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Abstract

This chapter reviews complete integrability in the setting of Lagrangian/Hamiltonian
mechanics. It includes the construction of angle-action variables in illustrative examples,
along with a proof of the Liouville-Arnol’d theorem. Results on the topology of the
configuration space of a mechanical (or Tonelli) Hamiltonian are reviewed and several
open problems are high-lighted.

Mathematics Subject Classication (2010): 37J30; 53C17, 53C30, 53D25

Keywords: Hamiltonian mechanics, Lagrangian mechanics, integrability, topological
obstructions, topological entropy

1. Introduction

Lagrangian mechanics employs the least-action principle to derive Newton’s equations from a

scalar function, the action function L. In classical mechanics, L is the difference of kinetic and

potential energies and therefore appears as an artifice. It is somewhat mysterious, then, that

the reformulation of Newtonian mechanics in terms of momentum and position, rather than

velocity and position as in Lagrangian mechanics, leads immediately to the total energy

function H and a plethora of geometric structure that is hidden in the native setting.

Due to the advantages of the Hamiltonian perspective, this chapter studies Lagrangian sys-

tems from this dual point of view. The organization of the chapter is this: Section 2 recalls the

classic construction of angle-action variables in 1 degree of freedom via several examples, then

states and proves the Liouville- Arnol’d theorem; Section 3 discusses the relationship between

the topology of the configuration space and the existence of integrable mechanical systems;

and it reviews several constructions of integrable systems whose configuration space is the

sphere or torus. Section 3 provides a number of open problems that may stimulate interested

researchers or students.

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



2. Integrability in Hamiltonian mechanics

2.1. Integrability in 1 degree of freedom

One of the central problems in classical mechanics is the integrability of the equations of

motion. The classical notion of integrability is loosely related to exact solvability, and roughly

corresponds to the ability to solve a system of differential equations by means of a finite

number of integration steps.

2.1a. Example: Harmonic oscillator Let us take the simple harmonic oscillator, or an idealized

Hookean spring-mass system, with mass m and spring constant k. If q is the displacement from

equilibrium and p the momentum, then the total energy is

H ¼ 1

2m
p2 þ k

2
q2; and equations of motion are

_q ¼ p=m;
_p ¼ −kq

� �

: (1)

The change of variables ðq; pÞ ¼ ðQ=λ; λPÞ transforms the system to, with λ ¼
ffiffiffiffiffiffi

km4
p

,

H ¼ ω

2
ðP2 þQ2Þ; and equations of motion are

_Q ¼ ωP,
_P ¼ −ωQ

� �

, (2)

where ω ¼
ffiffiffiffiffiffiffiffiffi

k=m
p

. A second change of variables ðQ; PÞ ¼ ð
ffiffiffiffiffi

2I
p

cosθ‚
ffiffiffiffiffi

2I
p

sinθ‚Þ transforms the

system to

H ¼ ωI; and equations of motion are
_θ ¼ ω,
_I ¼ 0

� �

: (3)

The differential equations in (3) are trivial to integrate since the right-hand sides are constants.

Let us explain the sequence of transformations. The change of coordinates ðq; pÞ ! ðQ; PÞ is an
area-preserving linear transformation that transforms the elliptical level sets of H into circles.

The transformation ðQ; PÞ ! ðθ, IÞ is analogous to the introduction of polar coordinates–

indeed the transformation ðr;θÞ ¼ ð
ffiffiffiffiffi

2I
p

;θÞ is a transformation to polar coordinates. Because

the area form dP dQ ¼ r dr dθ, we see that the transformation dP dQ ¼ dI ¼ dθ.

Therefore, the change of coordinates ðq; pÞ ! ðθ‚ IÞ not only reveals the exact solutions of the

harmonic oscillator equations, it is area preserving.

Suppose that for some reason one did not know to introduce “polar” coordinates. One might

still determine the change of coordinates using only that the transformation ðQ; PÞ ! ðθ‚IÞ
preserves area. Indeed, since d ðP dQ−I dθÞ ¼ 0, there is a function ν ¼ νðQ, θÞ such that

P dQ−I dθ ¼ dν or P ¼ ∂v
∂Q and I ¼ − ∂v

∂θ
. Then, upon substituting the identity P ¼ νQ into (2),

one obtains

ν≡

ðQ

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2H=ω−Q2
q

dQ ¼ 1

2
Q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2H=ω−Q2
q

−ðH=ωÞ arccosðQ=
ffiffiffiffiffiffiffiffiffiffiffiffiffi

2H=ω
p

Þ; (4)

where ≡ indicates that ν equals the right-hand side up to the addition of a 2π-periodic function

of θ.
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If ðQ;PÞmake a complete circuit around the contour fH ¼ cg then one obtains from (4) and the

identity that P ¼ νQ that

Δν ¼ ∮
fH¼cg

P dQ ¼ ðH=ωÞ 2π: (5)

On the other hand, since d2 ¼ 0 and I is held constant on the contour, Green’s theorem implies

that

Δν ¼ ∮
fH¼cg

dνþ I dθ ¼ ∮
fH¼cg

I dθ ¼ 2πI: (6)

Equating (5) and (6) shows that H ¼ ωI.

These calculations show that one may determine H as a function of I without explicit knowl-

edge of the coordinate transformation ðQ;PÞ ! ðθ;IÞ–but one does need to solve the Hamilton-

Jacobi equation

HðQ; νQÞ ¼ c; (7)

for ν, as performed in Eq. (4). At this point, if one wants to derive the change of coordinates

from ν, Eq. (4) shows that it is easier to write ν ¼ νðQ, IÞ, in which case P dQþ θ dI ¼ dν or

θ ¼ νI ¼ − arccos ðQ=
ffiffiffiffiffi

2I
p

Þ; (8)

so Q ¼
ffiffiffiffiffi

2I
p

cos ðθÞ and P ¼ νQ ¼
ffiffiffiffiffi

2I
p

sin ðθÞ.

Let it be observed that if, in Eq. (4), one had chosen the anti-derivative to be arcsin rather than

−arccos, then Q would be
ffiffiffiffiffi

2I
p

sin ðθÞ and P would be �
ffiffiffiffiffi

2I
p

cos ðθÞ. However, because

dP dQ ¼ dI dθ , one would be obligated to choose the negative square root to define P;

otherwise, dP dQ ¼ −dI dθ .

