
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900

Chapter 8

Real‐Time Adaptive Optic System Using FPGAs

Steffen Mauch and Johann Reger

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/66184

‐

Steffen Mauch and Johann Reger

Additional information is available at the end of the chapter

Abstract

For “adaptive optics” (AO) that are used in a control loop, sensing of the wavefront is
essential for achieving a good performance. One facet in this context is the delay
introduced by the wavefront evaluation. This delay should be kept to a minimum. Since
the problem can be split into multiple subproblems, field‐programmable gate arrays
(FPGAs) may beneficially be employed in view of the FPGAs’ power to compute many
tasks in parallel. The evaluation of, e.g., a Shack‐Hartmann wavefront sensor (SHWFS)
may simply be seen as the evaluation of an image. Therefore, in general, image
processing methods may be split into multiple assignments such as connected
component labeling (CCL). In this chapter, a new method for real‐time evaluation of an
SHWFS is introduced. The method is presented in combination with a rapid‐control
prototyping (RCP) system that is based on real‐time Linux operating system.

Keywords: SHWFS, FPGA, real‐time Linux, RTAI, CCL, RCP, PCIe, adaptive optics

1. Introduction

“Adaptive optics” (AO) have been successfully utilized for more than one decade to improve
the image quality of optical imaging systems. One reason for the high popularity originates from
the fact that the image quality may be improved without mechanical adjustment, for example,
the lenses. Additionally, the technological progress with respect to the manufacturing of
deformable mirrors, an increase of computational power, and new approaches for controlling
and sensing the wavefront allows broadening the scope of AO to new application fields, e.g.,
additive laser manufacturing, general beam shaping, and laser link communication [1].

In Figure 1, the general AO principle is illustrated within the context of controlling the
wavefront. It is clear that besides good performance with respect to the stroke and the dynamic

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited.

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,

distribution, and reproduction in any medium, provided the original work is properly cited.

response of the deformable mirror, the wavefront needs to be measured accurately. To
compensate for wavefront distortions, e.g., time‐varying disturbances with or without a
stochastical and/or dynamical model, the disturbance has to be measured with adequate
precision. For the quasi‐continuous measurement of the wavefront in AO systems, Shack‐
Hartmann wavefront sensors (SHWFSs) have widely been employed for measuring the
wavefront, thus, the phase of the electromagnetic wave [2–5].

Figure 1. General scheme of adaptive optics, consisting of deformable mirror, wavefront sensor, and control system for
closed‐loop operation [9].

The SHWFS has shown some performance benefits when compared to interferometers as the
SHWFS does not require a reference wave during the measurement process. Furthermore, the
measurement sensitivity of an SHWFS primarily depends on the read‐out noise of the detector,
the luminosity of the wavefront and, hence, the intensity of the spots, and on the algorithm to
find and assign the centroids, respectively [6–8].

The most commonly used wavefront measurement sensors, together with their advantages
and disadvantages are discussed in Ref. [10]. The SHWFS itself relies decisively on the

Field - Programmable Gate Array178

determination of the centroids, i.e., on the image‐processing techniques being applied. The
different approaches are elaborated in Ref. [11]. As the computational performance and the
dynamic behavior of the deformable mirrors are improving continuously, the sensing of the
wavefront should also be accelerated which results in the demand of a low‐latency and very
large frame‐rate. A straightforward attempt is to accelerate the image processing by utilizing
parallel approaches; e.g., graphics processing units (GPUs) or field‐programmable gate arrays
(FPGAs).

