
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

Chapter 5

Design Trade‐Offs for FPGA Implementation of LDPC
Decoders

Alexandru Amaricai and Oana Boncalo

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/66085

Abstract

Low density parity check (LDPC) decoders represent important throughput bottlenecks,
as well as major cost and power-consuming components in today's digital circuits for
wireless communication and storage. They present a wide range of architectural choices,
with different throughput, cost, and error correction capability trade-offs. In this book
chapter, we will present an overview of the main design options in the architecture and
implementation of these circuits on field programmable gate array (FPGA) devices. We
will present the mapping of the main units within the LDPC decoders on the specific
embedded components of FPGA device. We will review architectural trade-offs for both
flooded and layered scheduling strategies in their FPGA implementation.

Keywords: forward error correctionLDPC decoder, FPGA, digital circuits

1. Introduction

Low density parity check (LDPC) codes are a class of capacity approaching codes which

provide increased error correction capability for both binary symmetric channel (BSC) and

binary-input additive white Gaussian noise (BIAWGN) channel models [1]. Therefore, LDPC

codes are used in a wide range of standards for both wireless communication [2]—WiFi,

WIMAX, DVB-S2, etc—as well as for FLASH-based storage systems [3].

Decoding of LDPC codes is performed in an iterative manner, using message passing algo-

rithms [4, 5]. These algorithms rely on simple computations—additions and comparisons on a

small number of bits—which are performed on dedicated computational nodes. Although the

node level computational complexity is low, LDPC codes implemented in communication and

storage standards employ thousands or tens of thousands of such computational nodes, which

leave a wide range of design options and trade-offs for the implementation of decoding

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

architectures [2]. These trade-offs take into account the throughput, error correction capability,

cost of the hardware implementation, and power consumption.

In this chapter, we will present the most important architectural options for both flooded and

layered LDPC decoders implemented on field programmable gate array (FPGA) devices. The

implementation of LDPC decoders on such devices is motivated by the increased flexibility of

FPGAs, which make them suitable to implement highly versatile solutions in both wireless

communications—such as software defined radios—and storage systems—such as software

defined storage—as well high level of parallelism degree for fixed-point computations, which

ensure the possibility of obtaining high throughputs for the decoders.

This book chapter is organized as follows: Section2 presents the algorithms for the LDPC

decoding, as well as the strategies for it; Section3 summarizes the main features and building

blocks of modern FPGA devices; Section4 presents the implementation and design trade-offs

for FPGA-based flooded LDPC decoding architectures; layered architectures are detailed in

Section5; last section is dedicated to the concluding remarks.

2. Theoretical background of LDPC decoding

LDPC codes are a class of linear algebraic codes, defined by a sparse parity check matrix H [1].

The LDPC code can also be represented by a bipartite graph, called the Tanner graph [6]. This

graph contains two types of nodes: variable or bit nodes—corresponding to the columns in the

H matrix and the codeword bits—and check nodes—corresponding to the rows in the H

matrix and the parity check equations. A check node is connected to a variable node if the

corresponding value in the parity check matrix is nonzero. Figure 1 depicts a simple parity

check matrix and its associated Tanner graph. LDPC decoding is performed in an iterative

manner, consisting of the message exchange between the check and variable nodes along the

edges of the Tanner graphs in several rounds or iterations. This type of decoding is called

message passing (MP) decoding [4]. LDPC codes defined in communication or storage stan-

dards use parity check matrices consisting of thousands of columns, such as the 2304 columns

for WiMAX, 64800 columns for DVB-S2, or 1944 columns for WiFi. The number of nonzero

entries on each column represents the variable node degree—dv —, while the number of the

nonzero elements on each row in theHmatrix represents the check node degree—dc. An LDPC

code is said to be regular if all the rows/columns in the parity check matrix contain an equal

number of nonzero entries; otherwise, the LDPC code is irregular.

In order to enable efficient hardware implementations, quasi-cyclic LDPC (QC-LDPC) codes

are used in most of the standards [7]. These subclasses of LDPC codes present highly struc-

tured parity check matrices, defined by blocks of circulant matrices. A QC-LDPC code is

defined by a base matrix B, consisting of -1 elements and nonnegative elements. The parity

check matrix H is obtained from the matrix B in the following way: -1 elements are expanded

by z � z all 0 matrix, while nonnegative elements within the matrix B are expanded by the z � z

identity matrix permutated with the nonnegative element value. The coefficient z is known as

the expansion factor for the QC-LDPC code. Figure 2 depicts the B matrix for the WiMAX

Field - Programmable Gate Array106

LDPC code, rate ½, with 2304 columns and 1152 rows, and an expansion factor of 96. A

horizontal layer of H matrix is defined as the set of z consecutive rows which correspond to

one row within the base matrix. Composite layers, consisting of integer multiples of z rows

within the parity check matrix, may be also used.

MP LDPC decoding may be performed using different scheduling strategies. These strategies

indicate the order in which the check node and variable node computations are performed

during the decoding iterations [13]. Two types of strategies may be employed: flooded and

layered. Flooded decoding represents the conventional approach for decoding: each iteration

consists of the update of messages at the check nodes, which subsequently pass their output

messages to the variable nodes, which, in turn, update their corresponding messages [5]. Using

this strategy, both the variable nodes and the check nodes are updated once per iteration. The

Figure 1. Parity check matrix and its associated Tanner graph.