2.1b. Example: the planar pendulum. Let us take the idealized planar pendulum with a mass-less

rigid rod of length l suspended at a fixed end with a bob of mass m at the opposite end

(Figure 1). The total energy is

H ¼ 1

2m
p2 þmlgð1− cos qÞ; and

_q ¼ p=m;
_p ¼ −mlg sin q

� �

: (9)

To simplify the exposition, assume that the mass m ¼ 1 and let ω2 ¼ 16lg, where ω is 4 times

the frequency of the linearized oscillations at q ¼ p ¼ 0. The substitution q ¼ 2Q, p ¼ P=2

transforms the Hamiltonian to

8H ¼ P2 þ ω
2 sin 2Q, and

_Q ¼ P=4
_P ¼ −ω

2 sin ð2QÞ=8

� �

: (10)

If one tries to solve for a generating function ν ¼ νðQ, IÞ of a coordinate change ðQ,PÞ ! ðθ, IÞ
such that H ¼ HðIÞ, then one obtains from P ¼ νQ that
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ν ≡

ðQ

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8H−ω2 sinQ
p

dQ ¼
ω

k
EðQ, kÞ (11)

where ≡ indicates equality up to a 2π-periodic function of θ, H ¼ ω
2=ð8k2Þ and E is the elliptic

integral of the second kind defined by Eðx, kÞ ¼

ðx

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1−k2 sin 2x
p

dx.

If ðQ,PÞ make a complete circuit around the contour {H ¼ c}, then one obtains from Eq. (11)

that

Δν ¼ 4
ω

k
KðkÞ (12)

where KðkÞ ¼ EðQþðkÞ, kÞ and QþðkÞ ¼ arcsinð1=kÞ if k > 1 and π=2 if k < 1 (in which case, K is

the complete elliptic integral of the second kind). The area of the shaded region K in Figure 2

shows the geometric meaning of KðkÞ for k > 1. Along with the identity (6), one obtains

I ¼
2

π

ω

k
KðkÞ, (13)

which determines H ¼ HðIÞ implicitly.

Figure 3 graphs H as a function of I using the definition of I in (13) with ω ¼ 1, along with the

graph for the harmonic oscillator. Although H appears to be a smooth function of I on the

interval depicted, this is a numerical artifact. Indeed, there are two distinct proofs that H

cannot be differentiable in I over the interval [0,1]. Without loss of generality, it is assumed

that ω ¼ 1.

Figure 1. The planar pendulum with potential energy V ¼ mlgð1− cos qÞ.
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The first, calculus-based, proof is this: as k ! 1þðH ! 1=8−Þ, ∂I=∂k ! ∞. If H is a differentiable

function of I, then ∂H=∂I ¼ 0 at I ¼ 2=πðH ¼ 1=8Þ. But then the entire level set consists of fixed

points, which is false.

The second, topological, proof is this: each level set {H ¼ c}, c < 1=8, is connected; each level set

for c > 1=8 has exactly two connected components (c.f. Figure 2). If the generating function v

were differentiable in ðQ, IÞ on any rectangle containing R=πZ · f2=πg, then Eq. (13) would

determine a homeomorphism H ¼ HðIÞ, and so the level sets of H would remain connected on

either side of the critical level at height 1/8. Absurd.

Figure 2. The contours of the pendulum Hamiltonian with ω ¼ 1 (9).

Figure 3. The graph of H ¼ HðIÞfor the pendulum.
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To derive the change of coordinates ðQ,PÞ ! ðθ, IÞ from the generating function ν, one uses the

identity θ ¼ νI and properties of the elliptic integrals to deduce

θ ¼ π

2

FðQ, kÞ
ðQþðkÞ, kÞ

) Q ¼ amk
2Fþ
π

θ

� �

(14)

where Fðx, kÞ ¼
ðx

0

dx=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1−k2 sin 2x
p

is the elliptic integral of the first kind, Fþ ¼ FðQþðkÞ, kÞ and

amkðuÞ is the Jacobian amplitude function, a local inverse to F ([1], Chapter 2). Along with

P ¼ νQ, (14) implies that

P ¼ ω

k
dnk

2Fþ
π

θ

� �

, (15)

where dnkðuÞis the Jacobian elliptic function.

2.1c. Example: a mechanical system. Let V ¼ VðQÞ be a smooth potential function of a 1-degree-

of-freedom Hamiltonian system with

H ¼ 1

2
P2 þ VðQÞ: (16)

If one attempts to find the generating function ν ¼ νðQ, IÞ of an area-preserving transformation

ðQ,PÞ ! ðθ, IÞ that transforms H ¼ HðIÞ, then one deduces that

ν≡

ðQ

Q0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ðH−VðQÞÞ
p

dQ, (17)

up to a function depending only on I. Then, in a complete circuit around the connected contour

{H ¼ c}, one has 2π ¼ Δθ ¼ ΔνI identically, so

2πI ¼ ∮
{H¼c}

P dQ: (18)

and, upon solving (18) for H ¼ HðIÞ, one inverts

θ ¼ 1
ffiffiffi

2
p

ðQ

Q0

HI
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

H−VðQÞ
p dQ, (19)

to obtain Q ¼ Qðθ, IÞ, and finally P ¼ νQ yields P ¼ Pðθ, IÞ. Since the change of coordinates is

area-preserving, the Hamiltonian form of the equations of motion are preserved, so the

resulting equations are

H ¼ HðIÞ and
_θ ¼ ∂H=∂I
_I ¼ 0

� �

: (20)

2.2. The generating function

The above three examples use a generating function ν ¼ νðQ, IÞ of a mixed system of coordi-

nates in order to create an area-preserving change of coordinates to angle-action variables ðθ, IÞ.
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2.2a. Question: why do the angle-action variables exist? In order to understand the generating

function, it is necessary to clarify the existence of the coordinates ðθ, IÞ, which are commonly

called angle-action variables. Let H : X ! R be a smooth function from an oriented surface X to

the reals. If it is assumed that A⊂X is an open, connected, saturated ðH−1ðHðAÞÞ∩A ¼ AÞ subset

of the domain of H,HjAhas no critical points and HjA is proper, then HjA is a submersion onto

the interval B ¼ HðAÞ⊂R. SinceHjA is proper, for each b∈B, the level set ðHjAÞ−1ðbÞ is a compact

one-manifold and hence its components are circles. Since A is connected andHjA is critical-point

free, the level set must be connected, so it is a circle. Therefore, the submersion theorem implies

that A is diffeomorphic to A′ ¼ S1 ·B.1 To make this system of coordinates concrete, note that

there is a complete vector field U on A such that dHðUÞ≡1. Let γ⊂A be a segment of an integral

curve of U which is maximal (i.e. an integral curve that strictly contains γ intersects X−A). For

each a∈A, let t ¼ tðaÞ be the time along the flow line of the Hamiltonian vector field XH

beginning at the initial condition γ∩H−1ðHðaÞÞ. The function t is multi-valued, since the flow line

is closed, so it should be considered as a function on the universal cover of A.

