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Abstract

Plant  active  metabolites  are  under  intensive  examinations  around  the  world  to
supplement the drugs with minimal side effects. Thus, there is vast potential to explore
the possible medicine from the plant sources. Cardiac glycosides are a unique group of
secondary  metabolites  that  they  are  considered  one  of  the  most  useful  drugs  in
therapeutics. In this review, cardiac glycosides and their analogues are presented. The
structure and distribution in plants, as well as structure elucidations, synthetic routes,
and chemical analysis, are shown. In addition, the pharmacological activities, mode of
action studies, and structureactivity relationships are discussed.

Keywords: cardiac glycosides, distribution in nature, structure features, structure elu‐
cidation, chemical analysis, pharmacological activities, structure‐activity relationships

1. Introduction

Many research efforts have been done toward the proofs of the use of plant species in medicinal
treatments in recent years. The effect of plants used has been examined traditionally to support
treatment of various diseases. Cardiac glycosides are a group that comprises the most drug‐like
molecules subjected to several investigations and they were proved to be fruitful in developing
potential drugs [1–5]. They are chemical compounds responsible for the poisoning of livestock
and the treatment of congestive heart failure. Extracts or latexes of cardiac glycosides plants
have been applied to poison arrows in Africa, Asia, and South America for use in hunting and
fighting. It is expected to be evolved as a defense way in plants. Cardiac glycosides are steroids
having the ability to exert specific powerful action on the cardiac muscle. A very small amount
can exert a beneficial simulation on diseased heart. These compounds are primarily valuable in
the treatment of congestive heart failure. They increase the force of heart contraction without a
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concomitant increase on oxygen consumption. Consequently, the myocardium becomes more
efficient pump and is able to meet the demands of circulatory system [6–8].

2. Structure diversity of cardiac glycosides

Cardiac glycosides are a group comprising two main classes of compounds that differ in the
structure of their aglycone as shown in Figure 1. Cardiac glycosides are either C23 or C24
steroids with a basic nucleus of cyclopentanoperhydro phenanthrene substituted at C17.
Cardenolides have a five‐membered lactone group in the C17 with α, β‐unsaturated γ‐lactone
ring (butenolide), whereas the other group, the bufadienolides, was first discovered as skin
poisons in toads. The C17 substituent with a doubly unsaturated six‐membered lactone ring
(α‐pyrone). Plants can produce both cardenolides and bufadienolides. Another group,
isocardenolides, has the double bond of butenolid ring at position 21 or 22 instead of position
20 as shown in Figure 1. Most clinical attention was directed to the cardenolides owing to their
therapeutic use. Digoxin and digitoxin are the two most widely used digitalis inotropes. There
are two million patients receiving these cardenolides in the US. In general, some isocardeno‐
lides appeared to be devoid from any cardiac activity [9].

Cardiac glycosides, cardenolides, and bufadienolides, bear a structure resemblance to the
steroid saponins and have the same solubility and foaming characteristics. They are also
distinguished from other steroid glycosides by a 14‐hydroxy group and some peculiar sugar
incorporated in their skeleton. Other substituent groups may be present, for example, addi‐
tional hydroxyl groups at C‐1, 11, 12, 16, and 19. The sugars are always linked at C‐3. Some
members have an aldehyde group rather than methyl group at C‐19 [10].

Figure 1. Structures of cardiac glycosides.

These compounds are also characterized by its unusual “U shape.” This “U shape” has an A/
B and C/D cis and B/C trans ring junctions. On the other hand, the adrenocortical steroids
typically possess an A/B, B/C, and C/D all having trans conformation, while the bile salts
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characteristically have an A/B cis and B/C, trans orientation [10]. Although cardiac glycosides
are more abundant than aglycones, some aglycones of cardiac glycosides are used for conges‐
tive heart failure and commercially available like digoxigenin, gitoxigenin, strophanthidin,
and ouabagenin as shown in Figure 2. The most commercially important plant sources of
cardiac glycosides are digitalis purpurea, D. lanata, Strophanthus gratus, and Strophanthus kombé
[6]. Figure 2 shows the structure of some common cardiac aglycones.

