We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

6,900 185,000 200M

ailable International authors and editors Downloads

among the

154 TOP 1% 12.2%

Countries deliv most cited s Contributors from top 500 universities

Sa
S

BOOK
CITATION
INDEX

Selection of our books indexed in the Book Citation Index
in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com

Y

14

Integrating Autonomous Behaviour and Team
Coordination into an Embedded Architecture

Bernd Kleinjohann, Lisa Kleinjohann, Willi Richert and Claudius Stern
University of Paderborn, C-LAB
Germany

1. Introduction

Robotic soccer is a challenging research and application field for the combination of real
time embedded systems design with intelligent autonomous behaviour as well as tema
coordination and learning. The joint investigation of these themes is pursued by the devel-
opment of the Paderkicker robots described in this paper.

The Paderkicker team (Richert et al., 2006) consists of five robots (Fig. 1) that already par-
ticipated successfully in the German Open competition in 2004, 2005 and 2007, the Dutch
Open 2006 and the RoboCup 2006 World Championship. Our platform asks for the whole
range of research issues needed for a successful deployment in the real world. This includes
embedded real-time architectures (Beier at al., 2003; Esau at al., 2003b; Stichling, 2004), real-
time vision (Stichling & Kleinjohann, 2002a, 2002b, 2003) learning and adaptation from lim-
ited sensor data, skill learning (Richert & Kleinjohann, 2007) and methods to propagate
learned skills and behaviours in the robot team (Richert et al., 2005). However, our goal is
not to carry out research for specific solutions in the robotic soccer domain, but to use and
test advanced techniques from different research projects. The Paderkicker platform serves
as a test bench for the collaborative research center 614 (funded by the Deutsche For-
schungsgesellschaft). Furthermore, the knowledge in vision, motion and object tracking was
used in the AR PDA (Bundesministerium fiir Bildung und Forschung) project (Reimann,
2005).

This paper describes various aspects of the Paderkicker robots. Section 2 gives an overview
of the robots” construction. First the actor systems for driving, ball handling and vision sys-
tem are described followed by the sensor systems for odometry, landmark and ball recogni-
tion. Section 3 focuses on various aspects of the modular robot design. Functional design,
hardware, software and process architecture are covered as well as the message format used
for communication between different robots and robot components. Section 4 describes the
real-time image processing module developed for the Paderkicker robots. Our algorithms
for colour segmentation and recognition of objects like ball, field or lines are presented.
Furthermore, we propose a DCT-based (discrete cosine transform) pre-processing step im-
proving the subsequent colour segmentation. In Section 5 the behaviour based realization of
the Paderkicker robots is explained starting from team coordination issues down to simple
reactive behaviour. Section 6 deals with learning capabilities we want to introduce into our

Source: Robotic Soccer, Book edited by: Pedro Lima, ISBN 978-3-902613-21-9,pp. 598, December 2007, Itech
Education and Publishing, Vienna, Austria

www.intechopen.com

254 Robotic Soccer

robots. Section 7 concludes the paper with a short resume and an outlook to future devel-
opments.

2. Robot outline

The robots of the Paderkicker team were constructed from scratch, since they also should be
used for demonstrations in environments which are less restricted concerning lightning and
underground conditions than the RoboCup environment. Furthermore they should provide
a test platform for different research projects. Nevertheless their main purpose is playing
robotic soccer in the midsize league. The Paderkicker robots are mainly developed in the
course of student education projects necessitating a modular design approach enabling
students to familiarize with the Paderkickers within about two months, after which they
should be able to productively contribute to the Paderkickers” development. As already
mentioned the main focus of this development is the design of embedded hardware and
software and the application of artificial intelligence algorithms in real-time environments.
Size and form of our robots were mainly determined by the RoboCup regulations. The
maximum height of 80 cm was chosen for providing the vision system with good overall
viewing capabilities. Robot size was motivated by the upper boundary for the area occupied
by the entire robot team, which led to the design objective of keeping the robots as small as
possible, in order to allow an additional robot in the team. In our case we arrived at an area
of 36 cm x 36 cm for each robot.

The carrying structure consists of standard quadratic aluminium profiles with edge length
of 2 cm (Fig. 2). At each side the profiles are equipped with T-shaped channels for connect-
ing profiles or fastening functional units for driving, ball handling and orientation. These
functional units are realized as mechatronic functional units (MFU) and controlled by sepa-
rate hardware controllers (see Section 3). The construction of these MFUs, which are built
mainly from standard model craft components, will be described in more detail below be-
cause of their crucial role in robot soccer.

rﬂrg m‘,f- bl

Fig.1. The Paderkicker robot team Fig.2. Robot con-
struction

www.intechopen.com

Integrating Autonomous Behaviour and Team Coordination into an Embedded Architecture 255

2.1 Driving system

The Paderkicker robots are equipped with omnidirectional drives (omniwheels) since they
allow for simultaneous translational and rotational robot movements while supporting all
three degrees of freedom on a plane. Omniwheels are actively driven by a motor into one
direction. Orthogonally omniwheels consist of passive rolls with small rolling friction. Since
this depends on their footprint, we selected wheels with a small diameter of 6 cm. With
hindsight these rolls are capable of driving over very small splits only. Splits like those be-
tween lift shaft and cabin are for instance at the upper boundary. Presently, his attribute
does not mean a restriction for RoboCup, but it could become one if for instance sport halls
should be used for RoboCup tournaments without a carpet that covers installations for
fastening sports equipment on the floor. We decided to use four (instead of three) omni-
wheels per robot to increase stability. When using four driven wheels rotated by 90 degrees
each, all four motors contribute to a translational movement. This enables the use of smaller
dimensioned motors in contrast to the use of only three omniwheels, because in that case
only two of them contribute to a straight movement. Also the assembly angle is less advan-
tageous for three wheels. However special care has to be taken to guarantee that each wheel
touches the ground whereas this feature is automatically guaranteed for three wheels. For
this purpose we mounted the wheels movably in rubber blocks. Thus all wheels are pressed
onto the ground by a robot’s own weight. Fig. 3 shows one omniwheel including attached
sensors which are described in Section 2.4.

2.2 Vision system

Our vision system contains three independent pan-tilt cameras that are used for active view-
ing (Fig. 4) in contrast to omnivision systems that are currently used by many other teams.
Each camera may independently focus and track a different object of interest like ball, cor-
ner, goal or marker. Proper choice of the aperture angle (up to 120 degrees) guarantees a
sufficient view in all directions. Our experience showed that for the two outermost cameras
a shorter focal distance is preferable to provide an overview of the playing ground while a
standard focal distance for the medium camera allows focusing single objects appropriately.
A major advantage of our approach, especially for larger soccer fields, is its greater resolu-
tion and easier calibration, since it is not necessary to account for the average conditions of
the entire soccer field. According to our experience the processing effort for our vision algo-
rithm uses about 15% of the processing capabilities of a Pentium M ULV running at 1GHz.

acceleration sensor temperature
two reflex (two dimensions) sensor

light barrieres
(line detection) ‘A

. / Motor
75 Watt
> incremental
sensor

Fig.3. Omniwheel with attached sensors Fig.4. Active vision system

www.intechopen.com

256 Robotic Soccer

2.3 Ball handling system

Soccer robots must be able to move the ball in a controlled manner, e.g. for passing it to
another robot, taking it away from another one or kicking it towards the goal. The way how
they may do it, i.e. how much force may be given to the ball or how long they may touch the
ball is restricted by the RoboCup rules to a large extent. For instance, it is not allowed to fix
the ball or to enclose more than one third of its diameter. Therefore we developed a mecha-
nism for ball kicking and another one for ball dribbling which is described next.