The bandwidth demand of closed‐loop AO systems is continuously increasing, see Ref. [12]
or the report of the European Southern Observatory (ESO) ([13], ch. 7.9), to name but a few. In
this regard, the application of GPUs is not as promising as FPGAs for evaluation of the
wavefront because the GPU requires the use of the central processing unit (CPU) for data
management whereas an FPGA may directly access the image sensor (typically a CMOS or
CCD image sensor), that is, the pixel information. This allows parallelism with a low latency
and thus a low delay. The problem with the delay is that even just a few milliseconds induced
by the wavefront sensor may tend to ruin the overall performance of the closed‐loop system
as long as no adequate disturbance model is known, see e.g., the Xinetics AO system in Ref.
[14]. FPGAs show some flexibility in interfacing to a standard computer, e.g., by using the PCIe
interface or Universal Serial Bus 3.0 (USB3.0). Furthermore, the FPGA may be used to perform
more tasks, for example, performing the computation for closed‐loop operation or interfacing
the digital to analog converter (DAC) for controlling the actuators of a deformable mirror
without additional expensive cards from the hardware manufacturer.

In the last years, FPGAs became more common in academia but also in the industry due to
their enormous capabilities regarding parallelism capability, achievable clocking frequency,
and wide logic resources. In this course, FPGAs have been introduced as means for SHWFS
evaluation. For instance, in Ref. [15], an FPGA solution is implemented under the assumption
that spots cannot leave the associated subapertures.

In this chapter, we present a recently developed rapid‐control prototyping (RCP) system that
is based on an FPGA, mounted on a hard real‐time Linux computer. Using a novel implemen‐
tation, the evaluation of the SHWFS is performed on the FPGA directly. The implementation
guarantees minimum delay during the evaluation of the wavefront and an enhanced dynamic
range. We illustrate the algorithm for the spot detection and their ordering. Furthermore, we
explain the code generation from a MATLAB/Simulink model to the hard real‐time Linux
system and the FPGA implementation of the PCIe interface.

2. FPGA‐based SHWFS evaluation

For controlling the wavefront in an AO system, the wavefront itself has to be measured in an
appropriate way. Several methods have been developed for that purpose, e.g., Pyramid, Shack‐
Hartmann (SHWFS), Curvature, or Holographic wavefront sensors [3, 16, 17]. Until now, an
SHWFS is typically used for this objective as it may offer the best trade‐off between perform‐
ance, flexibility, and price. Since the SHWFS is based on capturing the intensities on an image
plane (in general, a complementary metal‐oxide semiconductor (CMOS) or charge‐coupled

Real‐Time Adaptive Optic System Using FPGAs
http://dx.doi.org/10.5772/66184

179

device (CCD) image sensor), the evaluation of the SHWFS may be seen as some kind of image
processing, calculating image moments. Figure 2 depicts the basic principle of an SHWFS.
Generally, an SHWFS will consist of an array of these lenses, called lenslet array.

Figure 2. Single convex lens; the gray dot marks the incident flat wavefront, the red dot marks the tilted incident wave‐
front.

The lenslet array is positioned in parallel to the image plane with a distance of the focal length
of the lenses such that the focal point is on the image plane. If a flat wavefront is incident on
the lenslet, the spot lies in the projected center of the convex lens in the image plane (marked
with the gray dot in Figure 2). Due to the nature of the convex lens, the partial derivative of
the wavefront with respect to x‐ and y‐direction is averaged over the area of the lens. Thus, the
deviation of the focal spot on the image plane with respect to the projected center of the convex
lens denotes the local derivative of the wavefront. If a lenslet array is used then one would
define a given area on the image plane in which the spot must lie. This may limit, of course,
the possible dynamic range because the steepness of the partially tilted wavefront is limited
by the area of the image plane and the focal length of the lenslet array.

