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Abstract

This chapter focuses on the dynamic characterization of adhesive materials for vibration
control proposes. First, the experimental characterization and modelization of the relax-
ation and complex moduli of the flexible adhesive ISR 70-03 by means of a dynamic
mechanical thermal analysis technique (DMTA) are presented. Then, the interconversion
path between the relaxation modulus EðtÞ and the corresponding complex modulus
E
�ðωÞ for linear viscoelastic solid materials is explored. In contrast to other approximate

methods, in this work the fast Fourier transform (FFT) algorithm is directly applied on
relaxation functions. Finally, an experimental study for the structural noise and vibra-
tion reduction in a cabin elevator by means of adhesive-bonded joints of panels is
presented.

Keywords: elastomers and rubber, nondestructive testing, relaxation modulus, com-
plex modulus, viscoelasticity, material functions interconversion, noise and vibration
reduction, adhesive-bonded joints

1. Introduction

Regarding damping, joint procedures by means of screws, rivets, or by joining do not intro-

duce relevant damping outside of some specific frequency ranges [1–5]. Therefore, they are not

relevant for vibration control porpoises. However, adhesive joint can be designed for structural

noise control because they are able tointroduce effective modal damping below 1 kHz [6].

In particular, viscoelastic adhesives are widely employed in engineering applications and also

found their widespread application in many sectors such as the automotive industry, aero-

space, wind power, and human transportation. The mechanical properties of general visco-

elastic materials depend on temperature, frequency and amplitude, prestress, dynamic load

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



level, relative humidity, and among others. Service temperature, frequency, and amplitude of

deformation are the most relevant ones. Thus, suitable mechanical characterization is essential

in order to obtain reliable predictions.

2. Experimental characterization of a flexible adhesive

The experimental characterization by means of adynamic mechanical thermal analysis tech-

nique (DMTA) and the modelization of the relaxation and complex moduli of the flexible

adhesive ISR 70-03 [7] are presented. The manufacturing procedure of the test experiments is

detailed. Then, the influence of the strain level and specimen thickness into material behavior

is studied. Next, using a procedure based on the time-temperature superposition principle,

relaxation and dynamic master curves under tension strain are obtained. Finally, a generalized

Maxwell model and a fractional derivative model of these master curves are implemented. As

a conclusion, models capable of describing together the influence of time, temperature, and

strain level are proposed.

Flexible adhesive shows viscoelastic behavior [8, 9]. In these viscoelastic materials (VEMs), the

energy dissipation is a consequence of the phase difference between the stress σ and the strain

ε. In frequency domain, this behavior is represented by the complex modulus approximation,

which can be obtained from the relationship between the harmonic stress σðtÞ

σðtÞ ¼ σ0e
iωt (1)

and the stationary harmonic strain εðtÞ given by

εðtÞ ¼ ε0e
iðωt−ϕÞ (2)

σ0 is the stress amplitude, ε0 is the strain amplitude, ω is the excitation frequency, and ϕ is the

phase delay. Therefore, the frequency domain stress-strain relationship ~σðωÞ−~εðωÞ results in

~σðωÞ ¼ E
�ðωÞ~εðωÞ (3)

where the complex modulus E�ðωÞ can be written as

E
�ðωÞ ¼ E

′ðωÞ þ iE″ðωÞ ¼ E
′ðωÞ½1þ iηðωÞ� (4)

E
′ðωÞ is the storage modulus, E″ðωÞ is the loss modulus, and ηðωÞ is the loss factor calculated as

ηðωÞ ¼
E
″ðωÞ

E
′ðωÞ

(5)

The complex modulus E�ðωÞ behavior is influenced by multiple factors (excitation conditions,

amplitude, frequency, temperature, prestress, relative humidity, and among others) where

temperature, frequency, and amplitude are the most relevant ones [9]. Involving the frequency
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influence, the ASTM E 756–04 “standard test method for measuring vibration-damping prop-

erties of materials” [10] details the methodology needed to characterize the mechanical behav-

ior of nonself-supporting viscoelastic materials in the frequency range of 50–5 kHz, implying

the use of multimaterial Oberst beam specimens. Nevertheless, the main inconvenience of

ASTM E 756–04 standard consists in introducing additional damping or mass through the

excitation or through the measurement devices. Many authors investigated these inconve-

niences [11], which lead to generate alternative methods with improved accuracy [12–20].

Others techniques based on forced vibrations as the Weissenberg rheogoniometer [21], the

dynamic mechanical analysis (DMA) technique [22], and the dynamic mechanical thermal

analysis (DMTA) technique have also been implemented [23].

In particular, DMTA technique considers together time and temperature by applying the

superposition (TTS) principle [24]. The superposition principle relates the material response

at a given time t and at a given temperature T under different conditions assuming a relation

Eðt,TÞ ¼ Eðt0,αTT0Þ (6)

where T and T0 represent the reference temperature and the reference time, respectively, and

αT is the shift factor relating T to T0. Accordingly, this principle can also be applied to

frequency domain by means of

E�ðf ,TÞ ¼ E�ðf 0,αTT0Þ (7)

where f and f 0 represent the frequency to be shifted and the reference one, respectively,

whereas the shift factor αT relates f to f 0 in the frequency domain. Arrhenius and William-

Landel-Ferry (WLF) [25] are the commonly applied models, where the former model is given

by

logαT ¼ C
1

T
−

1

T0

� �

(8)

where C is a constant, the William-Landel-Ferry model can be expressed by

logαT ¼
−C1ΔT

C2 þ ΔT
(9)

where C1 and C2 are constants and ΔT ¼ T−T0.

Hence, if the objective is to describe the material behavior in frequency or temperature ranges

outside of the tested ones [25], the TTS principle can be used to derive the master curves (MC).

It should be noted that to apply DMTA techniques for characterizing viscoelastic materials,

defect free adhesive specimens are required. The required quality of the specimens can be

obtained by applying nondestructive evaluation (NDE) techniques (such as ultrasonic, acous-

tic emission, radiography, thermography, shearography, holography, and vibration analysis

[26], the neutron radiography and the ultrasonic scan [27, 28]). Through these NDE techniques

allow the detection of voids such as cracks or other regions of uncured adhesive [29–33]. Most
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of the research studies [31–33] are focused on the NDE of adhesive joints, but pay attention to

adhesion failures.

As a resume, the experimental characterization of the material response to both time and

frequency domain is described and also focusedon the specimen preparation and validation.

Therefore, the objective of this research is to characterize, under tension strain, the relaxation

and the dynamic behavior of the flexible adhesive ISR 70-03:

• The materials and the experimental techniques employed are presented.

• The influence of the strain level and test specimen thickness into specimen behavior is

analyzed.

• Relaxation and dynamic master curves are developed using the time-temperature superpo-

sition principle. Related shift factors αT are fitted to the Arrhenius model (Eq. (8)).

• The constructed master curves are fitted to a generalized Maxwell and to a fractional

derivative model.

Hence, the proposed models are capable of describing the influence of time, temperature, and

strain level over the mechanical properties of the flexible adhesive ISR 70-03.

2.1. Experiments

The mechanical behavior of the analyzed material was characterized by means of relaxation

and dynamic tests at different temperatures. A DMTA equipment (RSA3 of TA Instruments)

equipped with climate chamber, the Faculty of Engineering of the University of Oviedo, was

employed.