For ball dribbling we developed a mechanism that allows giving the ball a rotational pulse
in diverse directions for rolling it into a desired direction without keeping it in touch with
the robot. For this purpose we use three rollers that may act upon the ball in different direc-
tions when being in touch with it. Two side rollers are attached horizontally at both sides of
the ball handling mechanism and one front roller in the middle as depicted in Fig. 5. The
rotational axes are parallel to the ground (side rollers) and parallel to the robot front (front
roller). The rollers are fixed at joints supporting an expansion of the side rollers and a lower-
ing of the front roller hereby varying the rotational axis about +/- 45 degrees. Even when
driving backwards the rollers can keep the ball rolling backwards and in touch with the
robot, although the rules allow this only for a short time. For kicking the ball an electromag-
netic solenoid (Fig. 6) is integrated nearly in the bottom center of the robot’s chassis. A
plunger transfers a directed impulse with adaptable strength to the ball. By adjusting the
side rollers correspondingly, the ball may also be hit at its sides and not only in its center,
thus allowing a targeting of the ball within an angular range of about 30 degrees. Via this
mechanism the robots can kick the ball on the floor. In the future also higher kicking shall be
realized.

side
rollers
Fig.5. Rollers for ball dribbling Fig. 6. Solenoid for ball kicking
2.4 Sensory system

Besides the active vision system described above the Paderkicker robots are equipped with
several further sensors for monitoring their own status and perceiving their environment.
They are located near the actors for ball handling and driving in the bottom layer of the
chassis as schematically depicted in Fig. 7.

www.intechopen.com

Integrating Autonomous Behaviour and Team Coordination into an Embedded Architecture 257

reflex
light S | torque
barrier 2 sensor

i X % oo i

drive 2 drive
infrared X _
distance acceleration
sensor N v sensor

Fig.7. Sensor and actor location

2.4.1 Motor status

The number of revolutions is monitored for each motor as input for its controller. With help
of this value and the current consumption the actual torque of a motor can be estimated. The
torque of a motor allows to decide whether for instance a robot is driving against an obstacle
(omniwheel motors), whether the ball rollers touch the ball (roller motors) or even during
longer driving periods about the floor characteristics and maximum driving velocity on the
actual floor. By measuring current and number of revolutions it can also be decided whether
one of the omniwheels is spinnning. Furthermore the number of revolutions is used for
odometric calculations described next.

2.4.2 Odometry

The sequence of angular movements of the four driving motors is used to calculate a robot’s
translational and rotational movement on the plane. Together with information about the
starting position this allows to estimate the current robot position. It has to be noted that the
respective incremental sensors are located near the wheel side and not near the motor (see
Fig. 3). They have a resolution of about 1.5 mm. Due to considerable slipping of omniwheels
(about 15 to 20%) these calculations are very error prone. Another source for calculation
errors are pushes by opponent robots that can be observed frequently although RoboCup
rules prohibit them. Since we use four instead of three omniwheels the odometric equation
system is over-specified which we use for improving the quality of sensor data.

Further information about a robot’s movement is obtained by acceleration sensors at each
wheel. They measure the real acceleration over the wheels into two directions entirely inde-
pendent from the driving motors. Also manual moves are considered. If a wheel spins this
leads to faulty large acceleration values. Unfortunately also these measurements are very
error prone. Therefore we try to improve odometric data by fusioning the results of several
acceleration sensors located at different places within the robot and the data received from
the incremental sensors at the wheels. In future the position calculation should be further
enhanced by a camera based odometric system that calculates driving direction and velocity
from video sequences.

www.intechopen.com

258 Robotic Soccer

2.4.3 Landmark recognition

Position calculation is most exact if known landmarks can be detected in the environment.
For RoboCup lines on the soccer field or goals can be used for this purpose since their posi-
tion is given. However, if lines are only determined from camera images, the line is usually
not detected with sufficient accuracy. This is mainly due to the frame rate of 20 to 30 frames
per second and the driving velocity up to 3 m/s that allows only a relatively small resolu-
tion regarding time and location. Therefore, the Paderkickers are equipped with two reflex
light barriers at each wheel. They are directed towards the floor and can accurately detect
driving over a white line on the green floor. A millisecond sampling rate of the eight reflex
light barriers’” outputs allows to improve the precision of positions determined by odometry
considerably.

The goal keeper can further improve its position calculation by taking into account the posi-
tion of the walls building the goal. If a robot moves within the goal or near to the goal it can
measure its distance to these walls. This is particularly helpful since the robot’'s viewing
field is quite restricted in these cases. Therefore, the Paderkicker robots are equipped with
four infrared sensors for measuring the distance of the walls into backward direction and to
both sides.

3. Modular Paderkicker design

3.1 Functional architecture

The main functional units for driving, ball handling and vision were designed in a modular
way as mechatronic functional units (MFU). Each sensor-actor-group is controlled by a
separate microcontroller. Originally we planned dedicated designs of mechanical, electronic
and embedded system for each MFU to be realized in an independent physical component.
Due to cost and time restrictions however, requirements for control of the functional units
and electrical motor drivers were gathered and only one microcontroller and driver board
was developed to be “universally” used for actor/sensor control and motor driving. Hence,
MEFUs could not be realized as single physical components. However, logically each micro-
controller and driver board belongs to exactly one MFU, which allowed their independent
development since resource conflicts are avoided per se.

A Paderkicker robot now consists of a central behaviour module and system control module
realized on an embedded Mini-ITX PC board and a microcontroller and the MFUs for driv-
ing, ball handling and vision mentioned above, which are further divided into sub-modules
as depicted in Fig. 8. The figure also shows the information flow between these modules.
The driving module consists of five submodules, one for each of the four wheels and one for
central driving coordination. Each wheel is controlled by a separate AVR microcontroller to
which also sensors and drivers belonging to this wheel are connected. This microcontroller
handles the inputs from several sensors. The actual current consumption and the tempera-
ture of the motor as well as the acceleration over this wheel in two axes are calculated. Also
two reflex light barriers for recognition of white lines on the soccer field are connected to
this board. For goal keepers the AVR controllers for the back wheels also process the inputs
from the infrared distance sensors. At the output side an H-bridge is connected for produc-
ing the PWM (pulse width modulated) signals driving the motor. This module communi-
cates with its environment via a CAN bus commonly used also in the automotive domain.

www.intechopen.com

Integrating Autonomous Behaviour and Team Coordination into an Embedded Architecture 259

Vision module @ @ @
PWM

Video Video Video
processing processing processing
I - | WLAN
Features extrai;ted from video
System state
System |—==———"— Particle filter
control, P Behavior Module (40Hz)
camera
control APosition\ / Speeds: ;
I \/ X. Y, rotation Roller speed
Controller|) Turn angle
states Coordinator
Global A\ Target speed | 250 Hz | Actual speed Ball handling module
ower enable
p H‘ 1
Wheel Ball handling
{| controller controller

PWM Incr.+accel. sensor PWM Incr. Angle
4kHz +reflex light barrier 4kHz sensor PWM
Driving module

Fig. 8. Paderkicker module structure

The driving coordination submodule is realized on the fifth AVR microcontroller, which is
connected to the central PC board via USB. It receives the measurements of the four wheels
from the respective microcontroller via CAN, calculates odometric and sensor data and
transmits them to the PC via USB.

The ball handling module is divided into three submodules two for controlling the two side
rollers and a third one for handling the front roller together with the kicking solenoid. For
these submodules a separate AVR microcontroller exists one for the side rollers and one for
the front roller and solenoid. The third microcontroller (responsible also for kicking) is con-
nected via an H-bridge to a cascaded voltage doubler that generates the fourfold supply
voltage (about 100 - 120 Volt). This voltage is needed to load a capacity of 12 mF for moving
the plunger. Via an IGBT device the solenoid can be fired. Thus the solenoid cannot only be
fired; also its kicking force can be influenced by switching off the power supply while dis-
charging.

The vision module has two tasks. On the one hand it separately processes the images per-
ceived by the three cameras as described in Section 4. These results are fusioned by a parti-
cle filter. Video processing and particle filter are realized on the PC board. On the other
hand it is responsible for generating the PWM signals controlling the pan-tilt units of the
cameras which are realized by model craft servo motors. The same technique is also used for
controlling the servo motors that adjust the joints (and hence position) for the ball handling
rollers. For generating the six PWM signals for all three cameras the same AVR microcon-
troller is used, which is also responsible for the central system control.