Figure 2. Base matrix for WiMAX rate ½ LDPC code [2].

Design Trade‐Offs for FPGA Implementation of LDPC Decoders
http://dx.doi.org/10.5772/66085

107

layered scheduling consists of splitting the parity check matrix in horizontal layers; these

layers are processed in a serial manner, while the check node updates within the same layer

are processed in a similar manner with the flooded scheduling [8]. The variable node updates

are performed after each layer processing. Therefore, in layered scheduling, the updates per

iteration at variable node level are equal to the number of layers. Layered scheduling has two

major advantages with respect to flooded: (i) faster convergence and (ii) reduced memory

requirement [8]. The flooded approach has the advantage of increase resilience to faults in the

hardware architectures [9], as well as the possibility for very high throughputs due to the high

level of parallelism at the decoder level.

LDPC decoding can be performed by different types of algorithms, with different error correc-

tion capabilities. These can be split into two major classes [13]:

1. Hard-decision algorithms: These algorithms rely on 1-bit messages exchanged between the

processing units. Such algorithms include bit-flipping, gradient descent and probabilistic

gradient descent bit-flipping, Gallagher-A and Gallagher-B. The advantage of these algo-

rithms is represented by the low requirements in terms of resource usage and power

consumption. Their main drawback is represented by their low error correction capability

with respect to soft-decision algorithms, for both BSC and BIAWGN channel models.

2. Soft-decision algorithms: These algorithms use messages quantized on several bits (usually

between 3 and 7), which are exchanged between the variable nodes and check nodes. The

hardware implementations for soft-decision algorithms are significantly more costly with

respect to the hard-decision versions. However, using soft decoding, LDPC codes are able

to have the capacity approaching error correction capabilities which make them suitable

candidates for a wide range of communication standards.

In this chapter, we will discuss the implementation aspects related to the soft-decision-based

LDPC decoders. The most important class of soft-decision LDPC decoding is represented by

the min-sum (MS) algorithm [13] and its variants: offset MS (OMS) [10], normalized MS (NMS)

[10], self-correcting MS (SCMS) [11], and finite alphabet iterative decoding (FAID) [12]. In these

algorithms, the following messages are used [13]:

1. Input log-likelihood-ratio (LLR): These messages represent the input from the communica-

tion channel. For BSC channel model—used in storage systems—the input LLR is on 1 bit,

while for BIAWGN channel model—used in wireless communication—the input LLR is

quantized on several bits. The input LLR is denoted as γ and is quantized on quantðγÞ bits.

2. Variable node messages: These messages are the outputs of the check node units and serve

as inputs for the variable node units. These messages are denoted as α and are quantized

on quantðαÞ bits.

3. Check node messages: These messages represent the output of the variable nodes and are

the inputs for the check nodes. These messages are denoted as β and are quantized on

quantðβÞ bits.

4. A posteriori LLR (AP-LLR): These messages represent the output of each decoding itera-

tion/layer. The output of the decoder is given by the sign of the AP-LLR. It is denoted as ~γ.

Field - Programmable Gate Array108

Flooded MS decoding of LDPC codes consists of several iterations, where each variable node

message—and check node message—is updated once. Each iteration consists of the following

steps [5, 13]:

1. Variable node update

αi, j ¼ γi þ ∑
kϵfCðiÞ\jg

βi,k, ∀j∈CðiÞ (1)

~γi ¼ γi þ ∑
kϵCðjÞ

βi,k, ∀j∈CðiÞ (2)

2. Check node update

signðβl, jÞ ¼ ∏
kϵfVðlÞ\jg

signðαl,kÞ, ∀j∈VðlÞ (3)

jβl, jj ¼ minðαl,kÞ, ∀j∈VðlÞ, kϵfVðlÞ\jg (4)

CðiÞ denotes all the check node messages connected to the variable node i, while VðlÞ denotes

all the variable node messages connected to the check node l. The number of variable nodes is

equal to number of columns in the parity check matrix, while the number of check nodes is

equal to the number of rows in the H matrix.

Layered decoding is performed layer by layer, each layer consisting of the following steps [8,

13]:

1. Variable node update

αi, j ¼ ~γ i−βi, j,∀j∈VðiÞ (5)

2. Check node update

signðβi, jÞ ¼ ∏
kϵfVðiÞ\jg

signðαi,kÞ, ∀j∈VðiÞ (6)

jβi, jj ¼ minðαi,kÞ, ∀j∈VðiÞ, kϵfVðiÞ\jg (7)

3. AP-LLR update

~γ i ¼ αi, j−βi, j,∀j∈VðiÞ (8)

Both for flooded and layered scheduling, decoding is stopped either when a codeword is

found—all the parity check equations are satisfied—or when the maximum number of itera-

tions is reached.