Field - Programmable Gate Array180

The task is to determine the position or the deviation 𝀵𝀵 and 𝀵𝀵 of the spots, as shown in
Figure 2. For a given area with a predetermined number of pixels, this can be formulated as

1 1

=0 =0

1 1

=0 =0

(,)

(,)

- -

- -=
å å
å å

M N

i i ji j

c M N

i ji j

x I x y
x

I x y
(1)

1 1

=0 =0

1 1

=0 =0

(,)

(,)

- -

- -=
å å
å å

M N

i i ji j

c M N

i ji j

y I x y
y

I x y
(2)

where and denote the number of pixel in x‐ and y‐direction, respectively. (𝀵,𝀵) is the

intensity of the pixel at the coordinate (𝀵,𝀵).
In the past, several methods have been developed for extending the dynamic range of the
SHWFS, such as hardware modification, tracking, similarity approaches, to name but a few.
We may now calculate 𝀵𝀵 = 𝀵− 𝀵, where 𝀵 is the x‐coordinate of the projected center of

the convex lens. The corresponding calculation can be done for 𝀵𝀵 too. For the work presented
here, the SHWFS with its CCD camera is directly connected to an FPGA to the end of lowest
possible latency.

Evaluating the pixel information of the SHWFS for determining the phase of the wavefront
may be divided into two problems: First, determine the individual centroids, i.e., calculate the
centroid of the connected areas and, second, the ordering of the centroids to the lenslet for
calculating the deviation with respect to the default position and, thus, computing the local
derivatives of the wavefront.

As mentioned previously, as long as a predefined area is given in which the spots have to stay,
the dynamic range of the SHWFS is limited. Since the approach of the connected areas does
not use any predefined area, the restriction is no longer prevalent. However, to be fair, the
default algorithm performs the determination and ordering of the centroids in a single step
whereas the ordering is a subsequent step which is discussed in the following.

The determination of the connected areas for calculation of the centroids may be based on
different methods. These methods mainly differ in their ability for online calculation of the
connected areas, meaning that the pixel stream is processed sequentially at the end of it. Such
methods are called single‐pass algorithms, emphasizing that only a single pass is required
without necessarily storing the complete pixel information. The methods have extensively
been studied, e.g., in road sign detection or line tracking systems for lane assistance. The
general name for these algorithms is connected‐component labeling (CCL). CCL—also
denoted by connected‐component analysis, region labeling—is an algorithmic application of
graph theory. The subsets of connected components are often denoted as “blobs.” Blobs are
uniquely labeled, based on a predetermined heuristic, mostly along the neighbor relationship.

Real‐Time Adaptive Optic System Using FPGAs
http://dx.doi.org/10.5772/66184

181

For this approach, the labeling used for the CCL is based on an eight‐point neighborhood
system, see Figure 4. Another popular neighborhood system is the four‐point neighborhood
system which is presented in Figure 3. In Figures 3 and 4, the symbol “s” marks the actual
pixel and the corresponding neighbors of pixel s are marked in gray.

Figure 3. Four‐point neighborhood system.

Figure 4. Eight‐point neighborhood system.

The procedure for CCL is straightforward. The pixels (the intensity information for each pixel)
are streamed sequentially, typically from left to right and top to bottom. If the intensity
information is larger than a threshold value, the pixel is assumed to be “1” else “0.” This step
is called binarization. In Figure 5, the boxes with a gray background have already been
processed and the actual pixel carries the symbol “?.”

Figure 5. Label collision due to nonconvex blob.

In the case when two sets are connected, but due to the sequential processing receive two
different numbers, a label collision may occur. As long as the blobs are convex sets, a label

Field - Programmable Gate Array182

collision cannot occur when using an eight‐point neighborhood. Experiments have shown that
the assumption of convex blobs is not valid for the typical application scenario of an SHWFS.
This may be caused by a disturbed pixel intensity information, recording the noise of the
camera sensor, the photon noise, nonperfect lenses, and other effects. Due to thresholding with
a fixed value, a single count in terms of the digitalized intensity information can lead to
nonconvex blobs, see e.g., Figure 6.

Figure 6. Resolved label collision due to blob merging.

Application of morphology methods, such as dilation or erosion, is not possible without
storing large parts of the image, thus are not single‐pass compliant. Additionally, morphology
methods significantly increase the delay.