Since the tangent space at a∈A is spanned by XH and U, Ω is determined by ΩðXH ,UÞ. But

QðXH,UÞ ¼ −dHðUÞ ¼ −1, so Ω ¼ dHdt.

Let T be such that 2πT is the least period of the function t (i.e. the first return time to γ). Then

T ¼ TðHÞ is a function of H alone. Define θ by

θ ¼ t=TðHÞ ðmod 2πÞ and I by dI ¼ TðHÞ dH: (21)

The function θ is the normalized time along the flow lines of Hamiltonian vector field XH,

while dH=dI ¼ 1=TðIÞ is the frequency. One computes that the oriented area form

Ω ¼ dHdt ¼ dIdθ. Moreover, in the coordinates ðθ, IÞ, the Hamiltonian vector field

XH ¼
_θ ¼ 1=TðHÞ ¼

dH

dI
,

_I ¼ 0

8

<

:

9

=

;

: (22)

This proves the existence of an area-preserving diffeomorphism φ : D ·S
1 ! A, where D⊂R is

an open interval, such that the Hamiltonian H is transformed to a function of I alone; and φ is

as smooth as H and the area form Ω are (e.g. if both are real-analytic, then φ is real-analytic).

2.2b. Question: what kind of “function” is ν? In the first instance, ν is not single-valued. Indeed, one

postulates the area-preserving change of coordinates φ : ðQ,PÞ ! ðθ, IÞ to deduce that

dðPdQþ θdIÞ ¼ 0, (23)

so that locally there is a function ν such that

P dQþ θdI ¼ dν: (24)

1

If one prefers a purely “elementary” proof, one might apply the inverse function theorem at this point.
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But since θ is an angle variable, this equation can only hold globally modulo 2πZ dI. So, in this

formulation of the generating function, ν can only be defined globally modulo 2πZ I. Or,

equivalently, νI is a function with values in the circle R=2πZ.

The way to resolve these ambiguities or difficulties is simple: the domain of the change of

coordinates φmust be non-simply connected (a disjoint union of open annuli, in fact, as can be

deduced from the discussion above) and so one should view (24) as holding globally on the

universal cover of this annulus where θ is a single-valued real function (c.f. 21). In this case, the

lift of a closed contour {H ¼ c} is a path that projects to the contour and whose endpoints differ

by a deck transformation–which in the angle-action coordinates is ðθ, IÞ ! ðθþ 2π, IÞ. Since I

is constant along this path, the path integral of PdQ equals the path integral of dν, i.e. Δν, the

change in ν from one preimage to its translate. With this understanding, Eq. (18) is correct.

And, indeed, one sees that the integral in Eq. (17) is defined not on the domain of the

coordinate change φ but on its universal cover; the same is true for the integral in Eq. (19), but

the marvellous fact about that integral is that it is 2π-periodic: this follows from the observa-

tion that Δθ ¼ 2π identically around a closed connected contour in {H ¼ c}.

So to answer the question that started the section, the generating function ν is a function

defined on the universal cover of the union of regular compact levels of H which implicitly

defines a 2π-periodic change of coordinates to “angle-action” variables ðθ, IÞ.

2.3. Integrability in 2 or more degrees of freedom and Tonelli Hamiltonians

Integrability in 2 or more degrees of freedom is substantially more involved than the case of

1 degrees of freedom. Of course, a sum of n distinct, non-interacting 1-degree-of-freedom

Hamiltonians is a simple case; and upon reflection, a not-so- simple case, because this

condition is not coordinate independent. Indeed, a necessary and sufficient condition is that

the Hamiltonian vector field be Hamiltonian with respect to two distinct non-degenerate

Poisson brackets {, }i that are compatible in the sense that the linear space spanned by the

brackets is a space of Poisson brackets, and maximal in the sense that a “recursion” operator

naturally defined from the two brackets has a maximal number of functionally independent

eigenvalue fields [2].

Let us turn now to a definition which generalizes mechanical Hamiltonians.

Definition 2.1 (Tonelli Hamiltonian). Let Σ be a smooth n-manifold and T�Σ its cotangent bundle. A

smooth function H : T�Σ ! R which satisfies ðT1ÞHjT�
xΣ is strictly convex for each x∈Σ; and

ðT2Þ Hðx, tpÞ=t ! ∞ uniformly as t ! ∞, is called a Tonelli Hamiltonian.

As noted, Tonelli Hamiltonians are natural generalizations of mechanical systems. For this

reason, Σ will be referred as the configuration space of the Hamiltonian H.

If Qi are coordinates on Σ and Θ ¼ ∑iPi dQi are the coordinates of the 1-form Θ, then the

canonical symplectic structureΩ ¼ dΘ ¼ ∑dPi∧dQi on T�Σ. The symplectic formΩ equips the

space of smooth functions on T�Σ with a Poisson bracket denoted {,} that satisfies

{Pi,Qj} ¼ −{Qj,Pi} ¼ δij {Qi,Qj} ¼ {Pi,Pi} ¼ 0 (25)
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for all i, j. The Poisson bracket is fundamental to Hamiltonian mechanics. For each smooth

function H, one has a smooth vector field XH ¼ {H, }, and the skew symmetry of the bracket

implies that H is preserved by the flow. One says that H1 andH2 Poisson commute if {H1,H2}≡0.

A fundamental result in Hamiltonian mechanics is the Liouville-Arnol’d theorem, which pro-

vides a semi-local description of a completely integrable Hamiltonian and the Poisson bracket.

Theorem 2.1 (Liouville-Arnol’d). Let H : T�Σ ! R be a smooth Hamiltonian. Assume there exists n

functionally independent, Poisson commuting conserved quantities F ¼ ðF1 ¼ H,…,FnÞ : T�Σ ! R
n.

If L⊂F−1ðcÞ is a compact component of a regular level set, then there is a neighbourhood W of L and a

diffeomorphism φ ¼ ðθ, IÞ : T
n
·B

n ! W such that

F ¼ FðIÞ {Ii,θj} ¼ δij, {Ii, Ij} ¼ {θi,θj} ¼ 0,

XFi ¼ ∑
∂FiðIÞ

∂Ij

∂

∂θj
,

that maps L to Tn
· {0}.

In such a situation, it is said that His Liouville, or completely, integrable. The torus Tn
· {I0} is a

Liouville torus, the neighbourhood T
n
·B

n is a toroidal ball and the conserved quantities are first

integrals. Systems with k first integrals, of which l < k Poisson commute with all k first inte-

grals, where kþ l ¼ 2n are called non-commutatively integrable; when k ¼ 2n−1, the system is

also called super-integrable c.f. [3, 4].