Figure 2. Structures of some common cardiac aglycones.

The sugar moieties are mostly attached to the aglycone at C‐3 by β‐linkage and are composed
of up to four sugar units. It may include glucose or rhamnose together with other deoxy sugars
whose natural occurrence is, so far, known only in association with cardiac glycosides [11–15].
Figure 3 shows the structures of some examples of sugar residues attached to cardenolides,

Figure 3. Examples of sugar residues attached to cardenolides.

Cardiac Glycosides in Medicinal Plants
http://dx.doi.org/10.5772/65963

31



which occur in the pyranoid form [11]. To differentiate between sugars with a hydroxyl group
at C–2 and 2‐deoxy‐sugar chemically, hydrolysis is the first choice [16]. The latter are almost
completely hydrolyzed by boiling in 0.05 N mineral acid in 50% aqueous methanol for 30 min,
whereas the former sugars are not completely affected by this procedure.

3. Distribution in plant kingdom

Cardiac glycosides occur in small amounts in the seeds, leaves, stems, roots, and bark of plants
of wide geographical distribution. Many species grow in tropical regions and have been
employed, in the past, by natives of Africa, Asia, and South America for preparation of arrow
poisons [17]. In plants, cardenolides appear to be confined to the angiosperms. They are more
abundant in families Apocynaceae and Asclepiadaceae (now subsumed in Apocynaceae).
However, it could be also found in some plants belonging to Liliaceae, Ranunculaceae,
Moraceae, Leguminosae, Scrophulariaceae, Cruciferae, Sterculiaceae, Euphorbiaceae, Tilia‐
ceae, and Celastraceae [18]. Some of the plants’ genera containing natural cardenolides are
illustrated in Table 1.

Family Genera

Apocynaceae Adenium, Acokanthera, Strophanthus, Apocynum, Cerbera, Thevetia, Nerium,

Carissa, Urechites

Asclepiadaceae (subsumed in

Apocynaceae)

Gomphocarpus, Calotropis, Pachycarpus, Asclepias, Xysmalobium, Cryptostegia,

Menabea, Periploca

Moraceae Antiaris, Antiaropsis, Naucleopsis, Maquira, Castilla

Leguminosae Coronilla

Scrophulariaceae Digitalis, Isoplexis

Cruciferae Erysimum, Cheiranthus

Sterculiaceae Mansonia

Tiliaceae Corchorus

Celastraceae Euonymus, Lophopetalum

Table 1. Some common plants containing natural cardenolides.

The bufadienolides occur in plants of families: Hyacinthaceae (Syn. Liliaceae), Crassulaceae,
Iridaceae, Melianthaceae, Ranunculaceae, and Santalaceae. Two genera of Hyacinthaceae are
known to produce them (Urginea and Bowiea). Several compounds of bufadienolides had been
isolated from Urginea maritima, which is commonly known as Squill. It is worthy to mention
that the genus Urginea is an aggregate of six species and it has been used in medicine since
ancient times because of its powerful digitalis‐like effect. There are various animal sources for
bufadienolides, e.g., Buffo (toad), Photinus (fireflies), and Rhabdophis (snakes) [19].
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4. Extraction and purification of cardiac glycosides