Design Trade‐Offs for FPGA Implementation of LDPC Decoders
http://dx.doi.org/10.5772/66085

109

The MS decoding, in both layered and flooded strategies, comprises of simple arithmetic

operations, performed on small operands (3–8 bits). The variations of the MS algorithms target

decoding performance improvement. OMS and NMS are based on the fact that the minimum

computation at the check node level represents an overestimation of the check node message

[10]. Therefore, both approaches try to reduce the value of the check node message computed

by the check node unit.

The OMS approach uses a -1 addition from the absolute value of the βi, j in order to reduce its

value. The check node computation in the OMS algorithm becomes:

signðβi, jÞ ¼ ∏
kϵfVðiÞ\jg

signðαi,kÞ, ∀j∈VðiÞ (9)

j β�i, jj ¼ minðαi,kÞ, ∀j∈VðiÞ, kϵfVðiÞ\jg (10)

jβi, jj ¼ j β�i, jj−1 (11)

The NMS approach uses scaling of the absolute value of the βi, j in order to reduce its value, by

a normalization factor λ (usually with the values of 0.75 or 0.875) multiplication. The check

node computation in the NMS algorithm becomes:

signðβi, jÞ ¼ ∏
kϵfVðiÞ\jg

signðαi,kÞ, ∀j∈VðiÞ (12)

j β�i, jj ¼ minðαi,kÞ, ∀j∈VðiÞ, kϵfVðiÞ\jg (13)

jβi, jj ¼ λ � j β�i, jj (14)

SCMS represents an approach which aims at improving the error correction capability by

erasing the variable node messages which change their sign after an iteration [11]. The erasure

process cannot be performed in two consecutive iterations. The modification of the variable

node update for a layered scheduling for the SCMS algorithm is:

αnew
i, j ¼ ~γ i−βi, j, ∀j∈VðiÞ (15)

enewi, j ¼ ð!eoldi, j Þ&ðsignðαnew
i, j Þ⊕signðαold

i, j ÞÞ (16)

αi, j ¼
αnew
i, j , enewi, j ¼ 0

0, enewi, j ¼ 1

�

(17)

FAID decoding aims at improving the error floor region of the LDPC decoding. It changes the

variable node operations, by implementing nonlinear dedicated function for the variable node

message update, based on the channel information and the check node messages [12]. For a

flooded scheduling, the variable node processing becomes:

Field - Programmable Gate Array110

αi, j ¼ FAIDðγi, βi,kÞ, ∀j∈CðiÞ,∀kϵfCðiÞ\jg (18)

~γi ¼ γi þ ∑
kϵCðjÞ

βi,k, ∀j∈CðiÞ (19)

The implementation of the FAID function is done using dedicated look-up tables (LUT). The

complexity of these tables is dependent on the check node message quantization and the

variable node degree dv.

3. Architectural components of FPGA devices

FPGAs are digital devices with a programmable structure. This programmable structure pro-

vides FPGAs with very high flexibility, which makes them the ideal candidates for

prototyping, as well as products with very low time-to-market constraints or applications

which require high degree of flexibility. Furthermore, FPGAs have a built-in structure which

allows a high degree of parallelization for applications that rely on fixed-point computations.

The main digital building blocks of modern FPGA devices are the configurable logic block

(CLB), the embedded memory block RAM (BRAM), and the DSP block. DSP blocks implement

18 bit or wider multiplication, multiply-accumulate or multiply-add fused, and addition oper-

ations [14]. Because they are optimized for operand sized of 18 bit or more, and mainly for

multiplication-based operations, they are of little use for the implementation of LDPC

decoders.

CLBs are the main logic resource, which implement both sequential and combinational logic

elements [15]. Usually, CLBs are composed of several slices, each of the slice being composed

of a look-up table (LUT) and a D flip-flop, plus additional dedicated logic, such as logic and

dedicated wire for ripple carry addition. The combinational logic is implemented using LUT,

with modern FPGAs having six-input LUTs. Therefore, in a LUT and flip-flop pair, six-input

combinational functions have the same cost as one or two input combinational functions. For

specific families, the LUT can also be used as a memory circuit such as the distributed RAM in

Xilinx FPGAs. The D flip-flop is used as the basic sequential logic. Because the combinational

logic is paired with the D flip-flop in the same structural unit, pipelining can be easily and

without significant resource consumption implemented in modern FPGA devices.

Another important feature of modern FPGAs is represented by the built-in memory blocks

[16]. For large memories, FPGAs include the block RAM, which is block of 9 or 18 kbits. They

have configurable width (9, 18, 36, or 72 bit), with the depth of the BRAM being determined by

the width (for an 18 kbit BRAM and 72 bit word, the depth is 512 words). The number of

BRAMs for a design is highly dependent on the width and the depth of required memory. For

example, a memory which requires 96 bit words, and only 64 words, will consume 2 BRAM

blocks, although the number of memory bits is significantly less with respect to the number of

memory bits in a BRAM. Another important issue of the BRAM block is the number of read/

Design Trade‐Offs for FPGA Implementation of LDPC Decoders
http://dx.doi.org/10.5772/66085

111

write ports: it is optimized for 1 read and 1 write port. The maximum number of memory ports

for a BRAM is 2 read and 2 writes, but with limitations in the size of the word. For memories

with few bits, and/or memories with a high number of ports, the distributed RAM

implemented in CLBs is used.