2.1.1. Materials and experiments

The studied flexible adhesive is modified silane, commercially named ISR 70-03 produced by

Bostik. Regarding the test specimens that were obtained from plates of the cured adhesive

produced using casts of 50 · 70 mm · h, where h is the nominal thickness. Three casts with

different thickness h of 0:5 mm, 1:0 and 1:5 mmwere manufactured. They were manufactured

using Teflon to guarantee that a plate of solid material can be demoldedwithout degradation

after the curing. The cure time was 48 h for all plates; at room temperature no specific equip-

ment was employed [34]. Consequently, the proposed procedure can be outlines as follows:

• First, the nozzle is drawn along the length of the cast in a zig-zag motion without removing

the tip. It should be empathized that the nozzle does not touch with the cast surface in order

to ensure an adequate lower surface finish for the adhesive plate.

• Second, when enough amount of adhesive is spread, it is forced to fill the cast, in a single

uniform motion by means of a spatula made of Teflon. The spatula has round corners in

order to obtain a uniform upper surface finish.

No chemical products are used to prepare the specimens. From the uniform obtained plates,

rectangular specimens were cut and measured using an optical microscope. The obtained

width and thickness values of each sample are presented in Table 1.
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To ensure the quality of the produced specimens, tomography techniques by means of neutron

radiographies were used. Two defects were found: internal voids and superficial flaws.

Accordingly, defect-free samples were identified and selected for testing and denoted as P1,

P3, P6, and P10. Figure 1 shows some of the manufactured samples with defects (P2 and P9)

and without (P6 and P10), respectively.

Finally, a DSC test (see Ref. [35] for details) was carried out to determine the glass transition

temperature, Tg ¼ −64�C.

Identification sample Width (mm) Thickness (mm)

P1 5.45 1.38

P2 5.94 1.50

P3 6.58 1.47

P4 5.26 0.85

P5 6.24 0.78

P6 6.21 0.92

P7 5.25 0.75

P8 5.91 0.45

P9 5.66 0.48

P10 5.69 0.47

Table 1. Specimen dimensions.

Figure 1. Tomography analysis: specimens with defects, defect-free specimens.
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2.1.2. DMTA test

The specimens were studied using a tensile fitting tool shown in Figure 2. For the relaxation

and dynamic tests, the specimens were prestressed to avoid the buckling effect of tightening

the tool screws. Hence, it was verified that the measured force was higher than the prestress at

any time all over the experiments. Under these conditions, two different tests were performed

in the RSA3 DMTA. First, linearity was studied and second the experiments to obtain the

material master curve (MC) were performed. In the latter group, the equipment climate

chamber was used and the stabilization time at each temperature was about 10–15 min. These

master curves represent the relation between the stress and the strain. Therefore, the relaxation

master curve represents the relaxation modulus EðtÞ while the dynamic one represents the

complex modulus E�ðωÞ.

Concerning the linearity, the tests were performed at a reference temperature of 20�C. Both

specimen thickness and the strain level parameters were analyzed:

Figure 2. Detail of tension supporting tool.
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First, relaxation tests were performed using three samples (P3, P6, and P10) with dimen-

sions shown in Table 1. Two test series differing in the induced strain level were com-

pleted. Strain levels of ε ¼ 0:5 and ε ¼ 2% were, respectively, applied in a time range of

10−2 s−102 s.

Following, seven relaxation tests were carried out using only the specimen P1 (see Table 1). In

these tests, the analyzed time range was 10−2 s−4· 103 s for induced strain levels of ε ¼ 0:2,

ε ¼ 0:5, ε ¼ 1, ε ¼ 2, ε ¼ 5, ε ¼ 7, and ε ¼ 8%.

For the MC, relaxation and dynamic tests were conducted over sample P3. In both cases, the

strain level induced was 0:5%. For the relaxation MC, the analyzed temperature range was −40

to 50�C, where 10 different relaxation tests were carried out. For the dynamic MC, the temper-

ature range was −10 to 20�C and four tests were deformed.

2.2. Results and discussion

2.2.1. Linearity analysis of the adhesive behavior

Next, the linearity regarding the material behavior is analyzed involving two test conditions,

sample thickness and strain level influence, both by means of relaxation tests.

First, the thickness influence is studied. Figure 3 shows relaxation test series for ε ¼ 0:5% and

Figure 4 shows relaxation test series for ε ¼ 2%.

From Figures 3 and 4, it should be remarked that the relaxation modulus EðtÞ for the thickness

h ¼ 1:5 mm is slightly higher than the others, anyway less than 5% in both cases. Considering

that the results were derived from different specimens, certain dispersion between the

obtained relaxation modulus EðtÞ can be expected. Therefore, it can be concluded that the

specimen thickness has a negligible influence on these test results.

Next, the strain influence on the range of 0:2% < ε < 8% over the relaxation modulus EðtÞ is

analyzed through seven tests. The results are illustrated in Figure 5.

From Figure 5, it can be noted that the ε ¼ 0:2% and ε ¼ 0:5% curves show slight fluctuations

that are not visible for the other curves. These inaccuracies can be expected with the strain

decrement, because the force may be lesser than the machine resolution. Consequently, as the

strain increases, this effect is less significant. Hence, only the curve ε ¼ 0:2% could be rejected

due to the fluctuations.

Figure 5 shows that the adhesive material behavior depends on the imposed strain level where

the higher the strain, the lower the experimental relaxation modulus EðtÞ. This implies that the

material softens when the strain level grows up. With the aim of comparing the relaxation

moduli EðtÞ obtained for the different strain levels, Figure 6 shows the corresponding ratios

taking ε ¼ 0:5% as a reference.

Assuming inherent scatter (see Figure 6), a nearly constant EðtÞratio can be verified for the

range of strains analyzed, even for ε ¼ 0:2%. Consequently, the strain influence on the relaxa-

tion modulus can be modeled using Eq. (10)
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Figure 3. Relaxation modulus tests for thickness influence evaluation for ε ¼ 0:5%.

Figure 4. Relaxation modulus tests for thickness influence evaluation for ε ¼ 0:5%.
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Figure 5. Relaxation modulus tests for strain influence evaluation.

Figure 6. Ratio of relaxation moduli rðtÞ for ε ¼ 0:5% as a reference.
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Eðε, tÞ ¼ rðεÞ ·ErefðtÞ (10)

where rðεÞ is the ratio between the relaxation modulus Eðε, tÞ for the strain ε and that taken as

a reference ErefðtÞ. In this context, Figure 7 shows the evolution of the mean value of the ratio

rðεÞ of different strains as a function of the strain ratio, taking εref ¼ 0:5% as a reference.

The decay of the mean value of these ratios with the strain presented in Figure 7 can be fitted

by an experimental function according to

rðεÞ ¼ γ1 þ γ2e
−γ3

ε

εref (11)

where the parameters γ1, γ2, and γ3 were estimated by least squares, as γ1 ¼ 0:73780,

γ2 ¼ 0:30504, and γ3 ¼ 0:14792, and where ε0 represents the reference strain level, being

εref ¼ 0:5% for the present cases. The function rðεÞ of Eq. (11) is represented in Figure 7 by the

discontinuous trace.

In order to verify the proposed model, the results provided by Eqs. (10) and (11) are compared

with the experimental data obtained for the strain ε ¼ 2%, and as Figure 8 illustrates, Eqs. (10)

and (11) provide an accurate prediction of the material relaxation in the 10−2 s−4 · 103 s range

of time.

Based on the results, it can be observed that mechanical properties of the flexible adhesive ISR

70-03 do not depend on sample thickness. In contrast, they do depend on the strain level. Thus,

Figure 7. Ratio of the relaxation modulus relations rðεÞ by Eq. (11).
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the lower the strain, the higher the relaxation modulus, leading to the conclusion that the

material softens as the strain level grows up. Consequently, the exponential model given by

Eq. (11) represents the influence of the strain level and Eq. (10) allows computing the relaxation

modulus function EðtÞ for any strain level, once the relaxation modulus for a reference strain

level is obtained.