The isolation and identification of pure cardiac glycosides from their crude mixture faced some
difficulties in the past due to its low quantity or its presence as a complex mixture. Reich‐
stein’s group [16] suggested the defatting of dried and powdered seeds, and/or leaves with
petroleum ether followed by digestion with water at 0°C to extract polysaccharides and
hydrolytic enzymes. One of the most common methods of extraction of cardiac glycosides is
the prior protection of plant material by its maceration in toluene and allowing it to stand for
many days at 25–37°C to avoid the enzymatic hydrolysis. Then, it is followed by exhaustive
extraction with water‐alcohol mixture. The aqueous extract could be evaporated to a small
volume under vacuum at 50°C. Fats could then be removed by extraction with petroleum ether
and the aqueous syrup of glycosides is diluted with an equal volume of water. Tannic acid and
other polyphenolic and acidic products are precipitated with freshly prepared lead hydroxide
and the mixture is filtered through Hyflo‐Super Gel. The clear filtrate is adjusted to pH 6,
concentrated under vacuum and subjected to fractional extraction: first with ether, then
chloroform, and finally with chloroform‐alcohol, 2:1 and 3:2. For isolation of glycosides of high
solubility in water, the residual aqueous phase is half saturated with sodium sulfate and then
extracted with chloroform‐alcohol [20, 21]. The less polar fractions are separated by chroma‐
tography on neutral alumina [22]. The more polar fractions are usually chromatographed after
acetylation or benzoylation and the free glycosides recovered by hydrolysis with bicarbonate.

Reversed phase column chromatography are widely accepted in many fields including
HPLC of cardiac glycosides with RP‐8 or RP‐18 column and acetonitrile/water or methanol/
water as an eluent, followed by UV detector at 220 nm [23]. The employment of HPLC tech‐
niques also led to the isolation of large number of cardiac glycosides [24–27]. The technique
of DCCC has seen rapid expansion over the past few years. It was used to isolate three new
glycosides from digitalis lanata using the solvent systems CHCl3‐MeOH‐H2O (5:6:4) and
CH2Cl2‐MeOH‐H2O (5:6:4) [28]. Four strophanthidin glycosides, out of a total of eight isolat‐
ed compounds, were separated from one another by DCCC. The solvent systems CHCl3‐
MeOH‐PrnOH‐H2O (5:6:1:4) and CHCl3‐MeOH‐PrnOH‐H2O (45:70:5:40) were used [29].
Further application of DCCC has been reported for the isolation of affinosides from Anoden‐
dron affine [30, 31]. Recently, Kopp et al. [32] used the technique of DCCC in successful appli‐
cation to isolate 41 bufadienolides after fractionation by column chromatography. Moreover,
radial centrifugal chromatography gives a good resolution and ease of operation to isolate
cardiac glycosides [33].

5. Chemical analysis

The analytical methods for cardiac glycosides can be divided into two groups, which are
classical and sensitive methods. The classical methods (μg range) including photometry and
chromatography have an importance in the pharmacopoeias and are widely employed in
control laboratories for quantitative determination of the content and purity of glycoside
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preparations. Sensitive methods (ng range) include pharmacokinetic investigations, which
require sophisticated apparatus. They comprise gas chromatography coupled to a mass
spectrometer (GC‐MS) and HPLC coupled to a sensitive detector (MS or fluorescence detector).
Such method affords reliable measurements in the ng range [34], whereas the classical methods
require preliminary purification, usually by chromatography [35].

In classical methods, direct measurement by UV led to the absorption maxima for cardenolides
at 217 nm (εmol = 16,595) and for bufadienolides at 300 nm (εmol = 5250, εmol is the molar
extinction coefficient). For qualitative and quantitative determination of the cardiac glycosides,
it must therefore be converted into colored derivatives as shown in Figure 4. It can be converted
into colored derivatives by reaction with polynitroaromatic derivatives in alkaline solution,
with Keller‐Kiliani or xanthydrolin acidic medium [34] or by treatment with strong acids and
these can be measured by conventional photometers or fluorimeter [36, 37].

Figure 4. The chemical methods used for photometric and fluorimetric determination of cardenolides.