The handling of label collisions can be accomplished by using a label stack which allows label
reusing after a label collision has occurred. By means of label reusing the number of provided
labels can be kept to a minimum; otherwise, under some circumstances, twice the number or
even more labels must be provided. More information is given in Refs. [9, 18, 19].

After having determined the blobs, thus the connected areas, the division of the numerator
and denominator may be performed for each valid blob found. The numerator and denomi‐
nator have to be stored separately as the division step can only be performed when the
connected set is maximum. In the block diagram given in Figure 7, this step is done in the
“centroid calculation/feature extraction” block which also performs the assignment of the
centroids to the lenslets.

Figure 7. Block diagram of the complete CCL FPGA implementation [18].

Real‐Time Adaptive Optic System Using FPGAs
http://dx.doi.org/10.5772/66184

183

One of the key elements of the drafted implementation in Figure 7 is that solely the former
line of the pixel stream has to be stored, not the whole pixel stream. For the applied camera,
this results in storing 224 pixels where each pixel is one bit wide because only the binarized
value has to be stored. Furthermore, only parts of the former line have to be accessed in parallel
such that a small row register is sufficient which is automatically loaded from a Block RAM
(BRAM). Using a BRAM has the advantage that the consumption of logic cells is reduced as
the BRAM is a dedicated peripheral offered by most FPGAs. The overall logic consumption
can be kept at a minimum [18].

Figure 8. Exemplary centroids for a 4 × 4 lenslet array; some spots are missing.

The assignment or segmentation of the centroids is visualized in Figures 8 and 9. This idea has
been presented in Ref. [18] and behaves similar to the standard approach for the regular case,
that is, the wavefront is not strongly disturbed. However, the advantage of this approach
appears whenever a large defocus is present in the wavefront to be measured since shrinking
or increasing the overall distance between two neighbored centroids is not a problem for the
segmentation method.

The fundamental principle is that the centroids are ordered in parallel with respect to their x‐
and y‐value such that two separately ordered lists exist. Then, straight lines are used to segment
the centroids in x‐ and y‐direction by using their distance between each other. As Figure 9
illustrates, this method is working well also for the case when some centroids are missing due
to shadowing or insufficient light intensities. When a very large shearing occurs, however, the
method will not be ideal because straight vertical lines are used. But if this problem appears,
the standard approach is also not applicable anymore. This algorithm is called simple straight
line segmentation.

Field - Programmable Gate Array184

Figure 9. Segmented centroids applying the method presented in [18].

The described algorithm is very simple and straightforward. In Ref. [19] the so‐called spiral
method has been extended to be deterministic and real‐time capable using the centroids
gathered by employing CCL. It is obvious that depending on the specific application other
methods may be better suited. The CCL may be enhanced by making the thresholding adaptive
to compensate the natural intensity inhomogeneity [9, 20]. Another enhancement is the
adaptive positioning which for most cases may solve the problem when the number of rows
and columns after assignment of the centroids are not the same as with the lenslet array. This
circumstance, in general, will lead to ambiguity of the assignment. The adaptive positioning,
however, uses an approach based on the similarity of the shape of the segmented centroids
and minimizes the shift. Based on this information, the assignment is shifted by one row or
column to reduce the offset.

Figure 10. Evolution of processing time, each step rounded up to 25 µs, during SHWFS evaluation applying the FPGA
approach.

Figure 10 holds the timeline for the whole evaluation of the SHWFS beginning with the
exposure until the assignment of the centroids to the lenslets. The “Imperx ICL‐B0620M”
camera, on which the “Imagine Optics HASO™ 3 Fast” wavefront sensor is based, is used for
this setup. The camera has a maximum frame rate of approximately 900 Hz at 224 × 224 pixel

Real‐Time Adaptive Optic System Using FPGAs
http://dx.doi.org/10.5772/66184

185

which corresponds to 1111 ms. Thus, the proposed method has a delay equal or less than one
single frame.