This increase in the relaxation modulus EðtÞ as a consequence of the decrease in the strain level

is in accordance to the observed behavior in other viscoelastic materials [36] so as other rubber

like compounds [37] used for vibration control.

2.2.2. Relaxation master curve

Following, the time domain master curve (MC) is obtained applying the time-temperature

superposition (TTS) principle [25]. The MC is built-up from 10 relaxation curves, obtained for

10 different temperatures ranging from −40�C–50 �C all of them in the 10−2 s−102 s range, as

shown in Figure 9.

From Figure 9, it should be remarked that the higher the temperature, the lower the relaxation

modulus. It should be noted also that the test carried out at T ¼ 30�C intersects the one at

T ¼ −20�C due to an error during the test. Analogous situation can be verified for the

curvesT ¼ −10�C and T ¼ −20�C. Reasons for removing these curves from the analysis will be

discussedlater.

Figure 8. Relaxation modulus given by Eq. (10).
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Based on the industrial application, the temperature T0 ¼ 20�C is chosen as a reference to

derive the MC. First, all the possible shift factors αTðt0Þ between the reference curve and that

for T ¼ 10�C are computed. Thereafter, the times t and t0 are determined for which the

relaxation modulus curves coincide, Eðt, 10�CÞ ¼ Eðt0, 20
�CÞ. Accordingly, the shift factor

αTðt0Þ at any time t0 is computed as

αTðt0Þ ¼ t=t0: (12)

Based on the TTS principle, singe shift factor αT should exist for each temperature. Therefore,

the optimum shift factor αTðt0Þ is computed from all the possible factors. This is done by

minimizing the error function defined as the difference between the original and the shifted

curves. Then, a preliminary MC is reached, for which the procedure is repeated for any curve

represented in Figure 9.

Figures 10 and 11 show the range of possible factors αTðt0Þ obtained from each preliminary

MC and the one to be shifted below and above T0 ¼ 20�C, respectively.

From Figures 10 and 11, significant conclusions can be obtained. Involving the curves for

temperatures T ¼ −40;−20;−10 ;0;10;40; and 50�C nearly constant αTðt0Þ factors are computed

in accordance to the TTS principle. Hence, a reasonable optimum value can be determined at

each temperature. On the contrary, the curve for T ¼ −30�C exhibits high scatter and should,

therefore, be disregarded from the analysis.

Figure 9. Relaxation curves resulting from a broad range of temperatures.
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Figure 10. Range of possible factors αTðt0Þ in time domain below T0.

Figure 11. Range of possible factors αTðt0Þ in time domain above T0.
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It should be mentioned that the position for the curves resulting for T ¼ −10 �C is shifted and,

therefore, at least one of them must be removed from the analysis. Decision is taken based on

the optimum shift factors αT represented as a function of temperature in Figure 12.

It follows from Figure 12 that, in order to obtain a monotonically decreasing logαT−T curve

without irregularities, it is convenient to discard the information provided for T ¼ −20�C.

The observed behavior can be modelized using the Arrhenius model (Eq. (8)), the results of

which is represented in Figure 12 by the discontinuous trace. The parameter Cwas estimated

by linear regression, giving C ¼ 4419 K, corresponding to a regression coefficient R2
¼ 0:999.

Therefore, applying the presented procedure and computing the optimums αT values shown

in Figure 12, each single curve has been shifted to built-up the desired relaxation master curve,

as shown in Figure 11. The constructed MC decays from 16 MPa down to 4 MPa in the covered

range 10−5 s−1:6 · 103 s.

Based on the results, it can be said that the studied material can be used for vibration control

proposes. It should be remarked also that based on the mechanical strength, the ISR 70-03 can

be employed not only for non-structural applications but also more demanding structural

designs that can be proposed [38, 39].

2.2.3. Dynamic master curve

The dynamic MC can be constructed using an analogous procedure to that followed in the

derivation of the master curve for the relaxation modulus. Hence, Figure 12 represents four

Figure 12. Optimum shift factor αT values for time domain and Arrhenius model fit.

Adhesives - Applications and Properties302



curves of the storage modulus E′ and loss factor η, respectively, in the 10−1 Hz−2· 101 Hz

frequency range, for four different temperatures, T ¼ −10; 0; 10; and 20�C. In this case, taking

as well into account the industrial application, the same reference temperature T0 ¼ 20�C has

been adopted.

Figure 13 shows that the higher the temperature, the lower both the storage modulus E′and

the loss factor η. Obviously, this in accordance with the results obtained in the time-domain

case.

Therefore, all the possible shift factors αTðf 0Þ between the preliminary master curve and the

one to be shifted are computed using the storage modulus E′ðf ,TÞ ¼ E′ðf 0,T0Þ, and the shift

factors αTðf 0Þ. Thus, the shift factor αTðf 0Þ represented in Figure 14 satisfying

αTðf 0Þ ¼ f =f 0: (13)

Taking into account the moderate scatter in the results assignable to the experimental

nature of the data, the αTðf 0Þ values of the three curves shown in Figure 15 may be taken

as a constant. To compute a single value for each temperature, an analogous minimiza-

tion procedure to that followed in the relaxation case was applied to the complex modu-

lus E�ðf ,TÞ. The resulting optimums shift factors αT are computed and represented in

Figure 16.

Figure 13. Storage modulus and loss factor curves for four different temperatures.
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Figure 14. Relaxation master curve in time domain.

Figure 15. Shift factors αTðf 0Þ in frequency domain below T0.
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It can be seen from Figure 16 that the determinedvalues decay with the temperature. Simi-

larly as in the time-domain case, it follows that the Arrhenius model (Eq. (8)), which is

represented in Figure 13 by the discontinuous trace, is a good candidate for describing the

dynamic behaviorobserved in the material. The parameter C became C ¼ 3710 K for a regres-

sion coefficient R2 ¼ 0:999 . Consequently, the corresponding MC is constructed as shown in

Figure 17.

In Figure 17 the MCs for the storage modulus E′ and loss factor η in the range 0:1 Hz−700 Hz

are illustrated where the rubbery behavior and the beginning of the transition zone are

present. As it was concluded in the time-domain analysis, the ISR 70-03 is applicable for

vibroacoustic control of structures even for low frequency applications [36].

2.3. Models

Next, a relaxation modulus model capable of taking into account together the influence of

strain, time and temperature as

Eðε, t,TÞ ¼ rðεÞ·Erefðt,TÞ: (14)

is proposed. Concretely, a generalized Maxwell model (also known as the Prony series model)

[40] and a fractional model [41] are fitted to the previously obtained master curve ErefðtÞ, in the

Figure 16. Optimum shift factor αT values for frequency domain and Arrhenius model fit.
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time range of 1· 10−5 s−1:6 · 103 s. Also, a complex modulus model is suggested to modelize

the dynamic master curve E�ðf Þ in the frequency range of 0:1 −700 Hz.

2.3.1. Relaxation models

Next, two relaxation models are presented. Concerning the generalized Maxwell (or Prony

series) model, ErefðtÞ yields

ErefðtÞ ¼ E0 þ ∑
N

i¼1
Eie

−t=τi : (15)

where E0 is the relaxed modulus, Ei represents stiffness parameter and τi denotes relaxation

time. N ¼ 9 is the number of terms chosen for the generalized Maxwell model to accurately

represent the experimental results. The fitting has been carried out by least squares,

corresponding to a regression coefficient of R2 ¼ 0:999. The obtained values for E0, Ei and τi

are presented in Table 2.