3.2 Hardware architecture

The functional structure described above is mapped onto a hardware architecture as de-
picted in Fig. 9. The central processing unit is a Pentium M ULV PC running under Linux.
Here the vision algorithms (see Section 4), the particle filter and the behaviour-based system
(see Section 5) are realized. For control purposes of the modules described above in total
eight AVR microcontroller boards are used. This board was developed only once for all
modules (Fig. 10, Fig. 11). It is equipped with an AT90CAN128 microcontroller, which al-

www.intechopen.com

260 Robotic Soccer

1 x AVR
system control +
pan-tilt cameras g
T (] i _ir..'-b“"r‘“
-
2 x AVR
ball handling Firewire

5 x AVR
drive

ultra low voltage
Pentium M
15 Watt total

CAN (1Mbit)
Fig.9. Paderkicker hardware architecture

ready comes with a CAN bus interfaces. Two USART outputs provided by the microcontrol-
ler are connected to an interface component (FTDI) which realizes an USB 1.1 slave interface.
This interface is handled by the Linux PC on the Mini-ITX board like a usual file interface.
All digital inputs and outputs of the AVR microcontroller are connected via opto couplers
(Opt.) or drivers respectively for security reasons. For debugging the status of all inputs and
outputs is visualized by LEDs.

8 Dig. Out = ‘ FTDI USB 1.1 to
g ! Com1/2
6 PWM Out o 7
u 8 P USART1/2
8 dig. In - [— Atn;el AVR
AT90 CAN 128 |~ CAN
4PWM In 4 Kbyte RAM
128 Kbyte Flash > |2¢
4 analog In 16 MHz/ 16 MIPS
stac § fisp t
Fig.10. AVR board (principle structure) Fig. 11. AVR board (photo)

3.3 Software architecture

3.3.1 Team communication

In a soccer team the robots do not only act autonomously but they have to coordinate their
actions. Therefore they need a communication infrastructure. Furthermore they have to
react on the referee’s commands and their parameters have to be adapted to the actual soc-
cer field and its environmental conditions. The Paderkicker robots use a central team server
for this purpose (Fig. 12). Each robot has to register when it is ready to play. Also different
master panels (e.g. the referee box) concerning the team as a whole or concerning the ini-
tialization or operation of a specific robot can connect to the central team server. The com-
munication is realized by a TCP/IP network with fixed addresses (LAN and WLAN). Par-
ticular attention has to be given to a robust WLAN connection, since this connection tends to

www.intechopen.com

Integrating Autonomous Behaviour and Team Coordination into an Embedded Architecture 261

-"<:>

1i
i

IFI'."II‘II'I'“II,i

|ll'|TI‘QIliﬂ

S Team Server
Parameter

Message Routing
Strategy

1

Inter-team connection

Global Map

Fig.12. Paderkicker communication structure

break several times during one halftime of fifteen minutes. A robot that has to restart its
entire system from scratch each time it looses the WLAN connection, will not be able to
actively participate in the game. Therefore the Paderkickers were designed very robustly
against WLAN break down. They carry on with their actual autonomous behaviour and try
to re-connect with the network without restart.

3.3.2 Logical robot architecture

The software architecture of a single Paderkicker robot can be described from two viewing
points: the processes and threads responsible for processing the different kind of data and
the logical or functional separation of tasks and the according data flow.

The logical software architecture is structured according to the triple tower model of Nilsson
(Nilsson, 1998) that distinguishes between perception, model and action tower (Fig. 13).

Perception Tower Model Tower Action Tower

)
o3
o)
3
o
=

Behaviour

Fig.13. Paderkicker software architecture

www.intechopen.com

262 Robotic Soccer

The perception tower is responsible for processing and fusioning the sensor inputs and pro-
viding them to the model tower in a more compact problem specific way. At the lower level
features are extracted from camera images. Also information from the driving system’s
sensors and from the touch sensors of the ball handling mechanism are evaluated. At the
next higher level the sensor information is pre-processed. For instance the debouncing of
touch sensors or the different stages of image processing (see Section 4) determining the
position of various objects like goal, lines etc. in relation to a single robot belong to this
layer. Also the odometric calculations belong to this layer.

Since the Paderkicker robots have four omniwheels, an over-specified system of equations
has to be solved. The distance driven by each wheel is sampled with a rate of 100 Hz. Via a
table driven model determined by a modelling tool according to a robot’s geometry the
actual translation and rotation angle of a single robot is calculated. At the next higher level
this data is fusioned with the positions calculated for other objects by a particle filter (Bayes
filter).

A typical characteristic of the model craft servo motors used in the Paderkicker robots is that
they do not deliver any feedback about their actual position. Hence we use a model driven
approach to estimate the previously set angle of the servos. This model driven position
estimation uses sensor information at various levels of abstraction. If for instance the ball
has to be at a proper position for the ball handling system, this position estimation compo-
nent needs the most recently perceived position information for the ball before it is filtered
by the particle filter. In other cases where for instance the reliability of the ball position is
more crucial due to its larger distance the filtered position may be preferred although it is
received with a small delay. This information may for instance be needed if a robot has to
drive towards the ball. Therefore, it has to be decided separately for each behaviour to
which degree its sensor information has to be preprocessed.

The action tower realizes the control of the actor systems. Here the physical signals are gen-
erated for the nominal values in the form needed by the actors. Via specific hardware com-
ponents on the AVR board PWM signals are generated or analogue values for voltage or
current are measured for controlling the motors. Simple control loops are only used for the
driving motors and the roller motors. We use cascaded PID controllers for current and revo-
lution control. Their nominal values are calculated by the driving coordination module on
the basis of the actual translation and rotation angle for each wheel.

For the future it is desirable that slight changes of the driving system mechanics resulting
from maintenance or reconstruction are handled by an automatic calibration. Also adaptive
control techniques should be used for adjusting controller parameters automatically. This is
particularly desirable, since the maximum speed of a robot depends on the actual under-
ground and its characteristic rolling friction which may change frequently. As always a
certain reserve has to be granted by the controller in order to allow for robot turns also at
maximum speed, a controller that automatically adapts to the actual rolling resistance
would be advantageous.

The model tower is responsible for planning and selecting appropriate actions at various
layers of abstraction. The lowest level, the so called security level, takes care that a robot is
switched off in critical situations, e.g. if due to overheated motors or empty accumulators a
robot might damage itself. On top of this security level a reactive layer is realized using the
motor schemes developed by Arkin (Arkin, 1998) (see Section 5). This reactive layer is con-
trolled by the next higher level that determines action sequences for a robot. At the topmost

www.intechopen.com

Integrating Autonomous Behaviour and Team Coordination into an Embedded Architecture 263

level the playing strategy of a robot is coordinated with its teammates. Via WLAN the in-
formation about the positions of goals, opponents or other obstacles are distributed in the
Paderkicker team. This information is used to determine which role (attacker, defender, etc.)
a robot should take (see Section 5).

3.3.3 Process architecture

From the process point of view there is a main process called Brain running on the ITX PC
board that opens several threads. The main process is responsible for action planning. One
thread works as internal router for exchanging messages between other processes or
threads. Per interface connected to the Brain process another thread is opened. There exist
three interfaces one to the driving system, the ball handling and the pan-tilt unit of the vi-
sion system. Each of these interfaces is realized via a USB connection of the ITX PC to the
respective microcontroller. In principle each microcontroller can be viewed as one addi-
tional process, since no operating system is used on the microcontrollers. Among each other
the microcontrollers are connected via CAN bus.

For each camera one process is started for feature and object recognition. This information is
passed to the router thread of the Brain process. Also the particle filter is realized as separate
process that communicates to the Brain process via the router thread.

3.4 Message format

For integration of the separate Paderkicker components that communicate over different bus
systems (CAN bus, USB, TCP/IP for communication between robots) a homogeneous mes-
sage format was designed. Also the different master panels use this format. If a robot com-
ponent is changed or a new panel should be integrated, a new message has to be defined, if
the existing ones should not cover this functionality. For the Paderkicker robots an XML
format was defined where all messages are registered. These data is used to generate access
routines in different programming languages (C, C++, Java, Python) in a semi-automatical
way. The need for a message format that is both robust and computationally cheap led to
the following design (Fig. 14).

Bit 0 4 8 16

Sender Receiver Message ID
Type Length
Data
(16383 bytes)
Checksum

Fig. 14. The Paderkicker message format

Every message is preceded by a message start delimiter. Thereby, each subsystem is able to
figure out the starting point of messages in continuous data streams with low processing
overhead. Fields to uniquely specify sender and receiver follow. By these fields the different
subsystems are addressed, as e.g. the behaviour system, the particle filter, or the Team-
Server. The message ID specifies the actual meaning of the following data bytes. Thereby it

www.intechopen.com

264 Robotic Soccer

is also possible to extend the current message set by not yet foreseen message possibilities.
The type describes the nature of the message, which provides the following possibilities: set,
request, info, and poll. This is needed for certain message IDs where it is possible to set or get
the according data, or even request the specified data to be delivered recurrently. Finally,
the checksum provides means to recognize errors in the message.