3. FPGA PCIe integration into the real‐time Linux system

The evaluation of the SHWFS is only one part of the AO system since the partial derivatives
of the wavefront must be either used for reconstruction of the wavefront and/or used for
controlling a deformable mirror (DM) in closed‐loop operation. A simple, basic AO concept is
used for the work presented in this text, see Figure 11. In the experimental setup, the FPGA,
besides the evaluation of the SHWFS, is also used for interfacing the digital‐to‐analog converter
(DAC) card. The benefit is that the FPGA can easily guarantee a true parallel output (same
guaranteed phase) for all analog outputs even if multiple DACs have to be used.

Figure 11. Overview over the basic AO concept; for the detailed concept see [21].

The subsequent processing of the SHWFS data is carried out by a performance computer using
state‐of‐the‐art hardware. On this performance computer, the control algorithm is running on
a hard real‐time Linux operating system (OS). This OS in combination with the performance
computer offers rapid‐control prototyping (RCP) capabilities in view of the direct MATLAB/
Simulink interface. Such an RCP system reduces the implementation effort drastically when
different control schemes and approaches need to be tested or compared with each other.

The PCIe FPGA card, see Figure 12, is a self‐developed card based on the Xilinx Kintex‐7 FPGA
module TE0741 from Trenz Electronics. The PCIe FPGA card offers more connectivity than
only the CameraLink interface. Nevertheless, in this context, only CameraLink, PCIe, and the
Serial Peripheral Interface (SPI) are used. The other interfaces are neglected in this context but
are presented in detail in Refs. [9, 21].

Field - Programmable Gate Array186

Figure 12. Developed PCIe FPGA board based on a TE0741 (Xilinx Kintex‐7) module from Trenz Electronics.

The integration of the FPGA card is realized via the PCIe interface. Thus, almost any modern
computer can be used for interfacing the PCIe FPGA card. The SHWFS, more exactly the CCD
camera, is connected with the CameraLink interface to the card. Additionally, two separate
DAC boards are installed where each DAC board offers 32 analog channels.

The outputs of the DAC cards are fed into an amplifier which amplifies the small signals to
drive, for example, the piezoelectric actuators that are part of the DM. In the setup, two DMs
have been applied. This circumstance allows the feature that one DM may be used for an
artificial, but realistic disturbance generation, whereas the other compensates for such
disturbance. In principle, the disturbance may also be virtually induced by adding some signal
to the output of the SHWFS; however, a meaningful emulation can be rather involved. This
may limit the performance of the system. For this reason, a real disturbance has been incor‐
porated. The amplifier offers the feature to switch between regular and symmetric voltage by
modifying the reference ground. Here, the benefit of the symmetric voltage is that the stroke
is symmetric as well. Due to the creeping behavior of the piezoelectric actuators, simply
applying an offset of [+150] V is not the same as symmetric operation.

For integrating the PCIe FPGA card into the Linux kernel, a kernel driver has to be developed.
So as to integrate data acquisition cards, Linux offers a special interface called comedi (control
and measurement device interface). Using this interface is very comfortable because the core
functionality is already implemented and only low‐level driver modules have to be developed
for supporting a new data acquisition card. In addition, a user‐space library called “comedilib”
is available which allows the utilization of user‐space to access the functionality of the data
acquisition card (Figure 14).

Real‐Time Adaptive Optic System Using FPGAs
http://dx.doi.org/10.5772/66184

187

Figure 13. RTAI principle for RTAI‐core active or inactive [21].

Figure 14. Block diagram of the different abstraction layers used in RTAI/LXRT [9].

The Linux kernel is patched with the RTAI (real‐time application interface) [22] patch which
itself is based on Adeos. The purpose of the Adeos project is to offer an environment so as to
allow sharing of hardware resources among multiple operating systems. RTAI uses that
approach (shown in Figure 13) for scheduling Linux in the hard real‐time support. If RTAI is
loaded then case B is active, otherwise case A.