Concerning the fractional derivative model, the four-parameter derivative model [42]

σðtÞ þ τ
αDα

σðtÞ ¼ ErεðtÞ þ τ
αðEu−ErÞD

α

εðtÞ: (16)

is employed, where σ denotes the stress, Er and Eu are relaxed and unrelaxed modulus, τ is

the relaxation time, and Dα is the α order fractional derivative operator. The G1 numerical

Figure 17. Master curves for the storage modulus and loss factor in frequency domain.
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approximation [43] of the fractional derivative of a generic function f ðtÞ at the instant tnis

used, given by

Dαf ðtÞjt¼tn
¼

1

ðΔtÞα
∑
n−1

j¼0
Ajþ1 f ðtn−jÞ: (17)

where Ajþ1 ¼ Ajðj−α−1Þ=j with A1 ¼ 1, and Δt is the time step. Thus, applying a strain step as

εðtÞ ¼ HðtÞ where HðtÞ is the Heaviside function, the relaxation modulus EðtnÞ ¼ En where

tn ¼ n·Δt can be calculated as

En ¼

Er þ ðEu−ErÞ
τ

Δt

� �

α

∑
n−1

j¼0
Ajþ1−

τ

Δt

� �

α

∑
n−1

j¼1
Ajþ1En−j

1þ τ

Δt

� �

α
: (18)

An error minimization procedure has been applied for the curve fitting, and Er ¼ 3:271 MPa,

Eu ¼ 20:147 MPa, τ ¼ 1:589 · 10−7 s and α ¼ 0:116 have been determined.

In Figure 18, both models are compared with the experimental data.

From Figure 18, it should be noted that the fractional model has been fitted using a time step of

Δt ¼ 1· 10−2 s. It should be pointed out that both models are able to reproduce the experimen-

tal relaxation master curve. Nevertheless, the curve provided by the fractional model is

smoother. Besides, it should be pointed out that the fractional derivative model needs only

four parameters whereas the generalized Maxwell model needs 19 parameters. On the con-

trary, the computation of Eq. (18) is much larger than that of Eq. (15). As a conclusion, it should

be verified that relaxed and unrelaxed moduli provided by both models are coherent. Hence, it

should be highlighted that involving the generalized Maxwell model, the unrelaxed modulus

Eu can be calculated as

Stiffness parameters (MPa) Relaxation time (s)

E0 ¼ 4:101

E1 ¼ 0:378 τ1 ¼ 1:60· 10−3

E2 ¼ 0:427 τ2 ¼ 2:91· 102

E3 ¼ 0:523 τ3 ¼ 9:965

E4 ¼ 0:773 τ4 ¼ 4:14· 10−1

E5 ¼ 1:014 τ5 ¼ 2:01· 10−2

E6 ¼ 1:521 τ6 ¼ 1:68· 10−3

E7 ¼ 2:501 τ7 ¼ 2:44· 10−4

E8 ¼ 3:364 τ8 ¼ 4:82· 10−5

E9 ¼ 5:904 τ9 ¼ 9:83· 10−6

Table 2. Coefficients for the Prony series fitted to the relaxation master curve.
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Eu ¼ E0 þ ∑
N

i¼1
Ei: (19)

Hence, the obtained unrelaxed modulus Eu for the generalized Maxwell model is

Eu ¼ 20:806 MPa while that for the fractional model is Eu ¼ 20:147 MPa.

Apart from the computational cost, fractional models describe precisely the viscoelastic behav-

ior even in time domain despite the low number of parameters needed to describe wide time

ranges [44–47].

2.3.2. Dynamic models

Following, the complex modulus E�ðωÞ for the generalized Maxwell and fractional derivative

models is derived from the Fourier transform of Eqs. (15) and (16), respectively. The one for the

generalized Maxwell model yields

E�ðωÞ ¼ E0 þ iω∑
N

i¼1

τiEi

1þ iωτi
: (20)

Figure 18. Relaxation models in time domain.
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where ω ¼ 2πf , f is the excitation frequency. The curve fitting is carried out by least squares

with N ¼ 9. The obtained numerical values are presented in Table 3.

Concerning the one based on fractional derivatives, the corresponding complex modulusresults

in

E�ðωÞ ¼
Er þ ðEu−ErÞðiωτÞ

α

1þ ðiωτÞα
: (21)

Accordingly, fitting by least squares, Er ¼ 4:419 MPa, Eu ¼ 31:66 MPa, τ ¼ 1:17 · 10−4 s and

α ¼ 0:353 have been found, the regression coefficient satisfying R2 ¼ 0:998.

Both models, Eqs. (20) and (21), are contrasted to the experimental dynamic master curve

shown in Figure 19.

From Figure 19, it should be highlighted that the generalized Maxwell model fits the experi-

mental storage modulus E
0

. However, the fractional derivative model reproduces better the

experimental loss factor η. It should be remarked also that the fractional derivative model

needs only four parameters. Besides, the fractional model parameters extraction Eq. (21) is

faster than that of Eq. (20).

Involving the curve fitting, it should be noted that for time domain the difference between the

unrelaxed modulus Eu provided by both models is 1.71%. Regarding frequency domain, the

difference is 7.39%. However, for the relaxed modulus, the differences between the generalized

and the fractional models for time and frequency domains are 20.24 and 12.47%, respectively.

Consequently, the results provided by these models differs for t ! ∞ and for f ¼ 0 Hz.

Stiffness parameters (MPa) Relaxation time (s)

E0 ¼ 5:049

E1 ¼ 0:032 τ1 ¼ 2:42· 10−7

E2 ¼ 0:070 τ2 ¼ 4:31· 10−3

E3 ¼ 0:097 τ3 ¼ 5:89· 10−3

E4 ¼ 0:211 τ4 ¼ 5:82· 10−3

E5 ¼ 0:690 τ5 ¼ 3:29· 10−1

E6 ¼ 0:924 τ6 ¼ 2:40· 10−2

E7 ¼ 1:442 τ7 ¼ 1:70· 10−3

E8 ¼ 2:637 τ8 ¼ 2:80· 10−4

E9 ¼ 18:17 τ9 ¼ 2:16· 10−5

Table 3. Coefficients for the Maxwell model fitted to the dynamic master curve.
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Hence, it can be stated that fractional derivative models are really valuable tools for describing

the viscoelastic behavior principally in frequency domain but also in time domain [44–47].

2.4. Conclusions

The experimental characterization and modelization of the relaxation and complex moduli of

the flexible adhesive ISR 70-03 havebeen performed using dynamic mechanical thermal anal-

ysis (DMTA).

• To conduct the experiments, defect-free samples have been manufactured using Teflon™

casts. Regarding validation, it can be concluded that tomography techniques by means of

neutron radiography are able to identify internal and external defects in cured adhesives.

• Regarding the linearity, it can be stated that the relaxation test results are not influenced by

sample thickness. On the contrary, the strain influence has been verified. Consequently, it

has been modeled using an exponential model. Therefore, it can be noted that the material

stiffens when the strain level decreases.

• Involving the master curves, the relaxation modulus EðtÞ and the complex modulus E�ðωÞ

have been derived by means of a procedure based on the TTS principle. Besides, the

temperature dependence has been modelized by the Arrhenius model.

Figure 19. Dynamic models in frequency domain.
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• Finally, the generalized Maxwell model and fractional derivative models have been fitted to

the time and frequency domains master curves. The generalized Maxwell one has been

fitted using 19 parameters whereas the fractional derivative model has four parameters.

Involving time domain, the fitting is accurate enough for both models. Regarding frequency

domain, the storage modulus E′ and loss factor η may be represented also by the general-

ized Maxwell and fractional derivative models. However, the fractional model fits the

experimental response in a wide time or frequency ranges with a lower number of param-

eters. Hence, the fractional derivative model should be used for both time and frequency

domains [44–47].

