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Abstract

Breast  cancer  is  a  complex  disease  comprising  molecularly  distinct  subtypes.  The
prognosis and treatment differ between subtypes; thus, it is important to distinguish
one subtype from another. In this chapter, we make use of high-throughput microarray
dataset to perform breast cancer subtyping of 10086 samples. Aside from the four major
subtypes, that is, Basal-like, HER2-enriched, luminal A, and luminal B, we defined a
normal-like subtype that has a gene expression profile similar to that found in normal
and adjacent normal breast samples. Also, a group of luminal B-like samples with better
prognosis was distinguished from the high-risk luminal B breast cancer. We additionally
identified 33  surface-protein  encoding genes  whose  gene  expression  profiles  were
associated with survival outcomes. We believe these genes are potential therapeutic
targets and diagnostic biomarkers for breast cancer.

Keywords: breast cancer, intrinsic subtypes, gene expression, microarray, survival
analysis

1. Introduction

In many countries, breast cancer remains the most common cancer among women and one of
the top leading causes of cancer death in women. Multiple efforts and studies have been
directed toward the understanding of the cause and mechanisms leading to breast cancer and
to improve the diagnosis and treatment of this disease. To aid its identification and treatment,
breast cancer is divided into four major molecular subtypes [luminal A (LumA), luminal B
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(LumB), HER2-enriched (HER2E), and basal-like (BasalL)] according to hormone receptor
status assessed by immunohistochemistry (IHC) [1, 2].

The luminal types are estrogen receptor positive cancers, and their gene expression patterns
are similar to the luminal epithelial cells that line the breast ducts and glands. They can be
treated with endocrine therapy and chemotherapy. Luminal A is a low-grade cancer that has
the best prognosis, high survival rates and low recurrence rates compared to other subtypes
[3]. Patients with luminal B cancer tend to have poorer prognosis and lower survival rates than
those with luminal A cancer. In HER2-enriched cancer, the HER2 gene is often overexpressed
due to gene duplication. This type of breast cancer is high-grade and fast-growing. Before the
discovery of anti-HER2 drugs such as trastuzumab and lapatinib [4, 5], the treatment for patent
of this subtype is limited to chemotherapeutic approaches. The other major subtype is the
basal-like breast cancer. The gene expression pattern of basal-like breast cancer is similar to
cells in the basal layers of the breast ductal epithelium. Many cases of basal-like breast cancer
are also triple-negative breast cancer, which lack estrogen or progesterone receptors and
without elevated expression of HER2. The basal-like breast cancer is also high-grade and fast-
growing. Patients diagnosed with this subtype have poorer prognosis and are treated with
combination of surgery, radiotherapy and anthracycline/taxane-based chemotherapy [6].

After the launch of microarray in the early 2000s as an affordable solution to high-throughput
quantification of genome-wide gene expression, many research projects begin to use this
technology to study breast cancer [7–9]. Findings derived from microarray studies provide
useful biological, prognostic, and predictive information in basic science and clinical practice.
One of the applications resulting from microarray analysis is the reclassification of breast
cancer samples according to the gene expression patterns of multiple genes [10].

In this chapter, we present our method of analyzing large public breast cancer microarray
datasets and discuss our findings concerning breast cancer subtyping using gene expression
signatures. By thoroughly gathering of microarray datasets, we collected gene expression
results of 10086 normal breast and breast cancer samples from public depositories. We took
advantage of the large sample size to explore the similarities and differences among and within
breast cancer subtypes. Through the clustering of this large breast cancer dataset, our aim is
to update the subtype labels of these samples and re-define the intrinsic subtypes of breast
cancer, as well as to identify genes whose expression profiles are not subtype-specific but can
subclassify samples within a given subtype and with prognostic values. By analyzing the
functional subgroups of human genes through consensus clustering, we identified specific
genes that can subdivide breast cancer subtype and provided useful prognostic information
as well as possible genetic clues for breast carcinogenesis.