Furthermore, RTAI supports comedi without disturbing the hard real‐time behavior. RTAI has
the LXRT extension that offers the feature to run real‐time applications as user‐space pro‐
grams, see Figure 14. Additionally, a MATLAB/Simulink target is available which uses the
Simulink Coder for C/C++ code generation [23]. Based on these prerequisites it is easy to extend
the given code generation to support more comedi implemented features such as block
memory reads or trigger commands.

The PCIe implementation is based on the Xilinx 7 Series Gen2 Integrated Block for PCI Express
IP‐core which has been extended to support Direct Memory Access (DMA). This way, the FPGA
may write the assigned centroids into the main memory of the computer without involving
the CPU, see Figure 15. PCIe is based on sending and receiving Transaction Layer Packets

Field - Programmable Gate Array188

(TLPs). The block “COMEDI_SHWFS_READ,” see Figure 16, performs a blocking read request
on the memory destination also being used for the DMA transfer. Behind these Simulink
blocks, we have predefined s‐functions which are based on the functionality provided by
comedi. The “COMEDI_SHWFS_TRIGGER” triggers the start of the frame capture; thus, the
image acquisition is synchronous to the real‐time application which is essential for guaran‐
teeing a deterministic behavior. As shown in the timeline in Figure 10, after approximately
1050 µs the data is transferred via DMA to the main memory of the computer.

Figure 15. Communication using PCIe interface between FPGA and computer.

Figure 16. Simulink model used for code‐generation and based on Simulink Coder.

The captured data, e.g., from the SHWFS as well as the control output and error values are fed
into the “RTAI_LOG” block. This module creates an interface with which another user‐space
program may record the data and write it either to the main memory or the hard disk.

4. Results from the adaptive optics setup

For closing the loop of the AO setup, a stabilizing controller is required. In Ref. [9], an ℋ∞
controller has been synthesized which robustly stabilizes the AO system. In the past, in general,
PI(D) controllers have been used which often were tuned by hand. It would go too far to present
the method for controller synthesis. So, this is not exposed in this survey. Since the AO setup

Real‐Time Adaptive Optic System Using FPGAs
http://dx.doi.org/10.5772/66184

189

uses an RCP approach, it is not very time consuming to test other control schemes, as only the
Simulink model has to be adjusted accordingly. Of course, the design of a stabilizing controller
which is also robust against a set of uncertainties may be rather complicated and time
consuming.

Figure 17. Application of a 10 Hz step disturbance while controller is switched on at = 6 s;controller = 1600 Hz and shwfs = 800 Hz [9].

To validate the applicability of the presented approaches, Figure 17 shows some recorded data.
The controller has been switched on at time instance 6000 ms. The disturbance is a 10 Hz
rectangular offset that is applied to one actuator of DM1. As the actuator patterns of the DM2
and DM1 are not the same and, additionally, do not have the same number of actuators, the
result is that multiple actuators are required for compensating the disturbance. A rectangular
disturbance is ideally suited to visualize the power of the controller as the steady‐state error
as well as the time required for compensating the disturbance may be analyzed.

The error value is obtained after the multiplication of the control matrix with the centroids (in
Figure 16 the signal after the “Eigen3‐Matrix‐Mult” block). The control matrix itself is the
pseudo‐inverse of the actuator influence function [8, 9].

The dimension of the error value is the same as the number of actuators. Nevertheless, the
error value itself does not give a direct insight on how the wavefront looks like. Therefore,
Figure 16 visualizes the reconstructed wavefront as a 3D surface. The respective error values
are depicted in Figure 18 separately. To calculate the Strehl values based on the reconstructed
wavefront in Figure 20, the wavefront at time instance 6320.63 ms has been used as reference;

Field - Programmable Gate Array190

thus, showing a Strehl value of exactly one. Both the three‐dimensional representation and the
error value visualize that it took 3–4 frames to reject the disturbance.