As a conclusion, a model capable of representing the influence of time, temperature and strain

level over the mechanical properties of the flexible adhesive ISR 70-03 has been presented.

3. Relaxation modulus: complex modulus interconversion for linear

viscoelastic adhesives

The interconversion path between the relaxation modulus EðtÞ and the corresponding com-

plex modulus E
�ðωÞ for linear viscoelastic solid materials is explored. The key difference

with other approximate methods relies on the fact that in the presented procedure, the fast

Fourier transform (FFT) algorithm is directly applied on the time-dependent part of the

viscoelastic response RðtÞ. First, method foundations are outlined. Next, a theoretical exam-

ple is developed using the generalized Maxwell model. Using this example, influence of

sampling conditions and experimental error and data dispersion is studied. Finally, the

accuracy of the method is proved by an application example using experimental data. As a

conclusion, the proposed procedure is able to compute the complex modulus by means of

relaxation tests and vice versa.

Concerning VEM behavior modeling, the memory of viscoelastic materials such as viscoelastic

adhesives can be properly represented using the Boltzmann superposition principle [48].

Therefore, time evolution of stress σðtÞ can be evaluated using relaxation functions RðtÞ

through convolution integrals given by

σðtÞ ¼ Er εðtÞ þ

ð
t

0

Rðt−λÞ _εðλÞdλ: (22)

where εðtÞ is the strain, Er represents the viscoelastic constant, λ denotes the integration

variable and ð:Þ represents the time derivative. In frequency domain, viscoelastic behavior can

be represented by the complex modulus approximation [49], as shown in Eq. (4).

Concerning experimental characterization of viscoelastic adhesives, ASTM E 756-04 [10]

details the methodology to characterize the mechanical behavior of non-self-supporting visco-

elastic materials, implying the use of multimaterial Oberst beam specimens.
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In this context, the DMTA technique allows to take into account together temperature and time

(or temperature and frequency) by means of the time-temperature superposition (TTS) princi-

ple [24, 50] introducing no extra mass or damping.

Thus, frequency-time interconversion methods are valuable and useful tools [51–53] due to the

fact that they can also be applied to overcome the inherent difficulties of relaxation or dynamic

characterization [54–57], depending on the tested material. The most widely applied methods

[51] for material functions conversion from time to frequency domains are those based on the

Prony series model [40], and the opposed conversion can be achieved through the algorithms

proposed by Ninomiya and Ferry [58]. The former can be obtained by fitting the experimental

data by means of the generalized Maxwell model [59], whereas the latter is based on experi-

mental data fitting.

As summary, the objective of this section is to propose an interconversion method between

time and frequency domains capable of obtaining the complex modulus E
�ðωÞ by means of

relaxation tests, and vice versa. The main advantage of this procedure is the direct application

of the fast Fourier transform (FFT) algorithm on experimental data. On the contrary, other

existing methods [55–65] are based on fitting models or theoretical functions. In particular, the

proposed method is relevant when a Prony series cannot be accurately fitted to the experimen-

tal data in time or frequency domains. This section is structured as follows:

• Method foundations are outlined.

• A theoretical example is developed using a generalized Maxwell model. Using this example,

influence of sampling conditions and experimental error and data dispersion are studied.

• The accuracy of the method is proved by an application example using experimental data.

3.1. Method foundation

An experimental relaxation test consists on applying a strain step as εðtÞ ¼ ε0HðtÞ, where ε0

represents the magnitude of the strain and HðtÞ is the Heaviside function. Consequently,

applying a strain step and substituting its time derivative into Eq. (22), it yields

σðtÞ ¼ Er ε0HðtÞ þ

ð
t

0

Rðt−λÞ ε0δðλÞdλ ¼ ½Er þ RðtÞ�ε0: (23)

where δðtÞ is the Dirac function. Then, the relaxation modulus EðtÞ can be deduced as

EðtÞ ¼
σðtÞ

ε0
¼ Er þ RðtÞ: (24)

where the long-term part of the relaxation modulus is represented by the viscoelastic constant

Er and where the time-dependent component is represented by RðtÞ.

Then, applying the Fourier transform, the complex modulus E
�ðωÞ is derived. On the one

hand, applying the Fourier transform over Eq. (24), it results in
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~EðωÞ ¼
Er

iω
þ ~RðωÞ (25)

where ð:Þ represents the Fourier transform. On the other hand, applying the Fourier transform

over Eq. (1) it yields

~σðωÞ ¼ Er ~εðωÞ þ iω ~RðωÞ ~εðωÞ (26)

where from the complex modulus E�ðωÞ can be derived, yielding

E
�ðωÞ ¼ Er þ iω ~RðωÞ (27)

Therefore, by substituting the Fourier transform of the time-dependent part of the viscoelastic

response ~RðωÞ into Eq. (25), a relationship between complex modulus E�ðωÞ and the Fourier

transform of the relaxation modulus ~EðωÞ is obtained,

E
�ðωÞ ¼ iω ~EðωÞ (28)

As a result, the complex modulus E�ðωÞ of a linear viscoelastic material can be obtained from

the Fourier transform of its relaxation modulus EðtÞ. Nevertheless, applying the fast Fourier

transform (FFT) algorithm, the resulting complex modulus E
�ðωÞ will suffer from leakage

because EðtÞ is not periodic [66, 67] and EðtÞ ¼
t!∞

Er≠0. Therefore, to avoid leakage, it should be

remarked that the time-dependent part of the viscoelastic response RðtÞ representing visco-

elastic component disappears with time, RðtÞ ¼
t!∞

0. Hence, FFT algorithm does not produce

leakage on complex modulus E�ðωÞ approximation if Eq. (27) is used instead of Eq. (28). The

drawback of the procedure is that the viscoelastic constant Er must be extracted from the

experimental data.

3.2. Theoretical example

Next, the influence of sampling conditions and experimental error and data dispersion is

studied using an exponential material model. The study analyses some aspects related to the

FFT algorithm, which are: leakage, signal discretization and the analyzed ranges. In this

analysis, the FFT algorithm proposed by Cooley and Tukey [64] to compute the discrete

Fourier transform is employed [65] despite the documented drawbacks [69]. There are other

methods, as those presented by Dutt and Rokhlin [66] that have been used in several of

applications [67–70]. However, as stated, the algorithm proposed by Cooley and Tukey [64]

will be used.

An exponential damping model is widely used in the literature [71, 72], because it is capable of

modeling damping mechanisms arising from viscoelastic nature of materials. Its time-depen-

dent part of the viscoelastic response RðtÞ is given by
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RðtÞ ¼ cμ e−μt (29)

resulting in a relaxation modulus as

EðtÞ ¼ Er þ E1 e
−μt (30)

where μ ¼ τ−1m ¼ E1=c represents the material relaxation parameter, τm is the relaxation time,

and E1 and c are the stiffness and damping coefficients, respectively. The Fourier transform
~RðωÞ of the time-dependent part of the viscoelastic response RðtÞ is given by

~RðωÞ ¼ E1
1

μþ iω
(31)

Accordingly, the complex modulus E�ðωÞ yields

E�ðωÞ ¼ Er þ E1
iω

μþ iω
(32)

wherefrom storage modulus E′ and loss factor tan δ can be directly obtained as

E′ðωÞ ¼ Er þ E1
ω2

μ2 þ ω2
(33)

and

tan δðωÞ ¼
E1μω

Erμ2 þ E1ðμ2 þ ω2Þ
(34)

respectively. For the numerical application, it is considered that Er ¼ 3 MPa, E1 ¼ 6 MPa and

c ¼ 0:1 MPa s.