4. Vision

Research regarding computer vision is done mainly in the area of real-time image process-
ing. An optimized algorithm for low latency real-time colour segmentation (Stichling &
Kleinjohann, 2002b) now was adapted to run on a PC under an ordinary Linux system. It
even performs well on a PDA and was formerly implemented on a Trimedia TM 1100 video
processing board running at only 100 MHz. A more detailed description follows later on.
Three digital Firewire cameras are mounted on pan-tilt units to cover the whole 360° view
being used as an active vision system. This configuration leads to an overall higher resolu-
tion and to a larger viewing area in terms of visual depth, compared to an omnivision sys-
tem. Hence, the robots are capable of seeing distant objects much better. Higher visual cov-
erage of the environment will become more important in the near future when the field will
likely be extended in size again. The Firewire cameras are directly connected to the Mini-ITX
board running a Linux system where the according video streams are processed simultane-
ously. In the following first our image processing algorithms will be described. Afterwards
we deal with the recognition of RoboCup specific objects like ball, field, lines, etc. and de-
scribe a future improvement of image processing based on the discrete cosine transform.

4.1 Colour segmentation

In the environment of RoboCup special colour codes are used to make sure that objects are
distinguishable from each other. Therefore a real-time colour segmentation of the camera
streams is essential for the system. The above mentioned algorithm is optimized for an ex-
tremely low latency, so the overall latency decreases as the depending behaviour system can
react faster. The main difference of the used colour segmentation algorithm compared to
other segmentation algorithms is its linear processing. The algorithm processes an image
line by line and occurring data dependencies refer only to already obtained data. Assuming
adequate processing power, the latency of the colour segmentation is the transmission time
of one image plus the computing time of the processing steps for the last line.

In a first step the algorithm does a so called “Line-based Region-Growing” in which regions
with similar colour are grown while stepping through the individual pixels of the line. In a
second step the just created regions are merged together if they meet defined colour-
similarity and spatial distance criteria.

As this method was planned to run on embedded devices, the computational need of the
algorithm had to be as low as possible. Therefore the underlying data structure has to be
simple, especially in terms of computability. In computer vision algorithms moments are
often used (Prokop et al., 1992) as they are significant and easy to compute. In this case mo-
ments M(p,q) up to second order are used as region descriptors. For a region, the moment
M(p,q) is defined as follows:

www.intechopen.com

Integrating Autonomous Behaviour and Team Coordination into an Embedded Architecture 265

M(p,q)= D x"y’ 1)

(x,y)eregion

The moments M(0,0), M(1,0), M(0,1) describe the number of pixels in x and y direction and
the centre of a region. Additionally, to get the orientation of the moment, the central mo-
ments C(p,q) with the according centre (cy,c,) of the region are needed.

Clp.g)= Y(x-c)'(y=c) (2)

(x,y)eregion

The central moments C(1,1), C(2,0), C(0,2) together with the above mentioned three mo-
ments describe one region. For visualization purposes they can be used as a representation
for an ellipse, but as ellipses are computationally difficult to handle this is not used for the
algorithm’s calculations. Additionally the average colour of the regions is part of the de-
scriptor, whereby the YUV colour space is used. The regions are stored as a connected list,
whereby the region-growing step assures an ordering of the regions by the y-coordinate of
the uppermost pixel of one region. This spatial ordering speeds up the following region-
merging step. In this step the regions created before are merged together if they are spatially
near to each other and are similar in colour (see Fig. 15). As the moments can be visualized

4
v

c P ’ E &
I
Fig. 15. Region-growing and region- Fig. 16. Influence of segmentation pa-
merging rameters

as ellipses, spatial near can mean overlapping ellipses. The YUV colour space used for re-
gion-growing is not very suitable for region-merging because higher Euclidian distances in
the colour space are treated as similar. In this step one would like to merge regions of simi-
lar colour disregarding the shading, therefore the HSI colour space is suitable for this pur-
pose.

So, regions are merged together if their Euclidian distance in the HSI colour space falls be-
low a specified threshold and if they overlap. The actual region is compared to regions
whose lowermost pixel is not higher than the uppermost pixel of the actual region. Hence
only the data from the line-based region-growing step of the actual image line and the pre-

www.intechopen.com

266 Robotic Soccer

viously created regions are needed to do the region-merging. Fig. 16 shows three different
resulting images of the colour segmentation algorithm: In the background the original im-
age, above two colour-segmented images. The lower left image shows segmentation with
already found regions, but with a lower threshold for the allowed colour difference of re-
gions to merge. In the other segmented image the elimination of shadows and of highlights
can be observed.

4.2 General object detection / recognition

The detection and recognition of objects in general is based on the above described colour
segmentation algorithm. The coloured regions found by the algorithm and the correspond-
ing two-dimensional moments are checked for defined properties to identify objects like the
ball, the goals or other robots. The pre-defined object properties are stored on an USB flash
drive which is located at the on-board Mini-ITX board. Every time the robotic system is
started the parameters are loaded from the USB flash drive. They can be read out and modi-
fied over a control applet which connects over a wireless connection to the central server
where all robots are logged in. At the moment the parameters are loaded into the Trimedia
respectively into the software vision module on the robots which are equipped with Fire-
wire cameras. Recognized objects are checked for plausibility and deleted if necessary (e.g.
when more than one ball has been detected or if the detected ball is outside the field).

In the application area of RoboCup special premises regarding the computer vision apply,
e.g. defined colours for different objects. So, some colours are of more relevance than others.
The above described colour segmentation algorithm does not benefit from this a priori
knowledge, as it only uses the achromatic threshold to identify pixels of interest. For this rea-
son, colour lookup-tables were implemented to make use of the prior knowledge of relevant
colours. As a result fewer regions are extracted from the image, so that even smaller ones
can be taken into account for object recognition. Thus, edge markers can be detected from a
greater distance.

Using these lookup tables leads to a robust and fast possibility to assign pixels to an object
without the colour space conversion from YUV to HSI for every pixel. This significantly
improves the speed of the colour segmentation algorithm resulting in higher and more con-
stant frame rates.

4.3 Field detection

Detecting the field starts at pixel-level of the camera image. Again, the before mentioned
YUYV lookup tables are used to decide whether a pixel belongs to the field. The camera im-
age is divided into 36 x 44 fragments for which the number of field-pixels is counted. A
threshold decides whether this fragment is part of the field. Another matrix of the same size
is used to mask the outer dimensions of the field. This method allows detecting the field
even if it is hidden by parts of a robot. Another advantage of the field detection is that it can
be used to mask out objects outside the field (like ball-like red shoes of a viewer). As this
detection runs in parallel to the actual vision system, it does not interfere with it, leading to
more stable frame rates.

www.intechopen.com

Integrating Autonomous Behaviour and Team Coordination into an Embedded Architecture 267

4.4 Landmark detection

For a robust localization the detection of landmarks is very helpful in particular if the land-
marks are unique. In the RoboCup environment landmarks have defined colours and di-
mensions and additionally they are assigned to a certain side of the field. In Fig.17 two
different landmarks are shown. They normally mark corners of the field. In this vision-
system-test-case the two different landmarks are located on the same side of the field and in
addition no goal is present.

The vision system draws rectangles around recognized landmarks and writes the corre-
sponding internal number aside. Landmarks are recognized using the coloured moments
from the colour segmentation algorithm by successively processing the list of coloured mo-
ments, so that landmarks can be detected on-the-fly. Termination criteria make sure that not
every moment is checked against all others. A landmark in the RoboCup environment con-
sists of three coloured regions of the same size, whereas the two outer regions are even of
the same colour. The outer colours are defined by the side and are of the same colour as the
goal. Hence, the list of coloured moments is searched for corresponding moments which
match an alignment and colour combination with a specific variance. A weight is assigned
to found landmarks, depending on the number of appropriate coloured moments, where-
upon a landmark is considered complete when the weight is three. Complete landmarks are
no longer used for further combination-searching, avoiding the recognition of multiple
landmarks at the same location. The dimension of the landmark is approximated using the
height of the middle moment as this turned out to lead to a stable recognition.