From an LDPC decoder perspective, the FPGA implementation will make use of the CLBs for

the implementation of the processing nodes and the routing network, and memories, either

BRAM or distributed RAM.

4. Flooded LDPC decoders

The straightforward LDPC decoder architecture is represented by the hardware implementa-

tion of the corresponding Tanner graph. This type of architecture is known as the fully parallel

decoder [17]. It consists of:

1. Processing nodes: A fully parallel decoder contains a number of variable node units equal

to the number of columns in the parity check matrix and a number of check node units

equal to the number of rows in the H matrix.

2. Routing network: The routing network is represented by wires which connect the variable

node units with the check node units, according to the parity check matrix.

Although this kind of architecture is straightforward, the main problem arises due to the

routing network. For LDPC codes that have thousands of rows and columns in the parity

check matrix, the routing network involves tens of thousands of connections between the

variable node units and check node units. Furthermore, the H matrix presents an irregular

structure, which makes the interconnections component highly irregular. This will further

contribute to the increase in cost, as well as reduction in the maximum operating frequency—

due to the routing delay across the routing components of the FPGA. Another disadvantage of

fully parallel LDPC decoder is the low flexibility: the decoder is specific to a LDPC code, and a

slight modification in the code leads to the entire decoder redesign. Furthermore, these types

of architecture cannot easily accommodate features such as multi-rate decoder, which is

desired due to the fact that each communication and storage standard uses multiple LDPC

codes with different rates. The main advantage of this architecture is represented by its high

throughput, due to low number of clock cycles required for an iteration [17].

In order to reduce the complexity of these decoders, one approach relies on the reduction of the

wires between the check node unit and variable node units. One such solution relies on the bit-

serial decoder: the check node messages and the variable node messages are sent bit by bit to

their corresponding processing unit [18]. Thus, the connection between a variable node unit

and a check node unit consists of only two wires, instead of a quantðαÞ bit and aquantðβÞ bit

wires. This decoder trades throughput for reduced cost. Other solution relies on reduced

quantization for the messages [19, 20]. The reduced quantization leads to a reduced number

of wires between the processing units and thus to a reduction in the interconnection network.

These solutions trade the error correction capability for reduced cost.

Field - Programmable Gate Array112

The other approach to reduce the complexity and the cost of the flooded LDPC decoder relies

on the serialization of the check node and variable node operations at different levels. Thus,

partially parallel flooded architectures are employed [21–28]. These partially parallel decoders

exploit the regular structure of the QC-LDPC codes in order to obtain regular, low complexity

architectures. Because serialization is employed at different levels, messages have to be stored

in dedicated memory units. Stored messages have to be routed from the memory blocks to the

processing units according to the LDPC matrix. In order to provide a flexible way for message

routing, barrel shifters are employed. The read/write addresses for the memories, as well as the

shift amounts employed in routing, are generated from a dedicated control unit. The main

components for a partial parallel flooded decoder are as follows:

1. Processing nodes: The number of variable node units and check node units is dependent

on the different parallelism degrees at different level. Furthermore, the number of inputs

and outputs for such units can also vary, depending on how many messages can be

processed each clock cycle.

2. Routing network: The routing is implemented using barrel shifters. The number and size

of the barrel shifters may vary with message quantization, circulant size of the base matrix,

different level parallelization degrees, etc. High-frequency pipelined barrel shifters may be

implemented without additional cost in modern FPGA devices due to the LUT and D flip-

flop pair which compose the basic component of the CLB.

3. Memory blocks: Memory blocks are used to store both the input LLRs and the check node

and variable node messages. Usually, high degrees of parallelism—increased throughput

—require wide memory words and multi-port memories. In many implementations, the

multi-port memories are replaced by independent memory banks, which can be easily

mapped on the FPGA BRAM blocks.

4. Control unit: The control unit is used to generate the shift amounts, the read/write memory

addresses, as well as the control signals for the processing units. The shift amounts and the

memory addresses are code dependent; this kind of information is usually stored in

dedicated ROM memories.

For a quasi-cyclic LDPC decoder, two types of partial parallel flooded architectures have been

proposed:

1. Parallel circulant, serial row/column processing: In this type of architecture, a number of z

rows/columns are processed in parallel, while the rows and columns of the base matrix are

processed sequentially [21–24]. This decoder is depicted in Figure 3. This kind of architec-

ture requires z variable node units and z check node units. The memory words will consist

of z messages. An important design parameter is represented by the parallelism degree at

the processing node level—the number of processed messages per clock cycle. For the

variable node unit, the maximum parallelism degree is dv, while for the check node unit is

dc. Increasing parallelism at the processing node level will greatly influence the FPGA

resource consumption of the decoder. This is due to the increased number of barrel shifters,

which will lead to an increase in the conventional slice-based resource consumption, as

well as for the increase in the number of memory ports, or the number of memory banks.

Design Trade‐Offs for FPGA Implementation of LDPC Decoders
http://dx.doi.org/10.5772/66085

113

Increasing the number of memory ports will lead to the implementation of the message

memories with distributed RAM, while the increase in the memory banks will lead to an

increase in the number of BRAM blocks.