3.2.1. Leakage

Now, the leakage influence is studied. The conversion from time to frequency is achieved using

the procedures described in Section 2 where the validation is done correlating the exact

complex modulus (Eq. (32)) with that provided by Eqs. (28) and (27). All these complex

modulus are represented in Figure 20 as storage modulus E′ and loss factor tan δ.

From Figure 20, it should be remarked that the direct use of Eq. (28) derives in erroneous

results due to leakage, while through Eq. (27), the complex modulus E�ðωÞ can be precisely

computed from the relaxation modulus.

For the transformation from frequency to time domain, the exact relaxation modulus given by

Eq. (30) is compared with those computed by the inverse FFT applied on Eqs. (28) and (27).

Unfortunately, the leakage resulting from Eq. (28) provides a numerical instability, the relaxation

modulus being infinity for every time. Thus, Figure 21 illustrates only two curves instead of

three: the analytic response given by Eq. (30) and the estimation for EðtÞ by means of Eq. (27).
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From Figure 21, it should be pointed out that the proposed procedure is capable ofaccurately-

computing the relaxation modulus EðtÞ from the corresponding complex modulus E�ðωÞ.

3.2.2. Influence of time and frequency sampling

In this section, the influence of the time and frequency sampling is analyzed. It should be

remarked that involving the conversion from time to frequency of a function defined up to a

maximum time tmax, the discretization time Δt determines the Nyquist frequency fmax,

according to

fmax ¼
1

2Δt
(35)

the resulting discretized frequency being

Δfmax ¼
1

tmax
(36)

having

Figure 20. Influence of leakage, conversion from time to frequency. Comparison among the analytic generalized Maxwell

model complex modulus E�ðωÞ provided by Eq. (32), the one computed by means of Eq. (28) and therefore suffering

leakage, and the one computed by means of Eq. (27) and therefore avoiding leakage.
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N ¼
tmax

Δt
(37)

discrete data.

For the conversion from frequency to time, these three equations can be inversely taken into

account.

For the present analysis, tmax ¼ 0:5s is chosen, and five different discretization cases are analyzed:

Δt1 ¼ τm=2 ¼ 0:0083 s, Δt2 ¼ τm=4 ¼ 0:0042 s, Δt3 ¼ τm=8 ¼ 0:0021 s, Δt4 ¼ τm=16 ¼ 0:0010 s

and Δt5 ¼ τm=32 ¼ 0:0005 s. Thus, Figure 22 shows six curves; the five analyzed cases plus the

analytic response given by Eq. (30).

From Figure 22, it should be pointed out that the higher the Δt, the lower the fmax and better

the accuracy. Thus, Δt1 ¼ τm=2 is only able to represent the low-frequency range, representing

the rubbery and the beginning of the transition zones of the viscoelastic material [54]. On the

contrary, Δt5 ¼ τm=32 is enough to accurately represent the complex modulus E�ðωÞ in the

whole frequency range, including the vitreous one [54].

For frequency to time domain transformation, a maximum frequency fmax ¼ 1 kHz is considered,

and four discretization cases are studied: Δf 1 ¼ τ
−1
m=2 ¼ 29:94 Hz, Δf 2 ¼ τ

−1
m=4 ¼ 14:97 Hz,

Figure 21. Influence of leakage, conversion from frequency to time. Comparison between the analytic generalized

Maxwell model relaxation modulus EðtÞ provided by Eq. (30), and the one computed through Eq. (27) avoiding leakage.
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Δf 3 ¼ τ
−1
m=8 Hz ¼ 7:48 Hz and Δf 4 ¼ τ

−1
m=16 Hz ¼ 3:74 Hz. Hence, Figure 4 shows five curves;

the four analyzed cases and the analytic response given by Eq. (30).

From Figure 23, it should be noted that in two of the considered cases, Δf 1 ¼ τ
−1
m=2 and

Δf 2 ¼ τ
−1
m=4 , the relaxation is not properly represented. Thus, differences are verified for

t < 0:02 s. Consequently, they are not useful to compute the relaxation modulus EðtÞ. Consid-

ering the cases Δf 3 ¼ τ
−1
m=8 and Δf 4 ¼ τ

−1
m=16 , the relaxation is reached, providing analogous

accuracy. Hence, for the present case, a Δf 3 ¼ τ
−1
m=8 is small enough to accurately compute the

relaxation modulus EðtÞ.

3.2.3. Influence of the maximum time and frequency

Next, the influence of tmax and fmax is analyzed. First, the conversion from time to frequency is

analyzed. The previously defined function discretization parameter Δt5 is employed. Five

truncated signals are considered, as tmax;1 ¼ 2τm ¼ 0:0334 s, tmax;2 ¼ 4τm ¼ 0:0668 s,

tmax;3 ¼ 8τm ¼ 0:1336 s, tmax;4 ¼ 16τm ¼ 0:2672 s and tmax;5 ¼ 32τm ¼ 0:5344 s. On the one

hand, Figure 24 presents the exact EðtÞ given by Eq. (30), in which each employed truncation

is represented. On the other hand, Figure 25 shows six curves corresponding to the five

analyzed cases plus the analytic response given by Eq. (32).

Figure 22. Influence of the analyzed time range, conversion from time to frequency. Comparison between generalized

Maxwell model complex modulus E�ðωÞ provided by Eq. (32) and the result provided by the proposed interconversion

method for the different truncation times.
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From Figure 24, it should be remarked that in two of the considered cases, tmax;1 and tmax;2, the

relaxation has not been reached, implying that only the vitreous zone can be represented, as

Figure 25 shows. Even if for tmax;3 and tmax;4 the relaxation has been reached, only the transi-

tion zone can be represented. In fact, to include the rubbery zone, a maximum spam tmax;5 has

to be taken into account.

Next, for the conversion from the complex modulus to the relaxation modulus, a previously

defined discretization frequency Δf 3 is chosen. Three cases of maximum frequency are ana-

lyzed: fmax,1 ¼ 0:1 τ−1m≈6 Hz, fmax,2 ¼ τ
−1
m≈60 Hz and fmax,3 ¼ 10 τ−1m≈600 Hz. These frequency

ranges are supposed to cover the rubbery, transition and vitreous zones, respectively, as shown

in Figure 26. Therefore, Figure 27 shows four curves matching to the three studied cases plus

the analytic response given by Eq. (30).

From Figure 27, it should be noted that the lower the fmax, the worse the accuracy. Conse-

quently, the fmax,1 ¼ 0:1 τ−1m≈6 Hz is not able to represent the relaxation modulus EðtÞ. Regard-

ing fmax,2 ¼ τ
−1
m≈60 Hz, differences are encountered during the relaxation until the viscoelastic

constant Er is reached. On the contrary, fmax,3 ¼ 10 τ−1m≈600 Hz is enough to accurately repre-

sent EðtÞ in the whole time range.

Figure 23. Influence of sampling frequency, conversion from frequency to time. Comparison between generalized Max-

well model relaxation modulus EðtÞ provided by Eq. (30) and the result provided by the proposed interconversion

method for different sampling frequencies.

Adhesives - Applications and Properties318



Figure 25. Influence of the analyzed time range, conversion from time to frequency. Comparison between the generalized

Maxwell model complex modulus E�ðωÞ provided by Eq. (32) and the result provided by the proposed interconversion

method for the different truncation times.

Figure 24. Influence of the analyzed time range, conversion from time to frequency. Analytic generalized Maxwell model

relaxation modulus EðtÞ provided by Eq. (30), in which different truncation times are illustrated.
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3.2.4. Influence of experimental error and data dispersion

Next, the precision of the interconversion is studied considering eventual data dispersion.