4.3 Ball detection

For the detection of the ball, again the extracted coloured moments from the colour segmen-
tation algorithm are used. The ball is an object with defined colour and size, and the list of
coloured moments is searched for corresponding ones. Moments which are over the bottom
line of landmarks recognized to be complete are ignored as this would be a ball outside the
field. Suitable regions that are spatially near are merged together. Depending on the illumi-
nation of the field a dark shadow is under the ball. This shadow could be detected as an
obstacle directly in front of the ball. Hence this shadow is masked to avoid this behaviour.
The masking can be seen in Fig. 18 directly below the recognized ball. Under certain circum-
stances it is possible that multiple coloured moments match criteria of the ball. In this case of
multiple possible ball locations, the largest one with the lowermost position in the camera
image is taken as the ball position. Unfortunately this is not always correct, so that the actu-
ally used ball position is calculated by a particle filter which is fed with all possible ball
positions.

4.5 Free Space detection

Another essential algorithm for autonomous robots that are part of a dynamically changing
environment is a detection of free space. This information then is used to avoid obstacles
and for general path-planning. In general the free space detection is very similar to the field
detection but the two algorithms differ in detail. Like in the field detection algorithm the
image area again is divided into 36 x 44 fragments. They are checked for “dark” pixels and if
the amount of dark pixels exceeds a certain threshold, the corresponding fragment is
marked being occupied. Afterwards the matrix is passed through column by column from
bottom to top and at the image position of the first occupied matrix-fragment an obstacle

www.intechopen.com

268 Robotic Soccer

marker is placed. These obstacle markers are visualized as red bars as depicted in Fig. 17.
Special attention has to be paid to the fact that our robots are equipped with an active vision
system, where all cameras have two degrees of freedom to be moved. Hence, it can happen
that a camera sees parts of the robot itself, which are black coated. It must be prevented that
these parts are recognized as obstacles. As the actual camera position and the camera’s aper-
ture angle is known, a calculation of a suitable robot-mask depending on the camera position
is possible. This mask is also shown in Fig. 17, but as no part of the robot is visible, all robot-
mask markers are at the bottom of the image.

5z alw

ob j=280 Entf=688 cm h=39 px)

iy

T ‘)

Fig. 17. Landmark recognition, free space Fig. 18. Ball detection with shadow-
detection with obstacle markings masking
and line segment detection

4.6 Line recognition

As the lines on the field are defined by the rules of RoboCup, they suit as distinctive attrib-
utes for localization. The lines in all divide the field into sections, but one single line is not
characteristical for a certain section, because there are the same markings for both sides of
the field. As the camera perceives only a section of the field, there are multiple combinations
of lines possible, each belonging to another section of the field. Hence, line recognition is
inapplicable as the only sensor input for localization; it has to be merged with other sensor
data contributing to more overall accuracy in localization.

There are many approaches for line recognition, most of which are very expensive regarding
the need for computational power. The gradient based Sobel filter had been implemented on
the old Trimedia but was mutually exclusive with the colour segmentation. Hence, another
way of recognizing lines had to be invented, which would have less need for additional
computational power. With the change to the current PC-based vision system, a lack of
computational power is no more existent, but this new method saves computation time
which can be used e.g. for the behaviour system. The field-detection algorithm described
above seemed to be suitable to calculate a line-recognition-like operation along the way. The
image is passed through bottom-up column by column. In the case of a field-fragment
which is followed by a mostly white fragment which is followed again by a field-fragment,
the inner fragment is assumed to be a so-called line-fragment. The fragments found by the
algorithm are marked in the output image as shown in Fig. 17. This algorithm is not line

www.intechopen.com

Integrating Autonomous Behaviour and Team Coordination into an Embedded Architecture 269

recognition in terms of vectorizing recognized lines, but rather calculates supporting points
of possible lines, which then can be matched by the particle filter.

4.7 Structural simplification of images using a discrete cosine transform

One of the main challenges of computer vision is the extraction of distinct image features. A
rule of thumb is: “The simpler the image, the simpler the extraction”. One method to sim-
plify images is to reduce the number of used colours before starting the colour segmenta-
tion. In the following an according method is described, which utilizes the effect of a dis-
crete cosine transform. The discrete cosine transform is broadly used in image compression
algorithms, known from the most popular image compression algorithm “JPEG”. The
mathematical definition of the DCT-II is as follows:

N-1 L B
X(n)= %Cngﬂk) . cos{%]:;l)n} ,C =\ forn=0 o)

1 otherwise

n=0,1,...,N-1 and X(n) is called the n-th spectral component. Applied to a block of pixels, it
transforms the pixels into the frequency domain, where high frequencies are sharp edges in

RGB-DCT JPG

Fig. 19. Resulting colour distributions of DCT applied to the RGB colour space in compari-
son to ordinary JPEG compression

the image. An image compression is almost always done by cutting off higher frequencies.
Talking of frequencies means that the image is transformed into the frequency domain.
Then, changes are made to the frequencies, e.g. the higher ones are cut off, and at last the
frequency data is transformed back to the time domain. Here, a JPEG-like “compression” is
done, but not like in JPEG, the colour space is RGB. Actually the only “compression” con-
sists in reducing the bits used in the frequency domain. Later on this method is referenced
as “RGB-DCT”. It can be used to reduce the structural complexity of images, e.g. by reduc-
ing the amount of used colours, while paying attention to the colour balance. This reduction
has to be done in a special way, so that the overall distribution of colours remains un-
changed. In Fig. 19 the resulting distributions of the application of the RGB-DCT and the

www.intechopen.com

270 Robotic Soccer

standard JPEG compression are compared. The resulting distributions are each drawn in
black over the distribution of the original image drawn in grey. The RGB-DCT’s distribution
follows the original one’s very accurately unlike the resulting distribution of the JPEG com-
pression. On screen better than printed, the colour distortion caused by the JPEG compres-
sion is apparent.

This effect can be utilized as a pre-processing step before the above described colour seg-
mentation algorithm. The RGB-DCT applied to an image leads to smoother images: firstly
the image is transformed into the frequency domain. Then, a significant amount of higher
frequencies is cut off. At last, the image’s data is restored by back-transforming. As now
higher frequencies (sharp edges) are reduced, the image is smoother than before. A fact for
colour segmentation in general is: the smoother the image, the bigger the moments; as edges
can prevent the merging of two regions with similar colours. Of course, there has to be
found a balance between over-sharp and over-smooth images. If you use the RGB-DCT
prior to the colour segmentation, it can significantly reduce the parameterization effort due
to a reduction of the image-complexity. Badly parameterized colour segmentation can lead
to an image scattered with many very small moments, and that easily happens. The prior
application of the RGB-DCT leads to a significantly better colour segmentation result. The
total amount of moments decreases and the average size of a single moment increases
(Fig. 20). In this particular example, recognition of the ball is impossible with the left-hand
side colour segmentation but is possible with the right-hand side’s one. Here, the same col-
our-segmentation parameters were used, while in the right-hand’s image the RGB-DCT was
applied before the segmentation - with only 6 bits of relevance in the frequency domain.

Without application of RGB-DCT With prior application of RGB-DCT
Fig. 20. Resulting colour segmentation moments with and without prior application of
RGB-DCT, while using the same colour segmentation parameters

5. Behaviour-based system

Abstracting the hardware perception and action execution, the behaviour-based software is
structured as can be seen in Fig. 21. There we distinguish between the world model, strategy,
automaton, and behaviour module. All modules have to be autonomous in a way that keeps the
robot full functioning even in case it has lost wireless network connection to its teammates

www.intechopen.com

Integrating Autonomous Behaviour and Team Coordination into an Embedded Architecture 271

which is not uncommon under typical tournament conditions. In this case, the robot sticks
to its last committed strategy.
Once the perception is pre-processed, the extracted information is stored in the robot’s indi-
vidual world model module. The world model module captures information specific to the
robot itself regarding

e the robot’s unique identifier

e its pose on the field (x, y, orientation),

e the position’s confidence,

e the 2D ball-position as seen by the robot,

e the ball-position’s confidence,

e the current role of the robot, and

e possible roles.
In addition it holds team information, like e.g. the global map, the teammates’ roles and the
game situation. The information regarding the robot’s possible roles is a bit mask specifying
which role the robot is able to fulfil. A goalkeeper, e.g., is not allowed to switch its role dur-
ing the whole game. This can be specified by setting possible roles to only the goalkeeper
role. All remaining modules (strategy, automaton, and behaviour), are allowed to access the
world model module’s information.

