
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

185,000 200M

TOP 1%154

6,900

22

On the Definition of a Standard Language for
Modelling Constraint Satisfaction Problems

Ricardo Soto1,2, Laurent Granvilliers1
1CNRS, LINA, Université de Nantes

2Escuela de Ingeniería Informática,
Pontificia Universidad Católica de Valparaíso,

Chile

1. Introduction

A Constraint Satisfaction Problem (CSP) is a declarative representation of a system under
constraints. Such a representation is mainly composed by two parts: a sequence of variables
lying in a domain and a finite set of constraints over these variables. The goal is to find
values for the variables in order to satisfy the whole set of constraints.

Fig. 1. A solution of the 6-queens problem.

As an example, let us consider the 6-queens problem, which consists in placing 6 chess
queens on a 6x6 chessboard such that none of them is able to capture any other using the
standard chess queen's moves. A solution requires that no two queens share the same row,
column, or diagonal. A CSP for this problem can be stated by means of six variables and
three constraints. One variable for each of the six queens to represent their row positions on
the chessboard, each variable lying in the domain [1,6] (6 rows). One constraint to avoid that
two queens are placed in the same row. One constraint to avoid that two queens are placed
in the first diagonal; and finally one constraint to avoid that two queens are placed in the
second diagonal. A solution of the 6-queens problem is shown in Figure 1.

www.intechopen.com

 Tools in Artificial Intelligence

388

Constraint Programming (CP) is called the software technology to solve CSPs. Currently,
several CP tools exist which are mainly systems or libraries built on top of a host language
such as Prolog (ECLiPSe (Wallace et al., 1997)), C++ (ILOG Solver (Puget, 1994)) or Java
(Gecode/J (Schulte & Stuckey, 2004)). These tools, generically named solvers, are able to
take as input the CSP and to solve it by exploring and pruning efficiently the search space
containing the potential solutions. A main advantage of this approach is that users just need
to state a declarative representation of the problem, instead of building complex procedures
or algorithms to search the solutions. This is a great asset; however, the language to express
these problems is not standard, each tool provides its own semantics with a level of
abstraction tied to its host language, which is commonly not easy to use. This is a big
concern in the CP field, since users need to deal with the encoding concerns of the solver
host language; and moreover to learn a new language each time they want to experiment
with a new solver.
In response to this, the CP community has defined the development of a standard language
as an important research direction. To this end, a solver-independent three layered
architecture has been proposed (Rafeh et al., 2007; Fritsh et al., 2007), including a modelling
language -which is expected to be simple enough for use by non CP experts-, a set of solvers
and a middle tool mapping models to executable solver code. Thus, the user is able to
design one model in a “human-comprehensible” language and to target many solvers.
In this work, we follow this research direction by proposing a solver-independent modelling
language but using an object-oriented approach. Our system is called s-COMMA (Soto &
Granvilliers, 2007) and it can be regarded as a hybrid built from a combination of an object-
oriented language and a constraint language. The s-COMMA constraint language provides
typical data structures, control operations, and first-order logic to define constraint-based
formulas. The object-oriented part is a simplification of the Java programming style. This
framework clearly provides model structures using composition relationships.
The s-COMMA system is written in Java (22000 lines) and it is supported by a solver-
independent execution platform where models can be solved by four well-known CP
solvers: Gecode/J, ECLiPSe, RealPaver (Granvilliers & Benhamou, 2006) and GNU Prolog
(Diaz & Codognet, 2000). We believe s-COMMA is in compliance with the requirements of a
standard language. Their simplicity is similar to the state-of-the-art modelling languages
(Nethercote et al., 2007; Fritsh et al., 2007). The expressiveness provided is considerable and
even it can be increased with extension mechanisms. The solver-independence is the base of
the platform which allows experimentations with many solvers.
The definition of a standard language is an evident hard task which may require many years
and several experimental steps. We believe that the work done on s-COMMA is one of the
steps towards the achievement of this important goal.
The outline of this chapter is as follows. Section 2 introduces an overview of the s-COMMA
language. The architecture and implementation of the system is explained in Section 3. The
related work is presented in Section 4 followed by the conclusions.

2. s-COMMA overview

In this section we give an overview of s-COMMA. We will first present the most important
elements of an s-COMMA model and then, we will illustrate these elements by means of
three examples, the n-queens problem, the packing squares problem and a production-
optimization problem.

www.intechopen.com

On the Definition of a Standard Language for Modelling Constraint Satisfaction Problems

389

2.1 s-COMMA models

An s-COMMA model is composed by two main parts, a model file and a data file. The
model file describes the structure of the problem, and the data file contains the constant
values used by the model. The model file is composed by import statements and classes; and
the data file is composed by constants and variable assignments.