Under this condition, some pseudo-experimental data for relaxation modulusEðtÞ and com-

plex modulus E
�
ðωÞ have been generated evaluating Eqs. (30) and (32), respectively, in some

unevenly spaced data points, in which random eventual error αðtÞ and α
�ðωÞ have been

introduced, as

EðtÞ ¼ EðtÞ þ αðtÞ (38)

and

E
�
ðωÞ ¼ E�ðωÞ þ α

�ðωÞ (39)

Then, these generated data have been resampled in order to obtain evenly spaced data EesðtÞ

and E
�

esðωÞ. For the present case, linear interpolation has been applied.

For the present numerical application, Δt ¼ 10−4s and tmax ¼ 1 s are used. Figures 28 and 29

show the conversion from relaxation modulus EðtÞ to complex modulus E�ðωÞ. The former

Figure 26. Influence of the analyzed frequency range, conversion from frequency to time. Analytic generalized Maxwell

model complex modulus E�ðωÞ provided by Eq. (32), in which different truncation frequencies are illustrated.
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illustrates Eq. (30) together with the pseudo-experimental data EðtÞ and the latter illustrates the

converted modulus with the analytic solution for E�ðωÞ given by Eq. (32).

From Figure 29, it should be pointed out that the low-frequency range is properly reproduced

while the estimation of E�ðωÞ for the higher frequencies differs from the analytic one (Eq. (32)).

The reason is that not enough points were taken in EðtÞ during the relaxation, and therefore, a

linear interpolation technique is not enough to represent the employed model. Therefore, a

higher number of data points are needed, especially during the relaxation. Besides, a higher

order interpolation technique will provide better accuracy.

Regarding the inverse conversion, Δf ¼ 0:5 Hz and fmax ¼ 1 kHz are chosen to guarantee a

wider time range. Figures 30 and 31 show the conversion from complex modulus to relaxation

modulus. Figure 30 illustrates Eq. (32) with the pseudo-experimental data E
�
ðωÞ, and Figure 31

illustrates the converted modulus with the analytical solution for EðtÞ given by Eq. (30).

From Figure 31, it should be noted that the converted relaxation modulus accurately repro-

duces the model provided by Eq. (30).

As a conclusion, it can be stated that the proposed procedure is able to provide an accurate

approximation of the relaxation modulus EðtÞ and of the complex modulus E�ðωÞeven though

Figure 27. Influence of the analyzed frequency range, conversion from frequency to time. Comparison between the

generalized Maxwell model relaxation modulus EðtÞ provided by Eq. (30) and the result provided by the proposed

interconversion method for different truncation frequencies.

Dynamic Characterization of Adhesive Materials for Vibration Control
http://dx.doi.org/10.5772/66104

321



the original data does not match the exact response and even though data are not properly

spaced.

3.3. Application example using experimental data

Finally, an application example is presented in which experimental data for DMTA obtained

relaxation and complex moduli E exp ðtÞ and E
�
exp ðωÞ of a flexible adhesive [73] are used to

assess the present procedure. The employed flexible adhesive is a modified silane. Concretely,

ISR 70-03 is employed [73]. It should be remarked that the behavior of the employed material

was fitted to an exponential relaxation model [73] considering nine relaxation functions.

The experimental relaxation modulus E exp ðtÞ covers the time range 10−5 s−3· 103 s while the

complex modulus E
�
exp ðωÞ covers the frequency range 10−1 Hz−7· 102 Hz. It should be

reminded that an interpolation technique is used to equally space the data. Also, this interpo-

lation step is needed to reach the needed tmax and Δt where a cubic interpolation is employed.

It should be remarked that, due to the fact that E exp ðtÞ and E
�
exp ðωÞ are experimental data,

there is no a relaxation time τm associated withthem as a result there is no underlying model.

Thus, the desired Δt is estimated using the criteria τm ¼ 0:66 tr where tr is the elapsed time

from the strain is applied until relaxation is reached. Therefore, a Δt ¼ 10−5 s is derived.

Figure 28. Influence of data dispersion, conversion from time to frequency. Analytic generalized Maxwell model relaxa-

tion modulus EðtÞ provided by Eq. (30) together with the employed unevenly spaced data.
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Figure 29. Influence of data dispersion, conversion from time to frequency. Comparison between analytic generalized

Maxwell model complex modulus E�ðωÞ provided by Eq. (32) and the converted one using data dispersion.

Figure 30. Influence of data dispersion, conversion from frequency to time. Analytic generalized Maxwell model complex

modulus E�ðωÞ provided by Eq. (32) together with the employed unevenly spaced data.
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Figure 31. Influence of data dispersion, conversion from frequency to time. Comparison between analytic generalized

Maxwell model relaxation modulus EðtÞ provided by Eq. (30) and the converted one using data dispersion

Figure 32. Application example using experimental results. Conversion from time to frequency: comparison between the

experimental complex modulus E
�ðωÞ of a flexible adhesive and the converted one from its respective experimental

relaxation modulus EðtÞ.
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Regarding the dynamic case a Δf ¼ 0:01 Hz is selected. Therefore, Figure 32 shows the com-

parison of the conversion from relaxation modulus EðtÞ to complex modulus E�ðωÞ with the

experimental data and Figure 33 shows the inverse conversion.

From Figure 32, it should be pointed out that the described procedure achieves an accurate

estimation for E�
exp ðωÞ. Regarding the storage modulus, the described procedure reproduces

the experimental data in the whole frequency range. Concerning, the loss factor tan δðωÞ, the

procedure matches the tendency of the experimental data but differences are encountered,

being significant in the high-frequency range where these grow up to 30%. Nevertheless, the

accuracy of the interconversion can be improved by reducing the Δt used. Regarding the

interconversion from frequency to time, from Figure 33, it should be noted that the described

methodology provides a precise approximation for the experimentally obtained relaxation

modulus during the relaxation. However, an error of 7% is found for the upper time limit. As

it was presented in Section 3, the accuracy can be improved by reducing the Δf for the

interpolation step or by widening the frequency range, this is employing a higher fmax.

3.4. Concluding remarks

In this section, the interconversion between the complex modulus E�ðωÞ and the

corresponding relaxation modulus EðtÞfor linear viscoelastic materials has been analyzed. In

Figure 33. Application example using experimental results. Conversion from frequency to time: comparison between the

experimental relaxation modulus EðtÞ of a flexible adhesive and the converted one from its respective experimental

complex modulus E�ðωÞ.
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contrast to other approximate methods, in this research the FFT algorithm proposed by Cooley

and Tukey has been applied on time-dependent part of the viscoelastic response RðtÞ. Together

with the procedure itself, the influence of leakage, discretization and studied ranges so as the

experimental error and data dispersion have been studied via an analytical material model.

Also, an application case employing experimental data has been developed to prove the

methodology. As a conclusion, the presented methodology is able to estimate the complex

modulus E�ðωÞ by means of relaxation tests, and vice versa.

4. Structural noise and vibration reduction in a cabin elevator prototype by

means of adhesive-bonded joints of panels

This section presents an experimental study for the structural noise and vibration reduction in

a cabin elevator by means of adhesive-bonded joints of panels. For that noise and vibration

measurements are carried out on two prototypes: one of them built with classical panel joining

technologies and the other one with adhesive joints. Through the experiments, the benefits

from the vibroacoustic point of view of joining panels by means of adhesive-bonded joints in

contrast to the traditional joining technologies are put into evidence.

4.1. Prototype description

Measurements are performed in order to prove adhesive joints benefits using the selected

material. Therefore, in an elevator cabin property of ORONA S. Coop., the interior sound

pressure level Lp was measured in conjunction with the vibration of a side panel €sðtÞ. Besides,

the vibrations of the floor of the cabin €uðtÞ, €vðtÞ, €wðtÞ in x, y and z directions, respectively, were

also measured.