The reaction between cardenolides and polynitroaromatic derivatives in alkaline solution [38–
41] are based on the C‐C coupling of the unsaturated lactone ring with them to produce dye
complexes which can be measured photometrically. The reagent may also be used as a spray
reagent to visualize cardiac glycosides on TLC. The reagents that gained an established place
are Baljet reagent (picric acid) [38], Kedde reagent (3,5‐dinitrobenzoic acid) [40], and Rabitzsch
reagent (tetranitrobiphenyl) [41]. However, the specificity of Baljet reagent is low because
many other substances, e.g., ketones give intense color reaction with picric acid and alkali [34].

Various reaction mechanisms are suggested for the reaction of polynitroaromatic with cardiac
glycosides [42]. According to the studies by Burns et al. [43] and Kovar et al. [42], splitting off
of one proton at C21 produces a carbamine that consequently undergoes nucleophilic linkage
to the polynitroaromatic molecule. The resulting complexes are cyclohexadienate type and
known as Meisenheimer compounds [34], as shown in Figure 5.
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Figure 5. Meisenheimer complex formed of cardenolides with polynitroaromatic reagents.

Both the Keller‐Kiliani and xanthydrol convert 2‐deoxy‐sugars into characteristic colored
derivatives. In this way all digitoxose‐containing glycosides can be qualitatively and quanti‐
tatively determined. All the acid reagents detect only those digitoxoses, which are easily
hydrolyzed under the conditions of the test [34]. Keller‐Kiliani reaction in acetic acid, ferric
chloride, and sulfuric acid produces a blue coloration with absorption maxima at 470 and 590
nm. It is important to note that the color formation is dependent on time and it is affected by
moisture content [37]. Xanthydrol reaction [44] in acetic acid/hydrochloric acid mixture
produces red coloration with absorption maximum at 520 nm. However, the reagent is not
very stable and decomposed products tend to interfere with the color reaction. Therefore,
Pötter suggested the use or the more stable dixanthyl urea instead of xanthydrol [45].

Fluorescence spectroscopy is 10–100 times more sensitive than absorption photometry [46], so
the reaction between cardiac glycosides and strong acids gives a restricted limit of detection
in the ng range. For digoxin determinations, an activating wavelength of 340 nm is used and
the emitted fluorescence is measured at 420 nm [47].

6. Structure elucidation

The earliest methods to determine the structure of cardiac glycosides depended on acid
and/or enzymatic hydrolysis of the glycoside to the aglycone and sugar moieties followed by
the identification of their nature. The method consumed a bigger quantity of the isolated
glycoside, and consequently, it was only suitable for structure determination of the major
constituents. The great development in the spectroscopic instruments and the analysis of the
produced data in the last three decades was accompanied by a great jump in the study of
structure and stereochemical behavior of the naturally occurring compounds. This develop‐
ment led to stabilize a clear relationship between the structure and the data obtained from the
spectroscopic experiments.

Before developing the recent tools for chemical analysis of organic compounds, it was very
difficult to elucidate the cardiac glycosides structures. In the past, it is important to perform
acid hydrolysis [48–51] or enzymatic hydrolysis [52, 53] to obtain the sugar residues and the
aglycone separately. Now, more sophisticated and accurate tools were used for identification
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the structure of cardiac glycosides with the stereochemistry determination, which give a
powerful way to understand the mechanism of action and facilitate the structure activity
relationship studies. Examples of these tools are mass spectroscopy, and FTIR and NMR.

6.1. Nuclear magnetic resonance (NMR)

No doubt that NMR is the most powerful tool for the structure determination of cardiotonic
compounds. The advantage of pulsed Fourier transformation and two‐dimensional NMR
spectroscopy is that they provide information related to the carbon skeleton of the molecule
and the structure environment of each hydrogen and carbon. Tori et al. [54] reported the first
13C‐NMR analysis of 10 cardenolides by employing single‐frequency off‐resonance, noise off‐
resonance decoupling, and the comparison with spectra of structurally related compounds.
Later on, he used 13C‐NMR spectroscopy to determine the structure of thevetin A and B [55].
Robien et al. [56] reviewed 13C NMR data of 36 bufadienolides. Later on, Kopp et al. [32] used
13C NMR for elucidation of the structure of bufadienolides compounds isolated from Urginea
maritima.