2.1.1 Constants & variable assignments

Constants, namely data variables, are stated in a separate data file and imported from the
model file. Constants can be real, integer or enumeration types. Arrays of one dimension
and arrays of two dimensions of data variables are allowed. A variable-assignment is an
assignment of a value to a variable of an object defined in the model file (as example, see
line 3 of the data file in Fig. 4).

2.1.2 Classes

A class is composed by attributes and constraints zones. Single inheritance is permitted and
a subclass inherits all attributes and constraints of its superclass.

2.1.3 Attributes

Attributes may represent decision variables or objects. Decision variables must be declared
with an integer, real or boolean type. Objects are instances of classes which must be typed
with their class name. Arrays of one and two dimensions can be used; they can contain
either decision variables or objects. Decision variables and arrays of decision variables can
be constrained to a determined domain.

2.1.3 Constraint zones

Constraint zones are used to group constraints encapsulating them inside a class. A
constraint zone is stated with a name and it can contain constraints, forall loops, if-else
statements, optimization statements, and global constraints.

2.2 The n-queens problem

Let us begin the illustration of these elements by means of the n-queens problem presented
in Section 1. An s-COMMA model for this problem is shown in Figure 2. The model is
represented by a class called Queens which contains an array with n integer decision
variables lying in the domain [1,n]. The constant value called n is imported from the
Queens.dat file.
At line 6 a constraint zone called noAttack contains the three constraints required. One
constraint to avoid that two queens are placed in the same row (line 9). One constraint to
avoid that two queens are placed in the first diagonal (line 10); and one constraint to avoid
that two queens are placed in the second diagonal (line 11). Two for loops ensure that the
constraints are applied for the complete set of decision variables.

2.3 The packing squares problem
Let us continue with a more complex problem called packing squares. The goal of this
problem is to place a given set of squares in a square area. Squares may have different sizes
and they must be placed in the square area without overlapping each other. Figure 3 shows
a solution for the problem, 8 squares have been placed in a square area of side size 5.

www.intechopen.com

 Tools in Artificial Intelligence

390

1. //Data file
2. n:=6;

1. //Model file
2. import Queens.dat;
3.
4. class Queens {
5. int q[n] in [1,n];
6. constraint noAttack {
7. forall(i in 1..n) {
8. forall(j in i+1..n) {
9. q[i] <> q[j];
10. q[i]+i <> q[j]+j;
11. q[i]-i <> q[j]-j;
12. }
13. }
14. }
15. }

Fig. 2. s-COMMA model for the n-queens problem.

Fig. 3. A solution of the packing squares problem.

Figure 4 shows an s-COMMA model for the packing squares problem. Data values are

imported from an external data file called PackingSquares.dat, sideSize (line 1) is an

integer constant that represents the side size of the square area where squares must be

placed, squares (line 2) represents the quantity of squares to place. PackingSquares.s

(line 3) is a variable-assignment for the array of Square objects declared at line 5 of the

model file, here a set of values is assigned to the third attribute (size) of each Square

object of the array s. For instance, the value 3 is assigned to the attribute size of the first

object of the array. The value 2 is assigned to the attribute size of the second, third and

fourth object of the array. The value 1 is assigned to the attribute size of remaining objects

of the array. We use standard modelling notation (‘_’) to omit assignments.

At line 3 in the model file, the definition of the class begins, PackingSquares is the name

given to this class. Then, an array containing objects from the class Square is defined. This

class, declared at line 30, is used to model the set of squares. Attributes x and y represent

www.intechopen.com

On the Definition of a Standard Language for Modelling Constraint Satisfaction Problems

391

respectively the x and y coordinates where the squares must be placed. So, s[8].x=5 and

s[8].y=5 means that the eighth square must be placed in row 5 and column 5, indeed in

the bottom right corner of the square area. Both variables (x,y) are constrained, they must

have values into the domain [1,sideSize]. The last attribute called size represents the

size of the square.