Hence, an elevator cabin prototype was built-up and two set of side panels were specifically

manufactured. Thus, the results of the system with metallic joints are compared to those

provided by the prototype system with adhesive joints. The experimental program was carried

out under operational conditions and the analyzed frequency range is 5 Hz−1 kHz.

A scheme of both systems is shown in Figures 34 and 35, where Figure 34 represents the

position of the metallic joints, and Figure 35 shows the system with the continuous adhesive

single lap joints.

From Figure 34, it should be noted that two kinds of joints are employed in the original

system. On the one hand, a joint typology is used between the basis and the side panel. On

the other hand, another one is employed to join the metal sheets that constitute this side panel.

From Figure 35, it should be pointed out that the adhesive joints are continuous; whereas the

metallic ones are discrete joints. Besides, the joint thickness and overlapping length dimen-

sions are h1 ¼ 2 mm and l1 ¼ 50 mm for the basis joint and h2 ¼ 2 mm and l2 ¼ 20 mm for the

joint between the sheets.

Regarding the experiments, two kinds of responses were measured. On the one hand, the

interior sound pressure level Lp was registered at the center of the cabin at a height of 1.5 m
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and facing to the side panel under study. On the other hand, the out of plane acceleration €sðtÞ

of the side panel was measured. The floor accelerations €uðtÞ, €vðtÞ, €wðtÞ in x, y and z directions,

respectively, were also registered.

Hence, Figure 36 shows a scheme in which the placement of the accelerometers and the

microphone is represented.

Figure 34. Original elevator scheme with metallic joints.
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Next, the responses of the elevator cabin with metallic joints are compared to those of the

system with adhesive joints where the ISR 70-03 adhesive is employed. First, the sound

pressure level Lp is analyzed together with the acceleration auto-spectrum of the side panel

€sðtÞ (see Figure 36). Then, the floor acceleration auto-spectra in x, y and z directions are

studied. The results are presented in third octave bands.

Figure 35. Prototype elevator scheme with adhesive joints.
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4.2. Structural noise

Next, the sound pressure level inside the cabin is presented together with the vibration auto-

spectrum of €s ðtÞ for the right-hand side of the panel, that of the left-hand side one being

analogous (see Figure 36). Hence, Figure 37 shows the interior sound pressure level Lp for the

system with metallic joints and the corresponding one for the system with adhesive joints. The

results are presented using the A-weighting [74]. Figure 38 shows both acceleration spectra

of €s ðtÞ.

From Figures 37 and 38, it should be emphasized that the vibroacoustic response of an

elevator cabin can be improved by adhesively bonding the side panels. Thus, according to

Figure 37, the sound pressure level Lp has been reduced for even all frequency bands except for

the one of 100 Hz. Small increments can be found also for the lowest frequency bands. Hence,

the total sound pressure level has been determined, being Lp,metal ¼ 72:27 dB for the system

with metallic joints and Lp,adh ¼ 71:80 dB for the one with adhesive joints. However,

concerning the human ear, the A-weighting [74] is taken into account and the following values

are reached: Lp,metal ¼ 50:89 dBðAÞ and Lp,adh ¼ 49:59 dBðAÞ, respectively.

Hence, it can be concluded that the interior sound pressure level has been reduced by means of

adhesive joints where a reduction of ΔLp ¼ 1:30 dBðAÞ has been achieved. It should be

Figure 36. Representation of the elevator cabin measurement points.
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remarked that, for the present case only one of the three side panels has been adhesively

bonded.

From Figure 38, it should be noted that the system with metallic joints contains the highest

vibration levels in the low-frequency range, especially for frequencies smaller than 100 Hz. It is

important to remark that these vibration levels are an order higher than those for higher

frequencies.

In order to evaluate the effectiveness of the provided solution, the RMS acceleration €sRMS has

been computed, the result is shown in Table 4. The study is carried out taking into account two

frequency groups: the first one made up by the frequency bands below 100 Hz and the second

one by the frequency bands between 100 Hz and 1 kHz.

From Table 4, it should be pointed out that the level of vibration of the side panel has been

reduced in 20 and 30% for the low and high frequency bands, respectively.

In short, it can be concluded that adhesive joints are able to reduce the interior structural noise

of an elevator cabin, by means of introducing effective modal damping for the side panels.

Figure 37. Structural noise response: sound pressure levels.
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4.3. Vibration floor response

Next, the vibration spectra of the cabin floor are presented. The aim of this analysis is to verify

that the vibrational ride comfort has not been decreased by the use of adhesive joints. Fig-

ures 39–41 illustrate the acceleration auto-spectra for €uðtÞ, €vðtÞ and €wðtÞ, respectively, for the

systems with metallic and adhesive joints.

From Figures 39–41 it should be pointed out that, accordingly to the panel response, the

highest vibration levels are found for frequencies below 100 Hz. Concerning Figures 40 and 41,

it should be noted that the smallest vibration level is encountered for the medium-frequency

Figure 38. Structural noise response: auto-spectrum of €sðtÞ.

€sRMS ðm=s2Þ2 €uRMS ðm=s2Þ2 €vRMS ðm=s2Þ2 €wRMS ðm=s2Þ2

f < 100 Hz Metallic 1.82 1.06 0.83 2.03

Adhesive 1.48 0.86 0.76 1.72

100 Hz < f < 1 kHz Metallic 3.64 3.23 3.02 3.50

Adhesive 2.53 2.00 1.89 2.44

Table 4. Vibrational results.
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range. It is worth mentioning that the acceleration level on the z direction, see Figure 41, is one

order of magnitude higher than those for x and y directions. The obtained RMS acceleration

values for the systems with metallic and adhesive joints are shown in Table 4. The results are

provided in two frequency bands as well.

From Table 4, it should be pointed out that in spite of just one side panel has been joined with

the adhesive material its effect over the vibrational response of the floor is significant. Thus, for

the horizontal vibration a reduction up to 40% is obtained while the vertical vibration level has

been reduced to 30%.

4.4. Conclusions

In this section, a study for the noise and vibration reduction in an elevator cabin prototype by

means of panel adhesive-bonded joints has been presented. The interior sound pressure level

of the considered elevator cabin prototype has been reduced in ΔLp ¼ 1:30 dBðAÞ. The vibra-

tion level of the side panel has been significantly reduced in the low and high frequency bands.

Also, the vibration level of the elevator cabin floor has been reduced also.

As conclusion, taking into account the presented results obtained with adhesive joints in only

side panels, ride comfort in an elevator cabin can be notably enhanced by substituting tradi-

tional joining technologies by adhesive-bonded joints.

Figure 39. Cabin floor response acceleration auto-spectra in the x direction.
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Figure 40. Cabin floor response acceleration auto-spectra in the y direction.

Figure 41. Cabin floor response acceleration auto-spectra in the z direction.
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5. Chapter conclusions

This chapter has been focused on the dynamic characterization of adhesive materials for

vibration control proposes. First, the experimental characterization and modelization of the

relaxation and complex moduli of the flexible adhesive ISR 70-03 by means of a dynamic

mechanical thermal analysis technique (DMTA) has been presented. Then, the interconversion

path between the relaxation modulus EðtÞ and the corresponding complex modulus E�ðωÞ for

linear viscoelastic solid materials has been explored. In contrast to other approximate methods,

in this work the fast Fourier transform (FFT) algorithm has been directly applied on relaxation

functions. Finally, an experimental study for the structural noise and vibration reduction in a

cabin elevator by means of adhesive-bonded joints of panels has been presented to probe the

benefits of adhesive joints on the vibroacoustic behavior of equipment subjected to dynamics

loads.
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