Figure 18. Experimental data with zoomed x‐axis to highlight the control behavior after a step disturbance,controller = 1600Hz and shwfs = 800Hz [9].

Figure 19. Captured image of the SHWFS, having a lenslet array of 14 × 14, during experiments.

Finally, Figure 19 shows some captured camera image of the SHWFS. The colors have been
adjusted for better visualization. The SHWFS has a lenslet array of 14 × 14 while the pixel area
is 224 × 224 pixels. The standard approach cannot be used here as the spots are leaving the
area on the image sensor. The area on the image sensor for each lens would be 16 × 16 pixels.

Real‐Time Adaptive Optic System Using FPGAs
http://dx.doi.org/10.5772/66184

191

However, the new approach has no problem and correctly assigns the spots to the lenses and
thus correctly measures the wavefront (Figure 20).

Field - Programmable Gate Array192

Figure 20. Reconstructed wavefront, rejecting a step disturbance; same data as in Figure 18 [9].

5. Conclusion

The use of FPGAs in the context of AO has proven to be very beneficial with respect to the
achievable performance, especially in closed‐loop operation. One positive aspect is the direct
evaluation of the SHWFS on the FPGA which allows to minimize the delay and to increase the
throughput. For the evaluation of the SHWFS, new approaches have been presented which
surpass or considerably extend existing methods. However, they have not reached possible
limits so far, particularly, in terms of the achievable dynamic range of the SHWFS.

The practical applicability of the method has been demonstrated in various experiments paired
with extensions such as the adaptive repositioning and thresholding [9, 18–20].

For designing AO setups and optimizing its performance, interdisciplinary groups are
indispensable. In this context, the control engineers may synthesize their simulation models
directly in code for closed‐loop operation. Such an RCP system may also be a commercial
solution such as dSpace. Yet, the presented RTAI‐based hard real‐time Linux system has the
important benefit to be of far lower initial cost with respect to hardware while granting higher
flexibility and ease of customization.

Real‐Time Adaptive Optic System Using FPGAs
http://dx.doi.org/10.5772/66184

193

Author details

Steffen Mauch1* and Johann Reger2

*Address all correspondence to: steffen.mauch@tu‐ilmenau.de

1 Ingenieurbüro Mauch, Unorthodox Solutions, Germany

2 Technische Universität Ilmenau, Ilmenau, Germany

References

[1] M. Knapek. Adaptive Optics for the Mitigation of Atmospheric Effects in Laser Satellite‐
To‐Ground Communications. Dissertation, Technische Universität Munchen, 2011.

[2] P.L. Wizinowich. Adaptive optics and keck observatory. IEEE Instrumentation Measure‐
ment Magazine, 8(2):12–19, 2005. ISSN 1094‐6969. doi: 10.1109/MIM.2005. 1405918.

[3] R.K. Tyson and B.W. Frazier. Field Guide to Adaptive Optics, 2nd Ed (SPIE Field Guide Vol.
FG24). SPIE Press, 4, 2012. ISBN 9780819490179.

[4] L.C. Andrews. Field Guide to Atmospheric Optics (SPIE Vol. FG02). SPIE Publications, 1,
2004. ISBN 9780819453181.

[5] P. Hickson. Fundamentals of Atmospheric and Adaptive Optics. Homepage University of
British Columbia, 2008.

[6] R. Irwan and R. G. Lane. Analysis of optimal centroid estimation applied to Shack‐
Hartmann sensing. Applied Optics, 38(32):6737–6743, 1999. doi: 10.1364/AO.38.006737.

[7] Z. Jiang, S. Gong, and Y. Dai. Monte‐Carlo analysis of centroid detected accuracy for
wavefront sensor. Optics & Laser Technology, 37(7):541–546, 2005. doi: 10.1016/j.optlastec.
2004.08.009.

[8] R.K. Tyson. Principles of Adaptive Optics, Fourth Edition. CRC Press}, ISBN:
9781482252330, 11, 2015.