Cheung and Watson [57] briefly studied the 1H and 13C NMR of the compounds calactin,
uscharidin, calotoxin, uscharin, and voruscharin and established their stereochemistry. The
13C‐chemical shift of C‐19 also gives valuable information on the stereochemistry of both car‐
denolides and bufadienolides at C‐5. In 5β‐series, C‐19 have its signal at 21.7 ± 2.5 ppm,
whereas in 5α‐series at 12.2 ± 0.4 ppm. Moreover, 5α‐series show the deshielding of C‐7 and
C‐9 by ~5.5 and 13 ppm, respectively. The number of sugar moieties could be determined
from the number of anomeric carbons at the region of 95–103 ppm in its 13C‐NMR spectrum.
Moreover, α‐ and β‐sugars could be distinguished from each other by measuring the cou‐
pling constant of the anomeric hydrogen at the region of 4.4–5.3 ppm in its 1H‐NMR spec‐
trum. The anomeric hydrogen of α‐sugar is coupled with the adjacent hydrogen at 2–3 Hz,
while of β‐sugar is coupled at 7–8 Hz [58].

Elgamal et al. isolated and studied the structure of several cardiac glycosides [58–60]. Some
of these compounds are shown in Figure 6. The structure elucidation of some example com‐
pounds, A, B, and C, was presented based on NMR spectral assignments [60], which were
confirmed by DEPT, gs‐COSY, TOCSY, gs‐HMQC, 13C‐coupled gs‐HMQC, ROESY, gs‐
HMBC, and 2D INAPT experiments. The 1H and 13C assignments are shown in Table 2. The
stereochemistry of the steroid ring system and all substituents could be determined beyond
doubt from the 1H; 1H coupling constants, as far as identifiable, and the ROESY cross‐peaks.
The ROE measurements are very informative to perform signal assignment and to deter‐
mine the ring junction forms. In compound B, some ROESY cross‐peaks gave evidence of
the trans form of ring junctions A/B and B/C which revealed by H‐2b/H‐19, H‐19/H‐8b, and
H‐8b/H‐18 cross‐peaks, as shown in Figure 7. In addition, the ring junction C/D should be
cis, as follows from the cross‐peaks H‐9/H‐15a and H‐12a/H‐15a. The orientation of aglycone
and glucose moiety in compound C was obtained from spatial proximities obtained from
ROESY as shown in Figure 8.
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Figure 6. Structure of some cardenolides isolated from Calotropis procera.

      A   B   C
1H    13C    1H    13C    1H    13C

1 α 1.29 38.3 1.10 38.3 1.10 38.3

β 1.96 1.84 1.85

2 α 2.23 37.8 1.85 32.1 1.97 30.4

β 2.32 1.47 1.62

3 α – 211.4 3.60 71.8 3.80 79.2

4 α 2.04 44.3 1.64 38.8 1.82 35.3

β 2.21 1.36 1.41

5 α 1.45 46.1 1.21 45.8 1.20 45.6

6 α 1.37 28.6 1.44 30.0 1.47 30.0

β 1.23 1.35 1.38

7 α 1.03 27.0 1.20 28.7 1.20 28.8

β 1.96 2.13 2.13

8 β 1.52 41.2 1.68 42.6 1.68 42.6

9 α 0.95 49.1 1.07 51.1 1.07 51.1

10 – 35.7 – 36.9 – 37.0

11 α 1.48 21.2 1.63 22.3 1.62 22.3

β 1.30 1.38 1.38

12 α 1.32 39.4 1.56 40.9 1.56 40.9

β 1.45 1.56 1.56

13 – 49.5 – 51.0 – 51.0
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      A   B   C
1H    13C    1H    13C    1H    13C