//Data file
1. int sideSize :=5;
2. int squares :=8;
3. Square PerfectSquares.s := [{_,_,3},{_,_,2},{_,_,2},{_,_,2},
 {_,_,1},{_,_,1},{_,_,1},{_,_,1}];

//Model file
1. import PackingSquares.dat;
2.
3. class PackingSquares {
4.
5. Square s[squares];
6.
7. constraint inside {
8. forall(i in 1..squares) {
9. s[i].x <= sideSize - s[i].size + 1;
10. s[i].y <= sideSize - s[i].size + 1;
11. }
12. }
13.
14. constraint noOverlap {
15. forall(i in 1..squares) {
16. forall(j in i+1..squares) {
17. s[i].x + s[i].size <= s[j].x or
18. s[j].x + s[j].size <= s[i].x or
19. s[i].y + s[i].size <= s[j].y or
20. s[j].y + s[j].size <= s[i].y;
21. }
22. }
23. }
24.
25. constraint fitArea {
26. sum(i in 1..squares)(s[i].size*s[i].size)) = sideSize*sideSize;
27. }
28. }
29.
30. class Square {
31. int x in [1,sideSize];
32. int y in [1,sideSize];
33. int size;
34. }

Fig. 4. s-COMMA model for the packing squares problem.

At line 7, a constraint zone called inside is declared. In this zone a forall loop contains

two constraints to ensure that each square is placed inside the area, one constraint about

rows and the other about columns. Let us note that loops use loop-variables which do not

need to be declared (i and j in the example).

www.intechopen.com

 Tools in Artificial Intelligence

392

The constraint zone noOverlap, declared at line 14, ensures that two squares do not

overlap. The last constraint zone called fitArea ensures that the set of squares fits

perfectly in the square area.

2.4 The production problem

Let us finish the s-COMMA overview with a production-optimization problem. Consider a
factory that must satisfy a determined demand of products. These products can be either
manufactured inside the factory -considering a limited resource availability- or purchased
from an external market. The goal is to determine the quantity of products that must be
produced inside the factory and the quantity to be purchased in order to minimize the total
cost.
Figure 5 shows an s-COMMA model for this problem. At Line 28 of the model, the class to
represent products is stated. Each Product is composed by its demand, its inside and
outside cost, its consumption, and the quantity that must be produced inside and outside
the factory. At line 3 the main class of the problem begins, it is first composed by two arrays,
one containing the set of products and the other contains the available quantity of resources
for manufacturing the products.
At Line 9 a constraint zone called noExceedCapacity is stated to ensure that the resource
consumption of products manufactured inside do not exceed the total quantity of available
resources. At line 15, satisfyDemand is posted to satisfy the demand of all the products.
Finally, at line 22, an optimization statement is posted to determine the quantity of products
that must be produced inside the factory and the quantity to be purchased in order to
minimize the total cost.
The data file is composed by two enumerations that define the resources and the name’s
products respectively. At line 3, a variable-assignment for the capacity attribute of the
class Production is stated. At the end, Production.products is a variable-assignment
for the array products defined at line 5 of the model file. This variable-assignment states
that the demand of the product klusky is 1000, their inside and outside cost are 6 and 8,
respectively; and finally its production requires 5 flour items and 2 eggs. The assignment of
the following products is analogous.

//Data file
1. enum resourceList := {flour, eggs};
2. enum productList := {klusky, capellini, fettucine};
3. int Production.capacity := [200,400];
4. Product Production.products :=
 [klusky:{1000,6,8,[flour:5,eggs:2],_,_},

 capellini:{2000,2,9,[flour:4,eggs:4],_,_},

 fettucine:{3000,3,4,[flour:3,eggs:6],_,_}];

//Model File
1. import Production.dat;
2.
3. class Production {
4.
5. Product products[productList];
6. int capacity[resources];

www.intechopen.com

On the Definition of a Standard Language for Modelling Constraint Satisfaction Problems

393

7.
8. constraint noExceedCapacity {
9. forall(r in resourceList) {
10. capacity[r] >= sum(p in productList)
11. (products[p].consumption[r] * products[p].inside);
12. }
13. }
14.
15. constraint satisfyDemand {
16. forall(p in productList) {
17. products[p].inside + products[p].outside >= products[p].demand;
18. }
19. }
20.
21. constraint minimizeCost {
22. [minimize] sum(p in productList)
23. (products[p].insideCost * products[p].inside +
24. products[p].outsideCost * products[p].outside);
25. }
26. }
27.
28. class Product {
29. int demand;
30. int insideCost;
31. int outsideCost;
32. int consumption[resourceList];
33. int inside in [0,5000];
34. int outside in [0,5000];
35. }

Fig. 5. s-COMMA model for the production problem.