2. Serial circulant, parallel row/column processing: In this kind of architecture, the rows/

columns of the base matrix are processed in parallel, while the elements corresponding to

a vertical/horizontal layer are processed sequentially [24–28]. This type of architecture is

depicted in Figure 4. The number of check node units is equal to the number of rows in the

Bmatrix, while the number of variable node units is equal to the number of columns in the

base matrix. The number of columns in the base matrix gives also the number of input LLR

message memories, while the variable and check node messages are stored in a dvnr_colðBÞ

memory blocks. Each memory has a depth equal to the circulant size and a width equal to

the message quantization. This type of memory organization is suitable for FPGA devices,

as each memory block maps to a BRAM block. This kind of decoder does not use dedicated

routing circuits, as the routing of the messages between the memory blocks and the

processing units is done via the offset address within each memory block. The processing

units are fully parallel, as the read/write operations are done from dv or dc memory blocks.

In order to increase the throughput, vectorization technique is proposed [25, 26]. This

technique relies on packing multiple messages within a single memory word, which to be

processed in parallel. Increasing the vectorization degree will lead to alignment problems,

Figure 3. Parallel circulant, serial row/column processing flooded architecture.

Field - Programmable Gate Array114

which lead to increased additional logic, as well as the number of stall clock cycles.

Therefore, the maximum number of packed messages used with vectorization has been

limited to four.

Partial parallel flooded FPGA architectures have two drawbacks:

1. Idle times for processing units: A major disadvantage of flooded decoder is represented by

significant idle times for both variable node and check node units, during the variable node

processing, the check node units, and vice-versa. Therefore, during one decoding iteration,

only half of the decoder is utilized. Two strategies are employed:

a. Processing two different codewords in parallel [22, 23]—while variable nodes compute

the variable node messages for one codeword, the check nodes compute the check node

messages for a second codeword; this solution implies small changes in the control unit,

a double memory for the input LLR messages, and the hard-decision bits, with the

advantage of a double throughput.

b. Using waiting time minimization algorithms [25, 26]—using these algorithms, the order

in which the rows/columns within the base matrix or within the parity check matrix are

processed can be determined, without having data hazards and memory conflicts when

performing the variable node and check node updates; therefore, almost simultaneous

variable node and check node processing can be achieved; a second optimization

obtained by employing these types of algorithms is represented by reduced memory

usage; because data hazards and memory conflicts are avoided, the check node mes-

sages and variable node messages can be stored in the same memory locations.

2. Low usage of BRAM memories: In parallel circulant, serial row/column processing archi-

tectures, the memory word for the variable node messages is zquantðαÞ, while the number

of memory words is dvnr_colðBÞ. For LDPC code with circulant size of 96, 24 columns in the

base matrix, dv ¼ 3, and message quantization of 4 bits, the word size is 384 bits, while the

number of words in the memory is 72. For BRAM blocks consisting of 72 bits memory

Figure 4. Serial circulant, parallel row/columns processing flooded architecture.

Design Trade‐Offs for FPGA Implementation of LDPC Decoders
http://dx.doi.org/10.5772/66085

115

words and 512 words, this kind of configuration results in the usage of 6 BRAM block,

with only 72/512 utilization for each BRAM. For the second type of flooded architectures,

for the same LDPC code, for each memory block required to store the variable node

messages, the memory word is of 4 bits, while the number of words is 96. Also, in this

case, it can be observed that the BRAM has poor usage. Several approaches have been

proposed to address this issue. One is to use multiple codewords. The solution in [23]

targets the increase in the memory words within the BRAM. The codewords are processed

in serial. This solution achieves increase in the BRAM utilization for the same logic usage

and throughput. The solution in [28] targets increase in the memory word size stored in the

BRAM and addresses serial circulant, parallel row/column processing architectures. In the

same memory word are stored messages from multiple codewords. The number of

processing units is increased in order to process in parallel the codewords. This solution

results in an increase of CLB logic usage, as well as throughput increase. Also for the serial

circulant, parallel row/column processing architectures in [26] are presented folding,

which aims at storing in the same BRAMmessages associated with different columns/rows

within the base matrix.

It can be observed that FPGA implementations of flooded architectures present a wide range

of architectural variations, with different parallelism degrees at different levels, which aim at

different throughput/cost/error correction capability trade-offs. The fully parallel solution pre-

sents increased throughput, but high cost due to routing, as well as low flexibility. Partial

parallel solutions use memories for message storage. For these architectures, BRAM-based

memory units are targeted in the FPGA implementation. However, employing BRAM blocks

leads to several challenges related especially to the low usage of these.

