly improve the search effectiveness, they also introduce

various challenges, such as identifying an optimal combination of metamodel variants, and

effectively searching the metamodel landscape. To address these issues, this chapter has

proposed a hybrid algorithm that uses SA to perform a global search, and it then refines the

solutions with an SQP local search. To further enhance its effectiveness, the proposed algo-

rithm uses ensembles of metamodels and selects the most suitable ensemble topology during

the search. Lastly, to ensure convergence to an optimum of the true expensive function in the

light of the inherent metamodel inaccuracies, the proposed algorithm operates within a TR

approach such that the optimization is performed through a series of trial steps.

In an extensive performance analysis, the proposed algorithm was benchmarked against two

implementations without selection of the ensemble topology, and two reference algorithms

from the literature, which also do not use topology adaption. Analysis of the results shows that

the proposed algorithm consistently outperformed the other algorithms: it achieved better

results in 30 out of 48 cases with mathematical test functions, and also performed well with a

simulation-driven problem. Its performance advantage was evident from the superior mean

and median statistics that was obtained across the tests and was particularly pronounced in

the high-dimensional problems.

The analysis also showed that during the optimization search the optimal topology continu-

ously varied during the search, and that no single topology was the overall optimal. This

observation further supports the approach proposed of selecting the ensemble topology dur-

ing the search.

Overall, the solid performance of the proposed algorithm shows the merit of the hybrid SA

+SQP algorithm proposed. It also suggests that the proposed algorithm could be applied to

problems from a variety of academic domains, such as scheduling, systems engineering and

model calibration, to name a few.

Appendix 1: Candidate metamodels

This appendix describes the metamodels used, as follows:

• Kriging: A statistical metamodel that combines a global ‘drift’ function and a local adjust-

ment based on the correlation between the sample vectors. The metamodel replicates the
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observed responses precisely (Lagrangian interpolation). For a constant drift function, the

metamodel becomes

mðxÞ ¼ βþ κðxÞ, (14)

where κðxÞ is the local correction. The latter is defined by a stationary Gaussian process

with mean zero and covariance

Cov½κðxÞκðyÞ� ¼ σ2cðθ;x;yÞ, (15)

where cðθ;x;yÞ is a user-prescribed correlation function. With the Gaussian correlation

function [3]

cðθ;x;yÞ ¼ ∏
d

i¼1
exp

�

−θðxi−yiÞ
2
�

; (16)

the above metamodel becomes

mðxÞ ¼ β̂ þ rðxÞTR−1ðf−1β̂Þ  (17)

where β̂ is the estimated drift coefficient, R is the symmetric matrix of correlations

between all interpolation vectors, f is the vector of objective values and 1 is a vector with

all elements equal to 1. rT is the correlation vector between a new vector x and the sample

vectors, namely,

rT ¼ ½cðθ;x;x1Þ,…;cðθ;x;xnÞ� (18)

The estimated drift coefficient β̂ and variance σ̂2 are calculated as

β̂ ¼ ð1TR−1
1Þ−11TR−1f ; (19a)

σ̂2 ¼
1

n
½ðf−1β̂ÞTR−1ðf −1β̂Þ� (19b)

For an isotropic (single correlation parameter) Kriging metamodel the optimal value of the

parameter is obtained by maximizing the metamodel likelihood [31]

θ⋆ : maxfjRj1=nσ̂2g  (20)

• Radial basis functions (RBF): The metamodel approximates the true objective function with

a set of basis functions, namely
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mðxÞ ¼ αi ∑
n

i¼1
φiðxÞ þ c (21)

where φiðxÞ are basis functions of the form

φiðxÞ ¼ φð∥x−xi∥2Þ, (22)

where xi is a sampled vector and c is a constant. The coefficients αi and c are determined

from the interpolation conditions

mðxiÞ ¼ f ðxiÞ, i ¼ 1…n; (23a)

∑
n

i¼1
αi ¼ 0   : (23b)

In this study, the widely used Gaussian basis function [32] was used:

φiðxÞ ¼ exp −
x−xi
τ

� �

; (24)

where τ controls the width of the Gaussians, and is determined by cross-validation

[33, 34].

• Radial basis function network (RBFN): A variant of the RBF approach but in which the

number of basis functions is smaller than the sample size, which can improve the predic-

tion accuracy in certain scenarios. The metamodel is given by

mðxÞ ¼ ∑
n̂

j¼1
αjφjðxÞ, (25)

where the coefficients αi are determined from the least-squares interpolation conditions

ΦTΦα ¼ ΦTf (26)

where

Φi;j ¼ φjðxiÞ (27)

and xi, i ¼ 1…n, are the sample vectors, f is the vector of corresponding objective function

values, and φjðxÞ, j ¼ 1…n̂ are the basis functions, which in this study were taken as the

Gaussian functions described above. The basic function centres xj are obtained by cluster-

ing the sampled vectors and using the resultant cluster centres.
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Appendix 2: Parameter sensitivity analysis

As described in Section 3, the proposed algorithm relies on two main parameters: (i) the

minimum number (n) of TR vectors needed to allow a TR contraction, and (ii) the split ratio

(s) between the training and testing subsets, as used in estimating the accuracy of candidate

metamodel and ensembles.

To calibrate these parameters, a set of numerical experiments were performed where different

parameter settings were used, and for each setting the algorithm was tested with the Rastrigin-

10D, Rosenbrock-10D, Rastrigin-20D and Rosenbrock-20D functions. The parameter settings

examined were:

• n: 0:1d, 0:5d, d, where d is the dimension of the objective function.

• s: 80–20, 60–40, 40–60, in percent.

Table 7 gives the resultant test statistics of mean objective value, rank per objective

function and the overall rank based on each setting where a lower score is better. From

these results it follows:

(a) Statistics: different TR vectors threshold (n)

n ¼ 0:1d n ¼ 0:5d n ¼ d

Function Mean Rank Mean Rank Mean Rank

Ras-10 4.598e+01 02 4.827e+01 03 3.530e+01 01

Ros-10 1.233e+02 02 4.393e+01 01 1.317e+02 03

Ras-20 9.256e+01 03 8.656e+01 02 7.997e+01 01

Ros-20 4.503e+02 01 5.361e+02 02 8.518e+02 03

Overall 08 08 08

(b) Statistics: different split ratios (s)

80–20 60–40 40–60

Function Mean Rank Mean Rank Mean Rank

Ras-10 4.598e+01 02 3.981e+01 01 5.414e+01 03

Ros-10 1.233e+02 02 1.266e+02 03 4.929e+01 01

Ras-20 9.256e+01 03 8.899e+01 02 7.970e+01 01

Ros-20 4.503e+02 01 5.578e+02 03 5.318e+02 02

Overall 08 09 07

Note: ratios are in percent.

Table 7. Parameter sensitivity analysis results.
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• n: Performance was similar across the different settings and accordingly the intermediate

setting of n ¼ 0:5d was selected.

• s: The best performing split ratio was 40–60 between the training and testing subsets.

The above settings were then used during the numerical experiments described in Section 4.
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