[9] S. Mauch. Robust Control of an Adaptive Optics System. Dissertation, Technische Univer‐
sität Ilmenau, 2016.

[10] O. Guyon. Limits of adaptive optics for high‐contrast imaging. The Astrophysical
Journal, 629(1):592, 2005. doi: 10.1117/12.789849.

[11] A.M. Nightingale and S. Gordeyev. Shack‐Hartmann wavefront sensor image analysis:
a comparison of centroiding methods and image‐processing techniques. Optical
Engineering, 52(7):071413–071413, 2013. doi: 10.1117/1.OE.52.7.071413.

Field - Programmable Gate Array194

[12] A. Basden, D. Geng, R. Myers, and E. Younger. Durham adaptive optics real‐time
controller. Applied Optics, 49(32):6354–6363, 2010. doi: 10.1364/AO.49.006354.

[13] K. Kepa, D. Coburn, J.C. Dainty, and F. Morgan. Re‐baselining the ESO ELT project.
Analysis and Roadmap from the ELT Adaptive Optics Working Group, 2006.

[14] R.M. Rennie, D.A. Duffin, and E.J. Jumper. Characterization and aero‐optic correction
of a forced two‐dimensional weakly compressible shear layer. AIAA Journal, 46(11):
2787–2795, 2008. doi: 10.2514/1.35290.

[15] K. Kepa, D. Coburn, J.C. Dainty, and F. Morgan. High speed optical wavefront sensing
with low cost FPGAs. Measurement Science Review, 8:87–93, 2008. doi: 10.2478/ v10048‐
008‐0021‐z.

[16] J.M. Geary. Introduction to Wavefront Sensors (Tutorial Texts in Optical Engineering).
Society of Photo Optical, 5, 1995. ISBN 9780819417015.

[17] U. Schnars, C. Falldorf, J. Watson, and W. Jüptner. Digital Holography and Wavefront
Sensing: Principles, Techniques and Applications. Springer, 2nd ed., 2015 edition, 7, 2014.
ISBN 9783662446928.

[18] S. Mauch and J. Reger. Real‐time spot detection and ordering for a Shack‐Hartmann
wavefront sensor with a low‐cost FPGA. IEEE Transactions on Instrumentation and
Measurement, 63(10):2379–2386, 2014. ISSN 0018‐9456. doi: 10.1109/TIM.2014.2310616.

[19] S. Mauch and J. Reger. Real‐time implementation of the spiral algorithm for Shack‐
Hartmann wavefront sensor pattern sorting on an FPGA. Measurement, 92:63–69, 2016.
ISSN 0263‐2241. doi: 10.1016/j.measurement.2016.06.004.

[20] S. Mauch, A. Barth, J. Reger, N. Leonhard, and C. Reinlein. Improved thresholding and
ordering for Shack‐Hartmann wavefront sensors implemented on an FPGA. Interna‐
tional Workshop on Adaptive Optics for Industry and Medicine (AOIM), 2015.

[21] S. Mauch, J. Reger, C. Reinlein, M. Appelfelder, M. Goy, E. Beckert, and T. Tünnermann.
FPGA‐accelerated adaptive optics wavefront control. Proceedings of SPIE, 8978:1–12,
2014. doi: 10.1117/12.2038910.

[22] P. Mantegazza, E. L. Dozio, and S. Papacharalambous. Rtai: Real time application
interface. Linux Journal, 2000(72es), April 2000. ISSN 1075‐3583.

[23] R. Bucher and S. Balemi. Rapid controller prototyping with matlab/simulink and linux.
Control Engineering Practice, 14(2):185–192, 2006. ISSN 0967‐0661. doi: 10.1016/j.coneng‐
prac.2004.09.009. Special Section on Advances in Control Education Symposium.

Real‐Time Adaptive Optic System Using FPGAs
http://dx.doi.org/10.5772/66184

195