—LI\ Global map
Teammate roles
‘\/ Game situation Model Info World ol
forld mode
ﬁ/ Rule engine
Strategy
2
:
Automaton
Intercept -
) =X j
=]
Behaviour

Fig. 21. Behaviour-based control flow in the Paderkicker robot

The world model information is sent to the TeamServer at 4Hz. The TeamServer will be
described in the next section. It aggregates the information, decides upon a team strategy,
and sends the whole information to each teammate again at 4Hz, so that the individual
robot’s world model information can also be treated as a life beat. Once, a robot has lost
connection and is thus not transmitting its world view to the TeamServer, it is considered as
lost and the strategies are reassigned within the team.

Depending on the teammates” world models the strategy module then decides on the current
strategy for every robot. Strategies include e.g. Defend and Attack, but also standard situa-
tions like Kick off or Penalty. This is done by the strategy module’s rule engine.

www.intechopen.com

272 Robotic Soccer

After the strategy module has committed to a role, the strategy is realized by an according
finite state machine of the automaton module. Its states include e.g., ball facing, or staying
between goal and opponent.

Every state in the automaton module is mapped to a low-level reactive behaviour like
“move to ball” or “kick ball” in the behaviour module. This module finally executes the actual
actions by sending the calculated action vector to the corresponding hardware boards. It is
behaviour based in terms of Arkin's Motor Schemes (Arkin, 1998). Our behaviour system
allows for a distinction between cooperative and competitive behaviours and behaviour
control through time excited evaluation functions. It consists of a set of low-level behaviours
represented by vector fields that have to be combined in order to result in a vector that can
be sent to the actuators.

5.1 Team strategy

The strategy of the Paderkicker team is realized by role arbitration based on the robots’
propagated world models. There are different ways to actually implement a team strategy
module. One way is to use a dedicated server process that distributes roles and commands
to the teammates after each of them has provided the TeamServer with its subjective world
view. Another way is to design the system responsible for strategy arbitration in a distrib-
uted way, so that every robot has the same rule base. Each teammate would then have spe-
cial rules for the team strategy by which it could independently come to a decision in a
given situation. We started with the second solution, implementing our team play as a dis-
tributed expert system. However, when the need arose to form a mixed team at the Ro-
boCup world championship in Bremen 2006 we chose the first solution with a dedicated
server being able to connect teams with completely different hard- and software. This led to
the development of the Paderkicker TeamServer running a separate expert system for the
cooperation of robots from different teams. The interaction with a TeamServer is particu-
larly important for mixed teams, which will become more and more common in the future.
The TeamServer acts on a coach level as in real soccer games. The different robots register at
the TeamServer and propagate their individual world model as described before - with the
only difference that the whole team thus has only one expert system running responsible for
strategy arbitration. Although the teammates now rely on a central server this does not have
any impact on the individual robot’s robustness: Even if each robot had its own role arbitra-
tion module the individual expert system would not trigger any new role without having a
network connection in the first described solution.

The core of the TeamServer is the rule-based expert system Jess (Friedman-Hill, 2005), which
takes as input the teammates” world models. In addition, it is directly connected to the refe-
ree box, thereby getting additional game status information, like game start and stop and
special game situations like e.g. corner kick. Besides functioning as the team communication
router the TeamServer has the task to arbitrate roles for the teammates. This is very intuitive
by using the declarative programming methodology of the Jess expert system. Thereby, the
expert knowledge is human readable and can be specified as “what is to be solved” and not
procedural as “how something should happen”. The system relies on the expert system’s
ability even under incomplete world information. It holds facts in its working memory,
which are actually variables of the actual world models sent by the teammates, e.g. “ball is
in the perception range of the robot”. The rule-base holds the domain specific expert knowl-
edge coded as rules. A typical rule consists of preconditions and actions that are to be exe-

www.intechopen.com

Integrating Autonomous Behaviour and Team Coordination into an Embedded Architecture 273

cuted when the preconditions hold. The rule engine’s pattern matcher then matches the rule
premises against the facts in working memory and creates an agenda for execution of the
activated rules.

The rule-based system is fed with the subjective world models of all teammates. In our ex-
ample if e.g. the ball is close to a robot a rule will fire that changes the role of the robot to
attacker under certain conditions and reassigns the previous attacker a different role. As
part of that process the rule that forces the robot closest to the ball can be seen in Fig. 22. It
uses the facts alive, robotld, currentRole, and possibleRoles. If the premise (the part in front of
the “=>") matches, the action specified subsequently is executed. This means that in order

(defrule ForceAttacker
?r <- (Robot (alive TRUE) (robotlId ?rrobotld) (possibleRoles ?rposRole)
(currentRole ?rcurRole))
=>
(if (neq (bit-and ?rposRole ?*ROLE_ATTACKER*) 0) then
(if (neq ?rcurRole ?*ROLE_GOALKEEPER*) then
(modify ?r (rcurRole ?*ROLE ATTACKER*)
)
)

Fig. 22. Example for a role-arbitrating rule in the TeamServer: The teammate with the
smallest distance to the ball is enforced to be attacker, but only if the robot is al-
lowed to be Attacker

for the rule to be executed there must be a robot in the working memory, which is alive and
has sent its possible roles, its ID and its current role. Side conditions can be easily specified
in such a system: In the example the goalkeeper is omitted from this specific rule.
At the moment the Paderkicker team supports the five following roles:
Attacker

e Goalkeeper

e First and second line defender

e Supporter
As the robots may fade away because of network connection or hardware problems while
the game is running, some roles will not be possessed by any teammate. Therefore, the
TeamServer has to prioritize the individual roles by their importance for the team. The pri-
orities are dependent on the ball-position on the field. In case the ball is in the team’s half of
the field, defending the goal is the most important aim, which leads to the following priori-
ties:

Attacker

Goalkeeper

First line defender
Second line defender
Supporter

ANl e

In the other case, a more offending style is advisable:

1. Attacker

2. Goalkeeper

3. First line defender

4. Supporter

5. Second line defender

www.intechopen.com

274 Robotic Soccer

This means, that if one teammate drops out of the team the teammate with the least impor-
tant role is assigned the lost teammate’s role.

5.2 Automatons realizing the strategy

Once the role is assigned to a robot, it executes the finite state automaton for that particular
role in the current game situation. It is only dependent on the robot’s own perception, i.e. if
the TeamServer performs a new phase of role arbitration due to game situation changes or

move to
random position

[search ball
timeout]

[random position
reached]

[ball invisible &
shot]

move to
goal

[has

[has

shot |

ball]

[ball lost]

[ball out of
range |

move to [position reached]

defense position

[ball in range]

[ball in range]

/

track ball ‘7

[orientation
finished]

[team has
ball |

se:arﬁh [ball visible] m%ﬁ to I
Cgtac‘:\ [ball in range] orientation
[ball not visible]

Fig.24. Attacker’s strategy as a finite Fig. 23. Line defender’s strategy as a
state automaton finite state automaton

because a robot has been lost, the role change of a teammate results in a switch to the new
finite state automaton corresponding to the new role and game situation.

The attacker’s duty is to find the ball (with the help of all other teammates” world models
including the ball-position), intercept it, drive to the opponent’s goal and shoot (Fig. 24). The
line defenders are assigned two lines of defence orthogonal to the goal and at different dis-
tances (Fig. 23). The line defenders have to work together in order to intercept the ball be-
fore it goes into the own goal or leaves the field (Fig. 25). If only one defender is available in
the team it tries to stay between the ball and the goal. The supporter has the task to stay near
the attacker to be the first choice to become the new attacker, if the old one has lost the ball.

@ = LineDefender
Fig. 25. Positioning of the two line defenders

@ = Ball

5.3 Low-level behaviours
Each state in the automaton is realized by a reactive behaviour assembly which is mixed out
of one or more low-level behaviours like, for instance, ball dribbling, tracking an object with

www.intechopen.com

Integrating Autonomous Behaviour and Team Coordination into an Embedded Architecture 275

the cameras or moving towards a specified object. After all behaviour assemblies have been
processed with the actual perception input, a result vector R = (r;) is generated out of the
assemblies” individual outputs, specifying a value to set for every servo s of the Paderkicker,
which has the following capabilities:

e 2D vector and orientation for the omniwheel motor

e Position and speed of the three ball handling rolls

e Direction for the three pan-tilt cameras to look at

e Whether the shooting device should be activated or not.