There are several proofs of the Liouville-Arnol’d theorem in the literature. The basic ideas are

already captured in the one-dimensional case discussed in Section 2.2.

It can be assumed, without loss, that L ¼ F−1ðcÞ. Since c∈Rn is a regular value of F, the

submersion theorem implies that there is an open neighbourhood C of c consisting of regular

values of F and the open set F−1ðCÞ is diffeomorphic to L ·C. Therefore, there is a smooth n-

dimensional submanifold M⊂F−1ðCÞ such that M transversely intersects each level set

Lf ¼ F−1ðf Þ, f∈C. Possibly by shrinking the open set C, it can be assumed that M is Lagrangian:

ΩjM≡0.2

Because the functions Fi,…, Fn Poisson commute and are functionally independent, the Ham-

iltonian vector fields XF1 ,…,XFn
span the tangent space TxLf , for each x∈Lf , f∈C. Because Lf is

compact, each vector field is complete, so there is a well-defined flow map φF i
: R· F−1ðCÞ

! F−1ðCÞ. Because Fi,…, Fn Poisson commute, the respective flow maps commute, so there is

an action of Rn on F−1ðCÞ defined by

φt ¼ φtn
Fn
∘ ⋯ ∘φt1

F1
(26)

for all t∈Rn. Define a map

2

The existence of M is a consequence of Darboux’s theorem. Of course, a less elementary proof would appeal to

Weinstein’s theorem and Moser’s isotopy lemma.
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Φðt, mÞ ¼ φtðmÞ, t∈Rn,m∈M: (27)

This is a smooth map which is a local diffeomorphism of Rn
·Mwith F−1ðCÞ. Indeed, φt carries

each level Lf into itself and carriesM into a submanifold φtðMÞ transverse to Lf at φ
tðmÞ; on the

other hand, the derivative of φt with respect to t is a surjective linear map onto Tφt ðmÞLf .

Therefore, dΦ is surjective, so injective, hence Φ is a local diffeomorphism onto its image.

Compactness and connectedness of the levels Lf imply that the image of Φ is F−1ðCÞ.

For each m∈M, let PðmÞ⊂Rn be the set of t such that Φðt, mÞ ¼ m. Since each level set is

compact, PðmÞ is a discrete subgroup of Rn isomorphic to Z
n. This is the “period lattice” of

the action φ. If one selects a basis of PðmÞ, one obtains a mapM ! GLðn;RÞ,m ! 2πTðmÞ. The

implicit function theorem implies that there is a smooth map amongst these maps. Moreover,

since FjM is a bijection onto its image, one can take the components of F as coordinates on M,

or in other words, T ¼ TðFÞ.

Define functions θ ¼ ðθ1,…,θnÞ by

θ ¼ TðFÞ−1 � t ðmod 2πÞ, θ : R
n
·C ! R

n=2πZn: (28)

The flow map Φ therefore induces a diffeomorphism F−1ðCÞ ! T
n
·C : x ! ðθðxÞ, FðxÞÞ.

To complete the proof, one might show that each vector field ∂=∂θi is Hamiltonian with

Hamiltonian function Ii and that F is functionally dependent on I so that ðθ, IÞ is a canonical

system of coordinates on F−1ðCÞ. This is performed indirectly. Define the functions Ii ¼ IiðFÞ by

2πIi ¼ ∮
ΓiðFÞ

ξ, (29)

where ξ ¼ P � dQ is the primitive of the symplectic form Ω and ΓiðFÞ is the cycle on LF on

which θi increases from 0 to 2π and the other angle variables are held equal to 0. To show that

ðθ, IÞ is a system of coordinates on F−1ðCÞ, one computes the Jacobian ½∂Ii=∂Fj�:

2π
∂Ii
∂Fj

¼ lim
s!0

1

s

ð

Cj

ð

ðF, sÞ

Ω, (30)

where, in the ðt, FÞ coordinate system,

CjðF, sÞ ¼ {ðuTðFþ υejÞi, Fþ υejÞju∈½0, 2π�, υ∈½0, s�}

is the “cylinder” obtained by sweeping out the cycles ΓjðFþ vejÞ as the j-th component of

Fincreases from Fj to Fj þ s, and Ti is the i-th column of the period matrix T. Since

Ω
∂

∂Fj
,

∂

∂tk

� �

¼
∂Fk
∂Fj

¼ δjk, (31)

which implies
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∂Ii
∂Fj

¼ Tji: (32)

Since the period matrix T is non-singular, the transformation ðθ, FÞ ! ðθ, IÞ is a

diffeomorphism.

Finally, the functions I1,…, In Poisson commute and since M is Lagrangian, the functions

ti,…, tn Poisson commute, which implies θ1,…,θn Poisson commute. And, since {Fi, tj} ¼ δij,

this implies that {Ii,θj} ¼ δij.

The remainder of the theorem follows from the fact that the angle-action coordinates ðθ, IÞ are

canonical and F ¼ FðIÞ.

3. Topology of configuration spaces

The central problem in the theory of completely integrable Tonelli Hamiltonian systems is to

Problem 3.1. Determine necessary conditions on the configuration space Σ for the existence of a

completely integrable Tonelli Hamiltonian H.

This is a broad, overarching problem which has motivated research by many authors over an

almost 40-year period, including many of the author’s publications. It is helpful to pose several

sub-problems which address aspects of this problem and that appear to be amenable to

solution. The remainder of this section is devoted to an elaboration of this problem, along with

known results. We start with two-dimensional configuration spaces.

3.1. Surfaces of genus more than one

As a rule, completely integrable Tonelli Hamiltonians are quite rare, as are the configuration

spaces Σ which support such Hamiltonians. Indeed, in two dimensions, the compact surfaces

that are known to support a completely integrable Tonelli Hamiltonian are the 2-sphere, S2, the

2-torus T2 and their non-orientable counterparts. With some quite mild restrictions on the

singular set–called condition ℵ−, and assuming that the Hamiltonian is Riemannian, Bialy has

proven these are the only compact examples [5]. This extended an earlier result of V. V. Kozlov

[6]; the author has obtained a similar result for super-integrable Tonelli Hamiltonians [7].