14 – 84.7 – 86.3 – 86.3

15 α 1.98 32.7 2.20 33.4 2.20 33.4

β 1.63 1.79 1.80

16 α 2.07 26.7 2.23 28.0 2.23 28.0

β 1.79 1.95 1.95

17 α 2.72 50.7 2.91 52.1 2.90 52.1

18 0.84 15.7 0.97 16.4 0.97 16.4

19 a 0.94 11.2 0.91 12.6 0.92 12.6

b – – –

20 – 174.8 – 178.4 – 178.4

21 a 4.76 73.3 5.01 75.3 5.00 75.4

b 4.95 5.11 5.12

22 5.81 117.4 5.98 117.8 5.98 117.8

23 – 174.4 – 177.2 – 177.3

1′ 4.47 (7.8) 102.3

2′ 3.22 (8.8) 75.2

3′ 3.43 (8.8) 78.1

4′ 3.35 (9.6) 71.7

5′ 3.35 (5.1;1.5) 77.9

6′ a 3.73 (11.9;5.1) 62.8

b 3.93 (11.9,1.5)

Table 2. 1H and 13C NMR chemical shifts and characteristic J (H,H) couplings of three cardenolides A–C.

Figure 7. Stereostructure of B. The arrows indicate steric proximities (from ROESY experiment).
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Figure 8. Relative orientation of the aglycone and the sugar moiety in C. The arrows refer to spatial proximities
obtained from ROESY.

7. Pharmacological action of cardiac glycosides

The most important use of the cardiac glycosides is its effects in treatment of cardiac failure.
In cardiac failure, or congestive heart failure, heart cannot pump sufficient blood to maintain
body needs. During each heart contraction, there is an influx of Na+ and an outflow of K+.
Before the next contraction, Na+, K+‐ATPase must reestablish the concentration gradient
pumping Na+ into the cell against a concentration gradient. This process requires energy,
which is obtained from hydrolysis of ATP to ADP by Na+, K+‐ATPase. Cardiac glycosides
inhibit Na+, K+‐ATPase, and consequently increase the force of myocardial contraction [8]. On
the other hand, some cardiac glycosides were investigated for their antitumor activity [61].
In addition, it has been reported that some cardiac glycosides display an inhibitory activity
against rhinovirus [62].

8. Structure-activity relationship

In cardenolides, the steroidal part is considered the pharmacophoric moiety, responsible for
the activity of these compounds [63]. Specifically, the 5β,14β‐androstane‐3β,14‐diol skeleton
has shown the same binding properties to the enzyme as digitalis compounds.

Furthermore, the bending in the structure as shown in cis junctions between A/B and C/D rings
is very important to get the highest interaction energy. Any modification of A and/or B rings
related to B‐C plane, reduces the interaction energy [64]. In general, OH groups at any position
of steroidal skeleton reduce the interaction energy, which depends on the position on the
skeleton and the spatial location. This fact may be explained by the steric hindrance and the
decreasing of steroidal positive potential field. Moreover, the OH group at position C14β is
not an essential feature for inotropic activity, although when it is replaced by hydrogen atom,
potency decreases considerably [65]. The change of the A/B junction does not mean a decrease
of activity of aglycones but it decreases the activity of the corresponding glycosides. Thus, the
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main effect of A/B junction is revealed from its ability to put the sugar into its suitable position
[66]. The lactone ring at C17β has been considered to be responsible for inotropic activity,
bringing about conformational changes on the enzyme that would give rise to its inhibition
[67]. Indeed, that is the most differentiating feature from steroid hormones, and its contribution
to the interaction [68]. Sugar attachment to the steroid part modifies both pharmacokinetics as
well as pharmacodynamics of digitalis glycosides. Free aglycones are absorbed faster than
glycosides and they are easily metabolized to less active 3α‐OH epimer. Thus, the action of
free aglycone is fast and short lasting. The sugar moiety significance for digitalis activity is
well established but sugar parts themselves do not show any activity [10].
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