5. Layered LDPC decoders

Layered architectures have been proposed first in [8], with the main goal of reducing the

required memory bits. In the case of a layered decoder, two types of messages require memory

storage: the AP-LLR messages and the check node messages. A typical layered LDPC decoder

[29–33], depicted in Figure 5, contains the following components:

1. Processing units: The processing in the layered scheduling consists of the computation of

the variable node messages, computation of the check node messages, and the AP-LLR

update. The variable node message is computed from the AP-LLR and the check node

message. The check node message is computed in the same way as in flooded scheduling,

while the AP-LLR is updated from the new values of the variable node and check node

messages. Because messages do not require routing between processing nodes—as in

flooded—and just routing between memories and processing units, a combined unit—

variable-check unit—is employed for processing. The number of processing units in the

typical layered decoder is equal to the number of rows which constitute one layer, which is

usually given by the circulant size. A combined unit contains an adder to perform the

variable message computation, a FIFO buffer, used for routing the updated variable node

Field - Programmable Gate Array116

message to the AP-LLR update, a comparator for updating the check node message, and

the addition unit for the AP-LLR update [29–32]. Specific FPGA optimization can be

implemented within the combined processing unit, which includes the use of the 6-input

LUT within the CLB for comparator implementation—the comparator is implemented as

ROM memories [30]—as well as the usage of the dedicated shift register chains for the

implementation of the FIFOs. The processing unit has as inputs dc AP-LLR messages and

dc check node messages, and outputs dc updated AP-LLR messages and dc updated check

node messages. An important parameter for the entire decoding architecture is represented

by the parallelism degree at the variable-check unit level, which represents the number of

AP-LLR messages processed each clock cycle (maximum parallelism degree is equal to dc).

A higher degree of parallelism requires more simultaneous AP-LLRs read/write, as well as

routing, which leads to increased number of memory ports or memory banks, and barrel

shifters for routing [33].

2. Memory blocks: Layered decoders require the storage of two types of messages: AP-LLRs

and check node messages. The AP-LLRs are messages which are routed between different

processing units between layer processing. The check node messages are specific to each

processing unit: these do not require routing from a processing unit to another between

different layers. Therefore, the AP-LLR memory is a shared, global memory, while the

check node message memories are local to each processing unit. Regarding the AP-LLR

memory, the memory word for each bank is of quantð~γÞ, while the maximum depth of this

memory is equal to the number of columns in the base matrix. Regarding BRAM imple-

mentation of the AP-LLR memory, a drawback is represented by the low usage of the

embedded block memory. Regarding the check node messages, two variants for their

storage are used: (i) uncompressed form, when the β messages in their conventional two's

complement format, and (ii) compressed form [34]. The compressed check node message is

based on the fact that dc−1β messages within a row corresponding to a row in the parity

Figure 5. Layered decoding architecture.

Design Trade‐Offs for FPGA Implementation of LDPC Decoders
http://dx.doi.org/10.5772/66085

117

check matrix have the same absolute value, equal to the minimum of the α messages

connected to the corresponding check node unit, while the dc-th check node message

absolute value is equal to the second minimum. Therefore, a compressed check node

message can be used, consisting of the signs, first minimum, second minimum, and the

index of the first minimum. Regarding the FPGA implementation, the compressed form is

suitable for shift register-based implementation in conventional CLB logic, while the

uncompressed form is suitable for BRAM implementation. However, in BRAM-based

implementation of the check node message, memory in compressed form is proposed for

layered decoder with serial processing at processing node level. Routing from the BRAM

blocks containing the check node messages to the processing units is achieved using large

shift registers.

3. Routing network: Routing network is implemented using barrel shifters. The number of

barrel shifters is dependent on the degree of parallelism in the processing unit. For each

AP-LLR input of the processing unit, a pair of barrel shifters—one for routing read mes-

sages and one for routing the update message required for write—is required.

4. Control unit: The control unit is responsible for the generation of read/write addresses for

the two memories, the shift amounts for the barrel shifter, as well as the control signals

corresponding to the processing units. As in the case of the flooded decoders, ROM type of

memories is used to embed the LDPC code information, from which are computed the

memory addresses, as well as the shift amounts.

A major issue in the layer architecture is represented by the data hazards. Depending on the

LDPC code, read-after-write (RAW) data hazards may affect the AP-LLR update: the updated

value of the AP-LLR has not been written into the memory, before it is read for a new layer

processing [35]. The problem of data hazards is aggravated by the usage of pipeline stages,

both in the barrel shifters and in the processing units.

6. Conclusions

This book chapter presents an overview of the main design trade-offs in the implementation of

LDPC decoders on FPGA devices. We detail how the main architectural choices for both

flooded and layered scheduling strategies map on the built-in resources of modern FPGA

devices. The main conclusions which can be drawn from this survey are as follows:

1. The degree of parallelism at processing node level has a major influence in the resource

consumption of the LDPC decoder: it gives the number of barrel shifters used for routing,

as well as the number of memory ports or memory banks used for message storage.

2. Routing represents an important factor in the cost/performance of the LDPC decoder; high-

performance pipelined barrel shifter-based routing can be advantageously implemented in

modern FPGA devices using conventional CLB resources.

3. Memories for message storage in partial parallel flooded LDPC decoder or layered

decoders can be implemented using embedded BRAM blocks; the main problem is

represented by the low usage of the memory bits within the BRAM.

Field - Programmable Gate Array118

The implementation of LDPC decoders on FPGA devices has a wide range of architectural and

design parameters, which present different throughput/cost/error correction capability trade-

offs. Furthermore, many FPGA-specific optimizations may be applied in the LDPC decoder

design, such as the message memory mapping or optimization in the processing units.