V. Bangert has suggested to the author that Bialy’s argument should extend to prove the non-

existence of a C2 integral that is independent of the Hamiltonian when Σ is a compact surface

of negative Euler characteristic (c.f. [8]). The idea of such a proof would be the following

(assuming that H is Riemannian): Suppose that H enjoys a C2 integral F that is independent

on a dense set, hence that the union of Liouville tori is dense. Let Γ⊂H−1ð12Þ be the union of

orbits which project to minimizing geodesics. It is known, due to results of Manning and

Katok [9, 10], that Γ contains a hyperbolic invariant set Λ on which the flow is conjugate to a

horseshoe. Let λ⊂Λ be a closed orbit of the geodesic flow of period T. Since the union of

Liouville tori is dense, for each E > 0, there is a Liouville torus Lλ, E that contains an orbit of
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the geodesic flow that remains within a distance E of λ over the interval ½0,T�. Hence, π1ðLλ, EÞ

has a homotopy class mapping onto λ. Since λ is minimizing, it has no conjugate points and so

for E sufficiently small, the same is true for the orbit on Lλ, E over the time interval ½0,T�. This

implies that the image of π1ðLλ, EÞ is (free) cyclic and the kernel is generated by a cycle that

bounds a disc–in classical terminology, this means that Lλ, E is compressible. It follows that Lλ, E

bounds a solid torus Tλ≅T
1
·B

2 that is invariant for the geodesic flow. The integral FjTλ

induces a singular fibration of the solid torus by invariant 2-tori.

Thus, for each closed orbit λ in the hyperbolic invariant set Λ, we have produced an invariant

solid torus Tλ that shadows λ–at least in some rough, homotopic sense. This fact alone should

suffice to achieve a contradiction.

Problem 3.2. Let Σ be a compact surface of negative Euler characteristic. Extend the above argument to

prove the non-existence of a smooth Tonelli Hamiltonian H : T�
Σ ! R with a second C2 integral F that

is independent on a dense set; or give an example of a completely integrable Tonelli Hamiltonian

H : T�
Σ ! R.

V. Bangert proposes similar problems in his contribution in ([8], Problems 1.1, 1.2).

There is a similar, but possibly more accessible, problem for twist maps. Recall that if we

discretize time, the notion of a Tonelli Hamiltonian is replaced by that of a twist map

f : T�
Σ ! T�

Σ which is a symplectomorphism that satisfies a condition analogous to T1. If f enjoys n

independent, Poisson commuting first integrals, then the Liouville-Arnol’d theorem implies

that some power of f acts a translation on the Liouville tori. We noted above that the Hamilto-

nian flow of a Tonelli Hamiltonian has a horseshoe on an energy level.

Problem 3.3. Let f : T�
T
1 ! T�

T
1 be a twist map. If f has a horseshoe and a C1 first integral F, is F

necessarily constant on an open set?

3.2. The 2-torus

Let us turn now to the torus. The 2-torus T2 admits a family of completely integrable Riemann-

ian Hamiltonians which are called Liouville. These are of the form

H ¼
p2x þ p2y

2½f ðxÞ þ gðyÞ�
F ¼

gðyÞp2x−f ðxÞp
2
y

f ðxÞ þ gðyÞ
(33)

where f , g : T
1 ! R are smooth positive functions and ðx, y, px, pyÞ is a canonical system of

coordinates on T�
T
2. The degenerations of the Liouville family include the rotationally sym-

metric ðf ≡const:Þ and flat ðf , g≡const:Þ.

The Liouville family is obtained from two uncoupled mechanical oscillators with periodic

potentials,

G ¼
1

2
ðp2x þ p2yÞ þ aðxÞ þ bðyÞ, (34)
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on an energy level E ¼ αþ β > maxaþmaxb such that f ¼ α−a, g ¼ β−b. The Maupertuis prin-

ciple states that orbits of the Hamiltonian flow of G on the energy level {G ¼ E} are orbits of the

Hamiltonian flow ofH up to a change in time along the orbit. The complete integrability of G is

explained in Sections 2.1c and 2.3.

It is a remarkable fact that the Liouville family exhausts the list of known completely integra-

ble Riemannian Hamiltonians whose configuration space is T
2. Indeed, in 1989, Fomenko

conjectured that these are the only examples possible when the second integral in polynomial-

in-momenta [11]. Most recently, in 2012, Kozlov, Denisova and Treschëv reiterate Fomenko’s

conjecture ([12], p. 908).

Let us note that it is a well-known fact that, if the first integral F is real- analytic, then

F ¼ ∑N≥0FN where each term FN is polynomial-in-momenta with real-analytic coefficients,

homogeneous and of degree N and since {H, FN} is polynomial-in-momenta, homogeneous

and of degreeN þ 1, each graded piece of F is a first integral. So, there is no loss in generality in

restricting attention to polynomial-in-momenta first integrals–and, indeed, a slight increase in

generality because the coefficients of the polynomial-in-momenta first integral are not

assumed to be real-analytic.

In [13, 14], Kozlov and Denisova prove that if, when ðx, yÞ are isothermal coordinates, and

H ¼
1

2Λ
ðp2x þ p2yÞ, (35)

with the conformal factor Λ a trigonometric polynomial, then the existence of a second inde-

pendent first integral that is polynomial-in-momenta implies that H is Liouville.

In [12], Denisova, Kozlov and Treschëv prove that, if one only assumesΛ is smooth, thenH has

no irreducible polynomial-in-momenta first integral F that is of degree 3 or 4 that is indepen-

dent of H. Mironov separately proves the non-existence of F of degree 5, but as noted in ([12],

p. 909), Λ satisfies an extra unstated hypothesis [15]. The line of attack used in these papers is

pioneered in [16], where Kozlov and Treschëv introduce the notion of the spectrum S⊂2nZ2 of

the function Λ as the support of the Fourier transform of Λ. This spectrum is finite iff Λ is a

trigonometric polynomial; Denisova and Kozlov prove that, in this case, any first integral of H

is dependent on H unless the spectrum S is contained in a pair of orthogonal lines through (0,

0), in which case H is Liouville and has a second independent first integral that is quadratic-in-

momenta. Without the hypothesis that S is finite, the problem becomes significantly more

delicate. The bulk of [12], for example, is devoted to a study of solutions to a PDE that

characterizes the first integral F by means of Fourier analysis.

An alternative approach, due to Bialy and Mironov, is to observe that the equation {H, F} ¼ 0

coupled with the hypothesis that F is polynomial-in-momenta of degree N implies that when

we write F as

F ¼ ∑
N

j¼0
ajðx, yÞp

N−j
x pjy (36)
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then the coefficients a0,…, an satisfy a semi-linear PDE [17, 18]. Indeed, there is a system of

coordinates ðτ,υÞ on T
2 such that, when F is written in the adapted canonical coordinates as

F ¼ ∑N
j¼0ujðτ, υÞðpυ=gÞ

jp
ðN−jÞ
r then this equation is of the form

uυ þ TðuÞur ¼ 0 (37)

where u0 ¼ 1, u1 ¼ g, u ¼ ðu1, u2,…, uNÞ and

TðuÞij ¼
uiþ1 if j ¼ iþ 1,
ðiþ 1Þuiþ1−ðN−1−iÞui−1 if j ¼ 1,
0 otherwise,

8

<

:

(38)

where we adopt the convention that u_1 ¼ uNþ1≡0.