For the mixing process of the behaviour assembly, two different modes exist:

o Competitive mixing chooses the result of the strongest low-level behaviour as the
output for the whole behaviour assembly, also known as the Winner-Takes-All
strategy.

e Cooperative mixing combines all low-level behaviour’s by a weighted sum.

E.g. two-dimensional movements are typically generated by using cooperative behaviour
mixing, while competitive mixing is more appropriate for calculating the direction of the
pan-tilt camera.

The mixing operator takes a fixed-sized vector d for every low-level behaviour b as input

which specifies the desired parameters for each available actor possibility:

. (CrpsVipsmy,)
C, = : (4)

(cn,b > vn,h > mn,b)

The elements contain the actual behaviour value ¢, a vote v denoting the desired strength the
value should be given in the final vector field, and the mode m telling the mixer whether

this should be mixed competitively or cooperatively. In the same vector C, modes can be

different, whereas the modes for the same servo must be the same for all behaviours. If a
behaviour does not want to set a certain servo, it can set the corresponding vote to 0. In

addition to C, the mixing operator needs so-called gain values g, for each behaviour by
which the automaton’s state can configure the diverse low-level behaviours in the behaviour

assembly. Together with the servo’s value ¢, the mixing operator calculates the weight for it.
Putting all together the result r; for servo s in one cycle is done as follows:

1. Determine the weight ws =gy - s
c,, »if m , is competitive

2. Calculate r, = s Ky =W,/ Z}ilw&b is the normalized

B
> k., -c,,,otherwise
b=1

weight of behaviour b for a servo s.
6. Adaptation and learning

Especially in the RoboCup domain the need to increase the intrinsic robustness of the robots
is obvious. Even more, as the environment gets more complex and uncertain the need for

www.intechopen.com

276 Robotic Soccer

the robots to consider every bit of information regarding the environment and themselves
grows, in order to stay functioning in case of breaks, environmental changes, or other un-
foreseen events. By robustness we stick to the definition of the IEEE Standard Glossary of
Software Engineering Terminology (IEEE, 1990):

The degree to which a system or component can function correctly in the presence of invalid

inputs or stressful environmental conditions.
When considering societies of robots, each individual robot thereof has several different
information sources to increase its own robustness (Fig. 26): It can foremost analyse its past
behaviour and derive knowledge about e.g. which behaviour caused damage to the robot. If
the robot has recognized a discrepancy between its expected behaviour and the actual result
in its environment, it is even better, if it actively carries out experiments with the goal to find
new behaviours that are suited better. Thereby, the robot in fact has to recognize dynamic
entities like other robots as such so that it does not derive wrong hypotheses. In a society the
robots even can propagate the knowledge within the robot group. And, as a last resort in
case the robots cannot communicate, they can imitate each other so that the same behaviours
do not have to be found out cumbersomely by each robot individually.

Source for
improvement
self other
r /'- Y
\"'-. \
i i T & Ca
passive Prodt if?'i?mg direct indirect
Leaming from il Exchanging informalion Closerving each other,
bahaviar in the past S eyt ! dbout self and envirgnment deriving hypothases

new behavior posshilities
Fig.26. A robot has several sources to improve its robustness available

In the RoboCup domain, however, the short duration of the game (2 x 15min) allows only
for learning efforts that can quickly be conducted. In addition, the most environmental cir-
cumstances are guaranteed to not change during the game. Taken this into account, the
changes the robot has to react on robustly are

e changes at the robot due to wear out and

e sudden breaks because of a collision with another robot.
In this section we will give an overview of our current research progress which addresses
robustly learning low-level behaviours called “skills”. The robust skill learning module
(Richert & Kleinjohann, 2007) described in this section is meant to be placed between the
behaviour module and the actual hardware components. It maps the vector resulting from
the behaviour module to the actual servo possibilities. Thereby, the behaviour assemblies do
not have to be adjusted, when something has changed at the hardware layer. Normally, the
skill layer is turned off and the manually programmed behaviour assemblies are directly
used to set the servos. The skill layer is turned on if the system detects discrepancies be-

www.intechopen.com

Integrating Autonomous Behaviour and Team Coordination into an Embedded Architecture 277

tween the expectation and the reality regarding the environment’s reaction to the system’s
action. The previously presented behaviour-based architecture (Fig.21) thus has to be
slightly modified, which results in the architecture in Fig. 27.

Behaviour module H

Requests for Feedback|
effects

Skill » Exploiter
*)

Progress
Monitor

'
Actors

Sensors

Model
Explorer

Skill learning/adaptation

Fig. 27. Behaviour-based architecture with robust skill learning capabilities

The heart of the skill learning module is the skill database, which stores skills as tuple (pc, g,
e) being the precondition the action and the expected effect in the environment. Normally,
skills are requested by the upper layer in terms of effects that the behaviour module wants
to happen, e.g. the decrease of the distance to a goal. If according skills are found in the
database they are checked whether a skill’s precondition holds true for the current situation.
In the positive case the skill is directly executed and the corresponding effect is checked in
the next cycle. In the other case, a change has been detected and the precondition of the skill
is updated in a way that it is not executed in a similar situation the next time. If no skill can
be found in the database that could achieve the requested effect the system starts tinkering
with its actors until it finds an action that affects the requested effect. With the recorded
perception data it has collected in this phase the following steps are processed:
1. Segmentation of the perception stream
2. For every segment
a. Determine the model function most suitable and test it with the according
model invariant

b. Approximate the segment with the chosen model function

c. Generate the skill capturing the segment’s information
At first the perception stream is segmented into consecutive chunks of perception data ac-
cording to the model function, which will be used to approximate the expected effects. For
each segment a different function will be approximated resulting potentially in a new skill.
An individual skill will be created to account for that. The choice of the model functions is
subject to future research. As a first straightforward solution the system tries all model func-
tions available and takes the one that is able to approximate the perception data with the
least error. In the current implementation only polynomials are used. Experiments simulat-
ing both, gradual degradation and abrupt breaks, showed that though the modest learning
speed, the skill learning module managed to robustly adapt to environmental changes.

www.intechopen.com

278 Robotic Soccer

There a robot had to repeatedly approach a goal while artificial breaks were introduced into
its hardware.

In the first experiment the robot had to start with an empty skill base. After the 15th run a
break was simulated by switching the first and second element in the actor. The robot thus
had to cope with a skill base of which the most skills have become obsolete and new skills
had to be learned. The result of how the robot copes with such a sudden break can be seen
in Fig. 28. The steep increase of the running time is needed to delete skills that are not usable
any more. At the 30th run it again has arrived at the old performance of run 15. As can be
seen in the number of totally stored skills, not all skills had to be relearned.

The second experiment forced the robot to cope with gradual degradation of the omniwheel
motor by decreasing its power in one dimension at every run. This was done according to
the formula (dx,dy) < (dx,dy*0*(1—run/30)), with 6 <[0.1,0.9] and run being the number of

times the robot already drove to the goal. Thereby, the speed to drive left or right degraded
to the fraction @ of the original capability at the last run. The result of how the robot copes
with a continuous degradation over its whole lifetime for different degradation rates is
shown in Fig. 29. It can be seen that the skill handles gracefully the degradation according to
the grade of robot’s damage: The bigger the damage the lower the performance. However,
even at only 20% of its original power the robot still manages to cope with the impairment.