2.5 Extension mechanism

Extensibility is an important feature of s-COMMA. Let us now show this feature using the
packing squares problem. Consider that a programmer adds to the Gecode/J solver two
new built-in functionalities: a constraint called inside and a function called pow. The
constraint inside ensures that a square is placed inside a given area, and pow(x,y)
calculates the value of x to the power of y. In order to use these functionalities we can use
these new built-ins from s-COMMA by defining an extension file where the rules of the
translation are described. This file is composed by one or more main blocks (see Figure 6). A
main block defines the solver where the new functionalities will be defined. Inside a main
block two new blocks are defined: a Function block and a Relation block. In the
Function block we define the new functions to add. The grammar of the rule is as follows:

;"")(〉−〈→〉−〈〉〈 codesolverparametersinputname

In the example, the left part of the rule is pow(x,y),pow is the name of the function and x
and y the input parameters. The left part of the rule corresponds to the statement that will
be used to call the new function from s-COMMA. The right part corresponds to the code
that calls the new built-in method from the solver file. Thus, the code pow(x,y) will be
translated to power(x,y) from s-COMMA to Gecode/J. The translator must recognize the
correspondence between input parameters in s-COMMA and input parameters in the solver
code. Therefore, variables are tagged with ‘$’ symbols. In the example, the first parameter

www.intechopen.com

 Tools in Artificial Intelligence

394

and the second parameter of the s-COMMA function will be translated as the first parameter
and the second parameter in the Gecode/J function, respectively.
Within the Relation block we define the new constraints to add. In the example, a new
constraint called inside is defined, it receives four parameters. The translation to Gecode/J
is given in the same way. Once the extension file is completed, it can be called by means of
an import statement. The resultant s-COMMA model using extensions is shown in Figure 6.

//Extension File
1. GecodeJ {
2. Function {
3. pow(x,y) -> "power(x,y)";
4. }
5. Relation {
6. inside(a,b,c,d) -> "inside(a,b,c,d);";
7. }
8. }
9.
10. ECLiPSe {
11. Function {
12. ...
13. GNUProlog {
14. Function {
15. ...
16. RealPaver {
17. Function {

//Model file
1. import PackingSquares.dat;
2. import PackingSquares.ext;
3.
4. class PackingSquares {
5.
6. Square s[squares];
7.
8. constraint placeSquares {
9. forall(i in 1..squares) {
10. inside(s[i].x,s[i].y,s[i].size,sideSize);
11. forall(j in i+1..squares) {
12. s[i].x + s[i].size <= s[j].x or
13. s[j].x + s[j].size <= s[i].x or
14. s[i].y + s[i].size <= s[j].y or
15. s[j].y + s[j].size <= s[i].y;
16. }
17. }
18. }
19.
20. constraint fitArea {
21. (sum(i in 1..squares) (pow(s[i].size,2)) = pow(sideSize,2);
22. }
23.}

 Fig. 6. s-COMMA model for the packing squares problem using extensions.

3. s-COMMA architecture

The s-COMMA system is supported by a three-layered architecture: Modelling, Mapping

and Solving (see Fig 7). On the first layer, models are stated; extension and data files can be

www.intechopen.com

On the Definition of a Standard Language for Modelling Constraint Satisfaction Problems

395

given optionally. Models are syntactically and semantically checked. If the checking process

succeeds, an intermediate model called flat s-COMMA is generated, the aim of this model is

to simplify the task of translators. Finally, the flat s-COMMA file is taken by the selected

translator which generates the executable solver file.

Fig. 7. s-COMMA architecture.

3.1 From s-COMMA to flat s-COMMA

A direct translation from s-COMMA to executable solver code is feasible (in fact, we have

studied this in (Soto & Granvilliers, 2007)). However, many statements provided by s-

COMMA are not supported by solvers. Thus, for performing this direct mapping, many

model-transformations must be carried out at the level of translators. This makes translators

bigger (in terms of code lines) and, as consequence, difficult to develop and maintain. A

well-known technique to simplify code generation is to include an intermediate phase

where the non-supported features are transformed to simpler (or supported) features. We

state this transformation on an intermediate model called flat s-COMMA. The set of

performed transformations from s-COMMA to flat s-COMMA are described below.

Flattening composition. The hierarchy generated by composition is flattened. This process is

done by expanding each object declared in the main class adding its attributes and

constraints in the flat s-COMMA file. The name of each attribute has a prefix corresponding

to the concatenation of the names of objects of origin in order to avoid name redundancy.

Loop unrolling. Loops are not widely supported by solvers, hence we generate an unrolled

version of loops.