A standard technique to solve a quasi-linear PDE like (37) is to diagonalize it, that is, to find

Riemann invariants, so that it is equivalent to

rυ þ ΔðrÞrr ¼ 0 where ΔðrÞ ¼ diagðδ1ðrÞ,…, δNðrÞÞ,
r ¼ ðr1,…, rNÞ:

(39)

To find Riemann invariants, Bialy and Mironov employ the following trick: let p
υ
¼ g cos ðθÞ,

pr ¼ sin ðθÞ parameterize cotangent fibres of H−1 1
2

� �

. The invariance condition fH, Fg ¼ 0

translates to Fvg
−1 cos ðθÞ þ Fτ sin ðθÞ ¼ 0 along the locus where Fθ ¼ 0, i.e. where dF and dH

are co-linear. If one supposes that θi ¼ θiðτ, υÞ, i ¼ 1,…,N, is a smooth parameterization of the

critical-point set, then the critical values ri ¼ Fðr,υ,θiðr, υÞÞ are Riemann invariants with

δi ¼ gðτ, vÞ· tan ðθiÞ. Of course, the main problem is to determine the relationship between

the Liouville foliation–the singular foliation of T�
T
2 by the Liouville tori and their degenera-

tions–and the system 39.

In ([18], Theorems 1 and 2), Bialy and Mironov prove that if N≤4, then in any region where a

multiplier δi is non-real, the metric is Liouville. One can view the result of Bialy and Mironov as a

partial confirmation of Fomenko’s conjecture and an important step toward resolving that conjecture.

The key step in Bialy and Mironov’s proof is to show that, in any region where δi is non-real,

the imaginary part of the Riemann invariant ri satisfies an elliptic PDE. It appears that the

properties of this PDE are key to proving stronger results.

Problem 3.4. Extend Bialy and Mironov’s work to show that there are no regions where any multiplier

δi is non-real on T
2, i.e. show that (39) is a hyperbolic system.

There is good reason to believe that the multipliers δi are always real. When ∅⊈δ−1i ðC\RÞ⊈T2,

Bialy and Mironov prove that the Riemann invariant ri is real and constant, say ri ¼ si. This

implies that the common level set F−1ðsiÞ∩H
−1ð12Þ, a subset of the complexified cotangent bundle

T�
CT

2, has a tangent with the fibres of T�
CT

2 on an open set. That picture is dramatically at odds

with the real picture, where the tangency can occur along a one-cycle at most. Because of this,

it seems likely that there is a geometric proof of Problem 3.4.
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Hyperbolicity of Eq. (39) has additional meaning. As the previous paragraph alluded to, the

points where Fθ ¼ 0 are the critical points of the canonical projection map π : T�
T
2 ! T

2

restricted to a common level F−1ðrÞ∩H−1 1
2

� �

. Such tori necessarily bound a solid torus in H−1 1
2

� �

and are not minimizing. Based on Fomenko’s conjecture, it is expected that these solid tori

must be quite rigid in a well-defined sense: in homology, they should generate at most two

transverse subgroups of H1ðT
�
T
2Þ.

There is an alternative approach to Fomenko’s conjecture that is based on topological

entropy. In a series of papers based on Glasmachers dissertation results, Glasmachers and

Knieper study Riemannian Hamiltonians on T�
T
2 with zero topological entropy [19, 20].

They prove the closure of one of the above-mentioned solid tori is a union of one or two

closed, minimizing geodesic orbits and their stable and unstable manifolds ([20], Theorem

3.7c).3 The picture that emerges from their work is that there is a family of minimizing

closed geodesics of the same homology class, and their stable and unstable manifolds,

which bound a family of invariant solid tori. Bialy [5] describes the boundary of this set as

a separatrix chain. The projection of the separatrix chain covers T2. A neighbourhood of the

separatrix chain in the complement is fibred by invariant Lagrangian tori that are graphs, i.

e. that are a union of minimizing orbits. The multipliers δi, or rather the angles θi mentioned

above, define sections of the unit cotangent bundle trapped within a separatrix chain.

Let us reformulate this as:

Problem 3.5. Prove the vanishing of the topological entropy of the geodesic flow of a Riemannian

Hamiltonian on T�
T
2 that is completely integrable with a polynomial-in-momenta first integral F.

In various special cases, such as when F is real-analytic or Morse-Bott, it is known that the

topological entropy vanishes [21].

Finally, since topological entropy is an important invariant in the study of these systems, let us

state a number of problems that are directly relevant to the preceding discussion. If one

assumes Fomenko's conjecture is true and that the Liouville family of Riemannian Hamilto-

nians equals the set of completely integrable Riemannian Hamiltonians on T2, then it should

be true that

Problem 3.6. The topological entropy of a non-Liouville Riemannian Hamiltonian on T�
T
2 is positive.

Glasmachers and Knieper [20, 19] have studied the structure of geodesic flows with zero

topological entropy on T�
T
2. The picture that emerges is the phase portrait looks remarkably

like that of an integrable system. It seems likely that their results admit a strengthening: in

particular, they are unable to determine the number of primitive homology classes represented

by non-minimizing geodesics (for Liouville metrics, this is at most 4).

On the other hand, it is known, from results of Contreras, Contreras and Paternain and

Knieper and Weiss that an open and dense set of Riemannian Hamiltonians have positive

3

Although the minimizing orbits have stable and unstable manifolds, it is not suggested that they are hyperbolic.
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topological entropy [22–24]. In the case of this particular problem, the natural point of depar-

ture is to look at Riemannian Hamiltonians that are close to Liouville, i.e. where the conformal

factor in (35) is of the form

ΛE ¼ Λ0 þ EΛ1 þOðE2Þ (40)

where Λ0 is Liouville-and has no T1 symmetry–and ΛE is not Liouville for all E≠0. Based on the

study in [25, 26] of the phase portrait of such systems, it should be possible to prove that the

perturbed flow develops transverse homoclinic points.

3.3. The 2-sphere

The unit two-dimensional sphere S2
⊂R3 admits a completely integrable geodesic flow. Indeed,

the geodesic flow of an ellipsoid is also completely integrable with the second integral of

motion that is, in general, a quadratic form in the momenta.