Regarding the future use of the LDPC codes and decoder architectures, throughput and

flexibility will represent highly important features. Regarding throughput, future wireless

communication will require tens or hundreds of Gbps, which will impose new architectural

challenges. Furthermore, the use of software-defined radios and software-defined flash will

require highly flexible architectures, which can adapt code rate, quantization, as well as other

features.

Acknowledgements

This work has been supported by bilateral UEFISCDI-ANR project DIAMOND.

Author details

Alexandru Amaricai* and Oana Boncalo

*Address all correspondence to: alexandru.amaricai@cs.upt.ro

Computer and Information Technology Department, University Politehnica Timisoara,

Timisoara, Romania

References

[1] R. G. Gallagher. Low Density Parity Check Codes. MIT Press; 1963

[2] P. Hailes, L. Xu, R. Maunder, B. M. al-Hashimi, L. Hanzo. A survey of FPGA-based LDPC

decoders. IEEE Communications Surveys and Tutorials. 2016;18(2):1098–1125. doi:10.

1109/COMST.2015.2510381

[3] K. Zhao, W. Zhao, H. Sun, T. Zhang, X. Zhang, N. Zheng. LDPC-in-SSD: making

advanced error correction codes work effectively in solid state drives. In: Proceedings of

the 11th USENIX conference on File and Storage Technologies FAST'13; USENIX Associ-

ation, Berkeley; 2013. pp. 243–256.

[4] T. J. Richardson, R. L. Urbanke. The capacity of low-density parity. IEEE Transactions on

Information Theory. 2001;47(2):599–618. doi:10.1109/18.910577

[5] F. R. Kschischang, B. J. Frey. Iterative decoding of compound codes by probability prop-

agation in graphical models. IEEE Journal on Selected Areas in Communications. 1998;16

(2):219–230. doi:10.1109/49.661110

Design Trade‐Offs for FPGA Implementation of LDPC Decoders
http://dx.doi.org/10.5772/66085

119

[6] R. Tanner. A recursive approach to low complexity codes. IEEE Transactions on Informa-

tion Theory. 1981;27(5):533–547. doi:10.1109/TIT.1981.1056404

[7] M. P. C. Fossorier. Quasicyclic low-density parity-check codes from circulant permutation

matrices. IEEE Transaction on Information Theory. 2004;50(4):1788–1793. doi:10.1109/

TIT.2004.831841

[8] D. E. Hocevar. A reduced complexity decoder architecture via layered decoding of LDPC

codes. In: IEEE Workshop on Signal Processing Systems; 13–15 October; IEEE; Austin,

Texas, USA, 2004. pp. 107–112. doi:10.1109/SIPS.2004.1363033

[9] C. L. KameniNgassa, V. Savin, D. Declercq. Analysis of min-sum based decoders

implemented on noisy hardware. In: Asilomar Conference on Signals, Systems and Com-

puters; Pacific Groove, California, USA, 2013. pp. 866–870. doi:10.1109/ACSSC.2013.

6810411

[10] J. Chen, M. P. C. Fossorier. Near optimum universal belief propagation based decoding of

low-density parity check codes. IEEE Transaction on Communication. 2002;50(3):406–

414. doi:10.1109/26.990903

[11] V. Savin. Self-corrected min-sum decoding of LDPC codes. In: IEEE International Sympo-

sium on Information Theory; IEEE; Toronto, Canada, 2008. pp. 146–150. doi:10.1109/ISIT.

2008.4594965

[12] S. K. Planjery, D. Declercq, L. Danjean, B. Vasic. Finite alphabet iterative decoders—Part I:

decoding beyond belief propagation on the binary symmetric channel. IEEE Transactions

on Communications. 2013;61(10):4033–4045. doi:10.1109/TCOMM.2013.090513.120443

[13] V. Savin. LDPC decoders. In: D. Declerq, M.P.C. Fossorier, E. Biglie, editors. Channel

Coding: Theory, Algorithms, and Applications; Elsevier; 2015. doi:10.1016/B978-0-12-

396499-1.00004-2

[14] Xilinx. 7 Series DSP48E1 Slice User Guide—UG479. 2014.

[15] Xilinx. 7 Series FPGA Configurable Logic Block User Guide—UG474. 2014.

[16] Xilinx. 7 Series Memory Resources User Guide—UG473. 2014.

[17] V.Torres, A. Perez-Pascual, T. Sansaloni, J. Valls. Fully-parallel LUT-based (2048,

1723) LDPC code decoder for FPGA. In: 19th IEEE International Conference on Electron-

ics, Circuits and Systems (ICECS); IEEE; 2012. p. 408–411. doi:10.1109/ICECS.2012.

6463663

[18] A. Darabiha, A. C. Carusone, F. R. Kschischang. A bit-serial approximate min-sum LDPC

decoder and FPGA implementation. In: 2006 IEEE International Symposium on Circuits

and Systems; 21–24 May; IEEE; Island of Kos, Greece, 2006. doi:10.1109/ISCAS.2006.