Enumeration substitution. In general solvers do not support non-numeric types. So,
enumerations are replaced by integer values, original values are stored to give the results.
Data substitution. Data variables are replaced by its value defined in the data file.

Conditional removal. Conditional statements are transformed to logical formulas. For
instance, if a then b else c is replaced by)()(caba ∨∧⇒ .

Logic formulas transformation. Some logic operators are not supported by solvers. For
example logical equivalence ba⇔ and reverse implication ba⇐ . We transform logical

equivalence expressing it in terms of logical implication. Reverse implication is simply
inverted ab⇒ .

Finally, the generated flat s-COMMA code is taken by the selected translator which
generates the executable solver file.

www.intechopen.com

 Tools in Artificial Intelligence

396

4. Related work

s-COMMA is closely related to recent standard modelling language proposals as well as
object-oriented languages for modelling constraint problems.

4.1 The definition of a standard modelling language

The definition of a standard modelling language for CP is a recent trend. First
encouragements on this issue were done by J-F. Puget in (Puget, 2004). He suggested to
develop a ``model and run'' paradigm such as in Math Programming. The paradigm
involved a standard file format for expressing models and a CP library to solve them. Then,
at The Next 10 Years of CP (Benhamou et al., 2007), this challenge was confirmed as an
important research direction. Recently, at CP 2007 Conference, MiniZinc (Nethercote et al.,
2007) was proposed as a standard modelling language. MiniZinc can be seen as a subset of
elements provided by Zinc (Rafeh et al., 2007). The syntax is closely related to OPL (Van
Hentenryck, 1999) and its solver-independent platform allows translating MiniZinc models
into Gecode and ECLiPSe solver models. Essence (Fritsch et al., 2007) is another good basis
to define such a standard. This core is focused on users with a background in discrete
mathematics; this style makes Essence a specification language rather than a modelling
language. The Essence execution platform allows mapping specifications into the ECLiPSe
solver.
We believe s-COMMA may be a good starting point too, the constraint language of s-
COMMA is closely related to OPL and Zinc. The solver-independent platform is an
adequate support to map models to four different solvers. The object-oriented framework
and the extensibility are also important features not present in the aforementioned
proposals.

4.2 Objects + Constraints

The first attempt in combining an object oriented language with a constraint language was
on the development of ThingLab (Borning, 1981) which was built for interactive graphical
simulation. A next version of this approach was developed in the Kaleidoscope language
(Freeman-Benson, 1992). Then, similar ideas were developed in Gianna (Paltrinieri, 1994) for
modelling constraint-based problems with objects in a visual environment. COB (Bharat &
Tambay, 2002) is a more recent approach for the engineering field, the language is a
combination of objects first order formulas and CLP (Constraint Logic Programming)
predicates. Modelica (Fritzson & Engelson, 1998) is another object-oriented system for
modelling engineering problems, but it is mostly oriented towards simulation. In general,
the constraint language of these approaches was designed to specific application domains.
They also lack of extensibility and solver-independence.

5. Conclusion

In this chapter we have presented s-COMMA, a new language for modelling CSPs. The
basis of s-COMMA is a combination of an object-oriented language with an extensible
constraint language which allows users to state modular models using the benefits of the
object-oriented style. s-COMMA is also supported by a three layered architecture where
models can be mapped to four well-known solvers. We believe that these capabilities make
s-COMMA a good basis to define a standard modelling language.

www.intechopen.com

On the Definition of a Standard Language for Modelling Constraint Satisfaction Problems

397

To reach this final purpose, several aspects could be developed, for instance: more work on
benchmarks, solver cooperation, new global constraints and translation to new solvers. The
development of a tool for modelling CSPs through a UML-like language will be useful too.

6. References

Benhamou, F.; Jussien, N. & O’Sullivan, B. (2007). Trends in Constraint Programming. ISTE,
ISBN: 9781905209972, England.

Bharat, J. & Tambay, P. (2002). Modelling Engineering Structures with Constrained Objects.
Proceedings of Principles and Practice of Declarative Languages (PADL), pp. 28-46,
LNCS Springer-Verlag, Portland, USA.

Borning, A. (1981). The Programming Language Aspects of ThingLab, a Constraint-Oriented
Simulation Laboratory. ACM Transactions on Programming Languages and
Systems., 3(4): pp. 353-387, ISSN:0164-0925.

Schulte, C. & Stuckey, P. (2004). Speeding Up Constraint Propagation. Proceedings of
Principles and Practice of Constraint Programming (CP), pp. 619-633, LNCS Springer-
Verlag, Toronto, Canada.