The fundamental problem is to describe the moduli space of completely integrable Hamilto-

nians on T�S2. The sub-problem of describing the integrable Riemannian (resp. natural or

mechanical) Hamiltonians H has received wide-spread attention. When H is Riemannian, the

most common approach is to assume the second integral F is polynomial-in-momenta, and

without loss of generality, homogeneous. If the degree of F is fixed, then the problem of

determining H&F is reducible to a non-linear PDE in the coefficients of F. When the degree is

1, the first integral F is a momentum map of a T1 isometry group (see below). When the degree

is 2, then the Hamiltonian is Liouville, a classical result due to Darboux c.f. [27]. In degree 3,

there is the well-known case due to Goryachev-Chaplygin, and more recent cases due to

Selivanova, Dullin and Matveev and Dullin, Matveev and Topalov and Valent [28–33]. In

degree 4, Selivanova and Hadeler & Selivanova have produced a family of examples using

the results of Kolokol’tsov [34, 27]. Beyond degree 4, Kiyohara has provided a construction of a

smooth Riemannian metric H with an independent first integral F of degree k for any k≥1. In

this construction, the metric H depends on a functional modulus, and so for each k, the set is

infinite dimensional [35].

3.4. Super-integrable systems with a linear-in-momenta first integral

Let us review the work of Matveev and Shevchishin in more detail [36]. These authors impose

an additional formal constraint that the metric possess one first integral that is linear-in-

momenta. In conformal coordinates ðx, yÞ where H ¼ 1
2cðxÞðp

2
x þ p2yÞ, the existence of a cubic

integral is reduced to a second-order ODE involving c.

From a geometric perspective, it is more natural to introduce coordinates adapted to the

isometry group. That is, the existence of a linear-in-momenta first integral is equivalent to the

existence of an isometry group containing T1. The action of T1 on S1 induces a cohomogeneity-

1 structure. The fixed set of the T1 action is a set of points {p
−
, pþ} which are equidistant along

any minimal geodesic; and the principal T1-orbits are orthogonal to these geodesics. If

γ : ½−T,T� ! S2 is a minimal geodesic such that γð�TÞ ¼ p�, then we can let ðr,θÞ be ‘polar’
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coordinates adapted to this structure. The Hamiltonian H and polynomial-in-momenta inte-

gral F can be written in the adapted coordinates as

H ¼
1

2

	

p2r þ sðrÞp2
θ




, F ¼ eivθ · ∑
j¼0

ajðrÞp
j
rp

N−j
θ

, (41)

where v∈Z, 3≤N is a positive integer and the coefficients aj are to be determined. The equation

{H, F}≡0 is equivalent to a differential system that couples the coefficients a0,…, aN, s and an

anti-derivative S of vs:

dS ¼ vs dr, (42a)

daj ¼
1

2
ðN þ 2−jÞaj−2 ds−aj−1 dS; ðj ¼ 0,…,NÞ, (42b)

ds ¼ 2vaN=aN−1 dr (42c)

where a−2 ¼ a−1 ¼ 0. It is clear that the general solution of (42b), without the compatibility

condition (42c), is obtained via repeated quadratures of products of s and S. The compatibility

condition distinguishes those solutions which may arise from (41). The behaviour of s at

r ¼ �T ultimately determines whether the solution obtained arises from a T1-invariant Rie-

mannian Hamiltonian H and an independent first integral F on T�S2.

In case N ¼ 3, the differential system reduces to a third-order nonlinear ODE similar to that

studied by Chazy, in his generalization of the Painlêvé classification ([37], Eq. (6)). Based on the

work of Matveev and Shevchishin [36], we know the solutions to this equation are real-analytic

and define a parameterized family of super-integrable Riemannian metrics with cubic-in-

momenta first integral. The latter authors do not solve the ODE explicitly.

Problem 3.7. Solve the N ¼ 3 case of the differential system (42).

It appears to the author that this differential system may be soluble via hypergeometric

functions. A successful resolution to the N ¼ 3 case will naturally lead to the higher degree

cases, which appear to be somewhat more involved.

Problem 3.8. Solve the higher degree cases of the differential system (42).

3.5. Super-integrable systems with a higher degree first integral

The author believes that the differential system 42 provides the key to understanding the

subspace of super-integrable Riemannian Hamiltonians which admit a cohomogeneity-1 struc-

ture. Super-integrability alone does not imply the existence of such a cohomogeneity-1 struc-

ture. Without this additional hypothesis, there is very little known. Indeed, the extremely

valuable construction of Kiyohara is the only construction that provides a smooth Riemannian

Hamiltonian with a polynomial-in-momenta first integral of degree N > 3–super-integrable or

not [35, 38].

Let us explain Kiyohara’s construction in some detail. Let H0 be the Riemannian Hamiltonian

of the standard unit sphere in R3. Let F0, F1 be linear-in-momenta first integrals of H0 that are
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linearly independent and let l≥k≥1 be integers such that N ¼ kþ l≥3. Define a polynomial-in-

momenta first integral G0 ¼ Fk0F
l
1. For almost all q∈S2, the functions G0,H0jT

�
qS

2 are dependent

along two distinct lines through 0; this defines a pair of mutually transverse line bundles L��
over S2

\fp�0 , p
�
1 g. The excluded, singular set consists of the anti-podal points p�j where Fj

vanishes identically on the fibre (equivalently, the corresponding Killing field vanishes). This

pair of line bundles provides a branched double covering

Φ : T2 ¼ R2=2πZ2 ! S2 (43)

with simple branch points at fp�0 , p
�
1 g ¼ ΦðπZ2Þ. The line bundles L�� pullback to the line

bundles R dxj on T2 ¼ {ðx1, x2Þmod2πZ}. Kiyohara shows that in these coordinates, the pull-

back of the function r which measures the time along the unique geodesic γ through fp�0 , p
�
1 g

(see Figure 4) satisfies the second-order PDE

∂2r

∂x1∂x2
þ

1

B1 þ B2

∂B1

∂x2

∂r

∂x1
þ

1

B1 þ B2

∂B2

∂x1

∂r

∂x2
¼ 0 (44)

where B1 and B2 are functions that describe the line bundles L� in terms of the basis

{dr, sin ðrÞ dθ}.

Kiyohara writes a function R ¼ r0 þ r where r0 is the solution to (44) given by Φ�r and r is a

solution of (44) with C2 small boundary conditions satisfying

rðs, 0Þ ¼ u1ðsÞ, rð0, sÞ ¼ u2ðsÞ, (45a)

where uiðsÞ ¼ uið−sÞ ¼ uiðπ−sÞ, forall i, s, and (45b)

uið½−E, E�Þ ¼ 0: (45c)

Then, by means of this perturbed function R, Kiyohara writes down an explicit formula for the

perturbed Riemannian Hamiltonian H and polynomial-in-momenta first integral F. The con-

dition for the Poisson bracket {H, F} to vanish is shown to reduce to the satisfaction of Eq. (44)

by R for the given values of B1 and B2 (this legerdemain is the real trick that makes the

construction work).