1692544

[19] V. A. Chandrasetty, S. M. Aziz. An area efficient LDPC decoder using a reduced com-

plexity min-sum algorithm. Integration, The VLSI Journal. 2012;45(2):141–148. doi:10.

1016/j.vlsi.2011.08.002

Field - Programmable Gate Array120

[20] A. Balatsoukas-Stimming, A. Dollas. FPGA-based design and implementation of a multi-

GBPS LDPC decoder. In: 22nd International Conference on Field Programmable Logic

and Applications (FPL); IEEE; Oslo, Norway, 2012. doi:10.1109/FPL.2012.6339191

[21] C. Beuschel, H.-J.Pfleiderer. FPGA implementation of a flexible decoder for long LDPC

codes. In: 2008 International Conference on Field Programmable Logic and Applications;

IEEE; Heidelberg, Germany, 2008. pp. 185–190. doi:10.1109/FPL.2008.4629929

[22] A. Blad, O. Gustafsson. FPGA implementation of rate-compatible QC-LDPC code

decoder. In: 20th European Conference on Circuit Theory and Design (ECCTD); IEEE;

Linkoping, Sweden, 2011. p. 777–780. doi:10.1109/ECCTD.2011.6043844

[23] A. Amaricai, O. Boncalo, I. Mot. Memory efficient FPGA implementation for flooded

LDPC decoder. In: 23rd Telecommunications Forum Telfor (TELFOR); Belgrade, Serbia,

2015. pp. 500–503. doi:10.1109/TELFOR.2015.7377516

[24] Z. Wang, Z. Cui. A memory efficient partially parallel decoder architecture for quasi-

cyclic LDPC codes. IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

2007;15(4):483–488. doi:10.1109/TED.2007.895247

[25] Y. Chen, K. Parhi. Overlapped message passing for quasi-cyclic low-density parity check

codes. IEEE Transactions on Circuits and systems—I: Regular Papers. 2004;51(6):1106–

1113. doi:10.1109/TCSI.2004.826194

[26] X. Chen, J. Kang, S. Lin, V. Akella. Memory system optimization for FPGAbased imple-

mentation of quasi-cyclic LDPC codes decoders. IEEE Transactions on Circuits and Sys-

tems I: Regular Papers. 2011;58(1):98–111. doi:10.1109/TCSI.2010.2055250

[27] X. Chen, Q. Huang, S. Lin, V. Akella. FPGA-based low-complexity high-throughput tri-

mode decoder for quasi-cyclic LDPC codes. In: 47th Annual Allerton Conference on Com-

munication, Control, and Computing; IEEE; Monticello, Illinois, USA, 2009. pp. 600–606.

doi:10.1109/ALLERTON.2009.5394917

[28] S. Nimara, O. Boncalo, A. Amaricai, M. Popa. FPGA architecture of multi-codeword

LDPC decoder with efficient BRAM utilization. In: IEEE 19th International Symposium

on Design and Diagnostics of Electronic Circuits and Systems (DDECS); IEEE; Kosice,

Slovakia, 2016. doi:10.1109/DDECS.2016.7482452

[29] S. Mhaske, H. Kee, T. Ly, A. Aziz, P. Spasojevic. High-Throughput FPGA-based QC-

LDPC Decoder Architecture. In: IEEE 82nd Vehicular Technology Conference (VTC Fall);

IEEE; Boston, Massachusetts, USA, 2015. doi:10.1109/VTCFall.2015.7390967

[30] O. Boncalo, A. Amaricai, A. Hera, V. Savin. Cost-efficient FPGA layered LDPC

decoder with serial AP-LLR processing. In: 24th International Conference on Field

Programmable Logic and Applications (FPL); IEEE; Munich, Germany, 2014.

doi:10.1109/FPL.2014.6927474

[31] S. Kim, G. E. Sobelman, H. Lee. A reduced-complexity architecture for LDPC layered

decoding schemes. IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

2011;19(6):1099–1103. doi:10.1109/TVLSI.2010.2043965

Design Trade‐Offs for FPGA Implementation of LDPC Decoders
http://dx.doi.org/10.5772/66085

121

[32] K. Zhang, X. Huang, Z. Wang. High-throughput layered decoder implementation for

quasi-cyclic LDPC codes. IEEE Journal on Selected Areas in Communications. 2009;27

(6):985–994. doi:10.1109/JSAC.2009.090816

[33] O. Boncalo, P. Mihancea, A. Amaricai. Template-based QC-LDPC decoder architecture

generation. In: 10th International Conference on Information, Communications and Sig-

nal Processing (ICICS); Singapore, 2015. doi:10.1109/ICICS.2015.7459838

[34] O. Boncalo, A. Amaricai, P. Mihancea, V. Savin. Memory trade-offs in layered self-

corrected min-sum LDPC decoders. Analog Integrated Circuits and Signal Processing.

2016;87(2):169–180. doi:10.1007/s10470-015-0639-3

[35] Z. Wu, K. Su. Updating conflict solution for pipelined layered LDPC decoder. In: IEEE

International Conference on Signal Processing, Communications and Computing

(ICSPCC); IEEE; Xi’an, China, 2016. doi:10.1109/ICSPCC.2015.7338879

Field - Programmable Gate Array122