S0 16¢

sees #5im steps _w 140 3 -m}iﬁ;‘—
95% conf. zone vl w88 ominl 30%
w0l i) rree omini 70%
1o :)
5 & |13 1
g 3w 2T\ IR t .
2T\ . 7]
t LT y e
f 20} A & "t) ",.’:".4 f Y 8y
.‘; I..‘ -: i 1-'31_"‘_:i=§"*‘- ; ::‘l .‘:l" v“:
: HR"VA.‘*A : .Ii |
¢ 5 1513 15 20 5 ad % 5 10 15 20
Simulation run Simulation run
Fig. 28. Performance of robot coping with a Fig. 29. Comparison of performance
sudden break after the 15th run: development for the robot coping
number of steps needed to reach the with gradual degradation of one
goal condition and the learned skills servo down to 20%, 30%, 50%
at each run. The grey background is and 70% of its original power
the 95% confidence interval (averaged over 400 trials)

The results are encouraging by showing how robust behaviour can be achieved at the skill
level of mobile autonomous robots. They show that the robot is able to cope with sudden
breaks in the hardware as well as gradual decrease of an individual component’s perform-
ance. It is able to learn low-level skills guided by behaviour dependent predictions it re-
corded while the skill was learned. Even with simple model functions the system is able to
learn skills without having a priori information about its servos. As an effect of the skill
learning module not paying attention to the servo semantics and the way it dynamically
creates, chooses, or deletes skills, it has all necessary properties of being robust in unfore-
seen environments. This also holds if the environment or the robot itself changes due to

www.intechopen.com

Integrating Autonomous Behaviour and Team Coordination into an Embedded Architecture 279

wear out or harm caused by other robots. As long as there is a way to proceed and fulfil the
goal the skill learning module will find skills to reach it.

7. Conclusion and Outlook

While realizing our soccer robot platform we achieved the two conflicting goals in the soccer
domain needed to reach true autonomy: quick response rates for high reactivity and more
complex but less frequent deliberation processes. This has led to robots that show autono-
mous behaviour while keeping attention to changes of the game situation demanding coor-
dinated reaction of the whole team in a timely manner.

Components that are subject to quick changes in the environment as e.g. sensor and actor
capabilities of the robots are arranged in a decentralized manner wherever appropriate and
are located on specialized hardware. Those processes that do not need that fast update cy-
cles like team communication, planning or processing at the higher levels are located at the
Mini-ITX, allowing for faster development cycles but slower execution time. This architec-
ture has evolved naturally out of the needs to combine a fault tolerant embedded system
with fast development cycles for behaviour exploration.

In the near future we plan to endow the robots with the capabilities to self-calibrate the
individual behaviours, meaning that the robots themselves adapt the behaviour parameters
based on their perception of the environment. Furthermore, the TeamServer functionality
will have to be decentralized to comply with the upcoming RoboCup soccer rules for the
Middle Size League. A first step could be that one robot at a time hosts the TeamServer. If it
looses connection to the other teammates another robot then could take over. Another big
issue is the calibration automation for the various vision aspects. The usual practice to align
the RoboCup rules year by year a little bit more to the FIFA rules has also a deep impact on
the near-term Paderkicker development. The abandonment of the corner posts together with
the colours of the goals, which are currently used by the Paderkickers to localize themselves,
necessitates a partially rework of the vision and localization algorithms.

References

Arkin, R. C. (1998). Behaviour-Based Robotics, MIT Press

Beier, D., Billert, R., Briiderlin, B., Kleinjohann, B. & Stichling, D. (2003). Marker-less vision
based tracking for mobile augmented reality. In Proceedings of the Second Interna-
tional Symposium on Mixed and Augmented Reality (ISMAR 2003)

Esau, N., Kleinjohann, B., Kleinjohann, L. & Stichling, D. (2003a). MEXI - machine with emo-
tionally extended intelligence: A software architecture for behaviour based han-
dling of emotions and drives. In Proceedings of the 3rd International Conference on Hy-
brid and Intelligent Systems (HIS'03)

Esau, N., Kleinjohann, B., Kleinjohann, L. & Stichling, D. (2003b). Visitrack - video based
incremental tracking in real-time. In 6th IEEE International Symposium on Object-
oriented Real-time Computing (ISORC "03)

Friedman-Hill, E. (2003). Jess in Action: Java Rule-Based Systems (In Action series). Man-
ning Publications, December 2002

IEEE (1990). IEEE Standard Glossary of Software Engineering Terminology.

Nilsson, N. (1998). Artificial Intelligence: a New Synthesis. Morgan Kaufmann

www.intechopen.com

280 Robotic Soccer

Prokop, R. J. & Reeves, A. P. (1992). A survey of moment-based techniques for unoccluded
object representation and recognition. Computer Vision, Graphics and Image Process-
ing. Graphical Models and Image Processing, Vol. 54, (Sept. 1992), pp. 438-460

Reimann, C. (2005). Kick-Real - a mobile mixed reality game. In ACE2005, ACM SIGCHI
International Conference on Advances in Computer Entertainment Technology

Richert, W., Kleinjohann, B., Kleinjohann, L. (2005). Evolving agent societies through imita-
tion controlled by artificial emotions. In M. Huang, X.-P. Zhang, and M. Huang,
editors, ICIC 2005, number 3644 in LNCS, pages 1004-1013. Springer-Verlag Berlin

Richert, W., Kleinjohann, B., Koch, M., Bruder, A., Rose, S., Adelt, P. (2006). The Paderkicker
Team: Autonomy in Realtime Environments. Proceedings of the Working Conference
on Distributed and Parallel Embedded Systems (DIPES 2006)

Richert, W. & Kleinjohann, B. (2007). Towards Robust Layered Learning. In IEEE Interna-
tional Conference on Autonomic and Autonomous Systems (ICAS'07)

Stichling, D. & Kleinjohann, B. (2002a). CV-SDF - a model for real-time computer vision
applications. In IEEE Workshop on Application of Computer Vision

Stichling, D. & Kleinjohann, B. (2002b). Low latency color segmentation on embedded real-
time systems. In Bernd Kleinjohann, K.H. Kim, Lisa Kleinjohann, and Achim
Rettberg, editors, Design and Analysis of Distributed Embedded Systems. Kluwer Aca-
demic Publishers

Stichling, D. & Kleinjohann, B. (2003). Edge vectorization for embedded realtime systems
using the CV-SDF model. In Proceedings of the 16th International Conference on Vision
Interfaces (VI 2003)

Stichling, D. (2004). VisiTrack - Inkrementelles Kameratracking fiir mobile Echtzeitsysteme.
PhD thesis, Universitit Paderborn, Fakultit fiir Elektrotechnik, Informatik und Ma-
thematik, 2004.

www.intechopen.com

Robotic Soccer
Edited by Pedro Lima

Robotic Soccer

ISBN 978-3-902613-21-9

Hard cover, 598 pages

Publisher I-Tech Education and Publishing
Published online 01, December, 2007
Published in print edition December, 2007

Many papers in the book concern advanced research on (multi-)robot subsystems, naturally motivated by the
challenges posed by robot soccer, but certainly applicable to other domains: reasoning, multi-criteria decision-
making, behavior and team coordination, cooperative perception, localization, mobility systems (namely omni-
directional wheeled motion, as well as quadruped and biped locomotion, all strongly developed within
RoboCup), and even a couple of papers on a topic apparently solved before Soccer Robotics - color
segmentation - but for which several new algorithms were introduced since the mid-nineties by researchers on
the field, to solve dynamic illumination and fast color segmentation problems, among others. This book is
certainly a small sample of the research activity on Soccer Robotics going on around the globe as you read it,
but it surely covers a good deal of what has been done in the field recently, and as such it works as a valuable
source for researchers interested in the involved subjects, whether they are currently "soccer roboticists" or
not.

How to reference
In order to correctly reference this scholarly work, feel free to copy and paste the following:

Bernd Kleinjohann, Lisa Kleinjohann, Willi Richert and Claudius Stern (2007). Integrating Autonomous
Behaviour and Team Coordination into an Embedded Architecture, Robotic Soccer, Pedro Lima (Ed.), ISBN:
978-3-902613-21-9, InTech, Available from:
http://www.intechopen.com/books/robotic_soccer/integrating_autonomous_behaviour_and_team_coordination
_into_an_embedded_architecture

INTECH

open science | open minds

InTech Europe InTech China

University Campus STeP Ri Unit 405, Office Block, Hotel Equatorial Shanghai

Slavka Krautzeka 83/A No.65, Yan An Road (West), Shanghai, 200040, China

51000 Rijeka, Croatia FE EBHIERFEK6SS iEEPrRE ARG DA E4058TT
Phone: +385 (51) 770 447 Phone: +86-21-62489820

Fax: +385 (51) 686 166 Fax: +86-21-62489821

www.intechopen.com

© 2007 The Author(s). Licensee IntechOpen. This chapter is distributed
under the terms of the Creative Commons Attribution-NonCommercial-
ShareAlike-3.0 License, which permits use, distribution and reproduction for
non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same
license.