Condition (45b) ensures that R factors through Φ to a function on S2, while the condition (45c)

ensures that R is C∞ on S2 and coincides with r on a neighbourhood of the branch set fp�0 , p
�
1 g

(hence that H and F coincide with H0 and F0, respectively, on a neighbourhood of the cotan-

gent fibres of the branch set).

Let us now state several problems related to Kiyohara’s construction. First, Kiyohara’s

vanishing condition on the boundary values (45c) is used to deduce the Riemannian Hamilto-

nians are not real-analytic. Since all the remaining constructions involve real-analytic data, this

serves to show his examples are genuinely different.

Problem 3.9. Does Kiyohara’s construction extend to real-analytic boundary conditions u1, u2 that

satisfy (45b) ? Do these real-analytic metrics include other known cases?
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In particular, the obtained metrics are unlikely to have a T1 isometry group, so the question is

really whether the known examples in degree 3 and 4 are obtainable via this construction [12–

14, 28–30, 34, 39, 40].

Second, Kiyohara’s construction produces a polynomial-in-momenta first integral F factors

as Al
0A

m
1 where Ai are linear-in-momenta functions. It is clear that the reducibility of the first

integral F is forced by the desire to use a very simple branched covering.

Problem 3.10. Is reducibility of the first integral F necessary?

It ought to be fruitful to ask three related questions. The reducibility of F is very special, with

just two distinct factors.

Problem 3.11. Is it possible to extend Kiyohara’s construction so that the polynomial-in-momenta first

integral F has more than 2 distinct linear factors?

It would be natural to try to extend the construction to the case where the zeros all lie on the

same geodesic γ. More generally, one might attempt to mirror Kiyohara’s construction but in

a more abstract way: start with a simple ramified covering Φ : ∑! S2 with a branch set

Y⊂S2. Let F0 be a product of linear first integrals of H0 that vanishes identically on T�
YS

2 and

not elsewhere. The stumbling block is that we need to clarify the intrinsic geometric meaning

of the PDE that governs the perturbed systems (44).

Problem 3.12. Describe in explicit terms the third, independent first integral of H that is of least

degree.

Kiyohara proves in his paper that H is super-integrable (he proves the geodesic flow is 2π-

periodic, in fact), but that proof does not proceed by finding this third first integral.

Figure 4. Kiyohara’s construction. The zero set of the pair of Killing fields determines the equatorial geodesic γ. A choice

of zeros {pþ0 , p
þ
1 } determines the polar coordinate system ðr,θÞ.
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3.6. Three-dimensional configuration spaces

In comparison to the wealth of results and examples for surfaces that were surveyed above,

comparatively little is known about the three-dimensional analogues. Tăĭmanov tells us that if

the Tonelli Hamiltonian is completely integrable with real-analytic first integrals, then the

three-dimensional configuration space ∑ has a finite covering p̂ : ∑
^

! ∑ such that the funda-

mental group π1ð∑
^

Þ is abelian and of rank at most 3 [41–43]. Based on the resolution of the

Poincaré conjecture, this result implies that, up to finite covering the only such configuration

spaces are

S3, S2
·T1 or T3

: (46)

The author generalized Kozlov’s result on surfaces to three-manifolds. In this result, if the

Tonelli Hamiltonian is completely integrable and the singular set is topologically tame, then

Tăĭamanov’s list extends to include those three-manifolds ∑ such that π1ð∑Þ is almost solvable

(equivalently, due to the resolution of the geometrization conjecture, ∑ admits either a Nil or

Sol geometry) [44]. Both results are sharp, like Kozlov’s, in the sense that all such admissible

configuration spaces admit a geometric structure and the Riemannian Hamiltonian of such a

structure is completely integrable with first integrals of the requisite type [45, 46].

There are a large number of questions that this strand of research has opened. Let us sketch a

few.

3.7. The 3-sphere

The case of S3 is perhaps best understood. It has been known since Jacobi proved the complete

integrability of the geodesic flow of an ellipsoid via separation of variables, that the Liouville

family of metrics on S3 is completely integrable. These systems possess three independent

quadratic-in-momenta first integrals.

Based on the analogous problem for the two-sphere,

Problem 3.13. Describe the structure of the super-integrable Riemannian Hamiltonians on S3.

Researchers who specialize in super-integrable classical and quantum systems have developed

tools for constructing and classifying super-integrable systems c.f. [47–49]. Unfortunately,

some key ingredients in these constructions lead to systems with singularities.

The first method is based on the cohomogeneity-1 structure of S3 with the group G ¼ SOð3Þ

acting as the linear isometry group of R3
⊂R4. If one represents

S3 ¼ fðx, rÞjx∈R3, r∈R, jxj2 þ jrj2 ¼ 1g, (47)

then we see that G acts freely on T�S3
\T�

FS
3 where F ¼ {ð0, � 1Þ} is the fixed-point set of the G-

action on S3. This is enough to see that any G-invariant Hamiltonian on T�S3 is non-

commutatively integrable (analogous to the same fact for S2). If K : soð3Þ� ! R is a positive-
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definite quadratic form, and Ψ : T�
S
3 ! soð3Þ� is the momentum map of the SO(3)-action,

then an invariant Riemannian Hamiltonian can be written as

H ¼
1

2
p2r þ

1

2
sðrÞΨ�K, (48)

for some function s > 0 such that s · ð1� rÞ2 ! const:≠0 as r ! ∓1.

If one employs the ansatz of Matveev & Shevchishin (c.f. Section 3.3), one would like to find

first integrals that are polynomial-in-momenta of the form

F ¼ ∑
N

j¼0
bjðx, rÞ p

j
r Ψ

�ηN−j (49)

where ηN−j : soð3Þ� ! R is a homogeneous polynomial of degree N−j. In (41), the pre-factor

exp ðivθÞ appears to ensure that the coefficients of the first integral F are common

eigenfunctions of the Casimir Δ
S
1 ¼ ∂2

∂θ2 parameterized by r. In the current case, the ansatz

suggests that the coefficients bj should factor as φλðθÞajðrÞ where φλ is an eigenfunction of the

Casimir Δ
S
2 with eigenvalue λ and θ ¼ x=jxj.

Problem 3.14. Extend the construction sketched, above to higher dimensional spheres.
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