Diaz, D. & Codognet, P. (2000). The gnu prolog system and its implementation, Proceedings
of the ACM Symposium on Applied Computing (SAC), pp. 728–732, ACM Press, Villa
Olmo, Italy.

Frisch, A.; Grum, M.; Jefferson, C.; Martínez, B. & Miguel, I. (2007). The design of Essence: A
constraint language for specifying combinatorial problems, Proceedings of
International Joint Conference on Artificial Intelligence (IJCAI), pp. 80–87, Hyderabad,
India.

Freeman-Benson, B. (1990). Kaleidoscope: Mixing Objects, Constraints and Imperative.
Proceedings of European Conference on Object-Oriented Programming (ECOOP), pp. 77-
88, SIGPLAN Notices 25(10), Ottawa, Canada.

Fritzson, P. & Engelson, V. (1998). Modelica - A Unified Object-Oriented Language for
System Modelling and Simulation. Proceedings of European Conference on Object-
Oriented Programming (ECOOP), pp. 67-90, LNCS Springer-Verlag, Brussels,
Belgium.

Granvilliers, L & Benhamou, F. (2006). Algorithm 852: Realpaver: an interval solver using
constraint satisfaction techniques. ACM Transactions on Mathematical Software.,
32(1):pp.138-156, ISSN:0098-3500.

Nethercote, N.; Stuckey, P.; Becket, R.; Brand, S.; Duck, G. & Tack, G. (2007). Minizinc:
Towards a standard cp modelling language. Proceedings of Principles and Practice of
Constraint Programming (CP), pp. 529–543, LNCS Springer-Verlag, Providence,
USA.

Paltrinieri, M. (1995). A Visual Constraint-Programming Environment. Proceedings of
Principles and Practice of Constraint Programming (CP), pp. 499–514, LNCS Springer-
Verlag, Cassis, France.

Puget, J. (1994). A C++ implementation of CLP. Proceedings of the Second Singapore
International Conference on Intelligent Systems, Singapore.

Puget, J. (2004). Constraint programming next challenge: Simplicity of use. Proceedings of
Principles and Practice of Constraint Programming (CP), pp. 5–8, LNCS Springer-
Verlag, Toronto, Canada.

www.intechopen.com

 Tools in Artificial Intelligence

398

Rafeh, R.; García de la Banda, M.; Marriott, K. & Wallace, M. (2007). From zinc to design
model. Proceedings of Principles and Practice of Declarative Languages (PADL), pp. 215–
229, LNCS Springer-Verlag, Nice, France.

Soto, R. & Granvilliers, L. (2007). The Design of COMMA: An extensible framework for
mapping constrained objects to native solver models. Proceedings of the International
Conference on Tools with Artificial Intelligence (ICTAI), pp. 243–250, IEEE Computer
Society, Patras, Greece.

Van Hentenryck, P. (1999). Constraint Programming in OPL. Proceedings of Principles and
Practice of Declarative Programming (PPDP), pp. 98-116, ACM Press, Paris, France.

Wallace, M.; Novello, S. & Schimpf, J. (1997). Eclipse: A platform for constraint logic
programming, Technical report, IC-Parc, Imperial College, London, England.

www.intechopen.com

Tools in Artificial Intelligence

Edited by Paula Fritzsche

ISBN 978-953-7619-03-9

Hard cover, 488 pages

Publisher InTech

Published online 01, August, 2008

Published in print edition August, 2008

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

This book offers in 27 chapters a collection of all the technical aspects of specifying, developing, and

evaluating the theoretical underpinnings and applied mechanisms of AI tools. Topics covered include neural

networks, fuzzy controls, decision trees, rule-based systems, data mining, genetic algorithm and agent

systems, among many others. The goal of this book is to show some potential applications and give a partial

picture of the current state-of-the-art of AI. Also, it is useful to inspire some future research ideas by identifying

potential research directions. It is dedicated to students, researchers and practitioners in this area or in related

fields.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Ricardo Soto and Laurent Granvilliers (2008). On the Definition of a Standard Language for Modelling

Constraint Satisfaction Problems, Tools in Artificial Intelligence, Paula Fritzsche (Ed.), ISBN: 978-953-7619-03-

9, InTech, Available from:

http://www.intechopen.com/books/tools_in_artificial_intelligence/on_the_definition_of_a_standard_language_f

or_modelling_constraint_satisfaction_problems

© 2008 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