2. Processing of gene expression microarray datasets

We explored the two largest public repositories, NCBI GEO (https://www.ncbi.nlm.nih.gov/
geo) and EBI ArrayExpress (http://www.ebi.ac.uk/arrayexpress) for gene expression microar-
ray datasets relating to normal breast tissues and breast cancers. Different microarray
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platforms produce variations in the final interpretation of gene expression levels due to
differences in probe design and detection methods. We chose to obtain experiment conducted
using the Human Genome U133A (HG-U133A) and Human Genome U133 Plus 2.0 (HG-U133
Plus 2.0) arrays, as these are the most widely used platforms we found in the databases.
Overall, we identified 41 HG-U133A and 62 HG-U133 Plus 2.0 datasets relating to our topic
of interest. Redundant and irrelevant arrays were identified and removed. 4952 HG-U133A
and 5134 HG-U133 Plus 2.0 arrays, representing 165 normal breast, 193 adjacent disease-free,
5 proliferative breast lesions, and 9723 breast cancer samples, were selected for downstream
analysis. The clinicopathological data associated with the samples were also retrieved at the
same time if available. In Supplementary Table 1, we list the accession numbers associated
with the dataset we collect and used in this study.

Accession No. HG-U133A HG-U133 Plus 2.0

E-MEXP-882 0 24

E-MEXP-3688 0 8

E-MTAB-365 0 536

E-MTAB-566 0 36

E-MTAB-748 0 46

E-MTAB-1006 0 96

E-MTAB-1547 0 208

E-MTAB-2501 0 32

E-TABM-43 35 0

E-TABM-66 0 6

E-TABM-276 0 60

E-TABM-854 0 73

GSE1456 159 0

GSE1561 46 0

GSE2034 286 0

GSE2109 0 346

GSE2603 99 0

GSE3494 251 0

GSE3744 0 47

GSE4611 216 0

GSE4922 287 0

Analysis of 10086 Microarray Gene Expression Data Uncovers Genes that Subclassify Breast...
http://dx.doi.org/10.5772/66161

183



Accession No. HG-U133A HG-U133 Plus 2.0

GSE5327 58 0

GSE5462 54 0

GSE5764 0 18

GSE5847 92 0

GSE6532 327 87

GSE6596 26 0

GSE6883 7 0

GSE7307 0 10

GSE7390 196 0

GSE7904 0 62

GSE8977 0 22

GSE9195 0 77

GSE9574 3 0

GSE10780 0 177

GSE11121 198 0

GSE12093 134 0

GSE12276 0 204

GSE12763 0 30

GSE16391 0 55

GSE16446 0 112

GSE16873 11 0

GSE17705 293 0

GSE17907 0 53

GSE18864 0 2

GSE19615 0 115

GSE20086 0 5

GSE20194 265 0

GSE20271 174 0

GSE20437 25 0

GSE20685 0 326

GSE20711 0 88
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Accession No. HG-U133A HG-U133 Plus 2.0

GSE21422 0 19

GSE21653 0 254

GSE21947 10 0

GSE22035 0 43

GSE22093 102 0

GSE22513 0 16

GSE22544 0 18

GSE23177 0 116

GSE23720 0 191

GSE23988 59 0

GSE24185 100 0

GSE25011 11 0

GSE25066 506 0

GSE26910 0 11

GSE26971 277 0

GSE28796 0 14

GSE28821 0 10

GSE29431 0 38

GSE31448 0 29

GSE31519 67 0

GSE32072 28 0

GSE36771 0 107

GSE36772 96 0

GSE36773 48 0

GSE37946 49 0

GSE38506 0 13

GSE42568 0 112

GSE43358 0 57

GSE43365 0 111

GSE43502 0 10

GSE45255 134 0
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Accession No. HG-U133A HG-U133 Plus 2.0

GSE46184 74 0

GSE46222 0 46

GSE46928 50 0

GSE47389 0 47

GSE48390 0 80

GSE50567 0 40

GSE50948 0 5

GSE54002 0 418

GSE55594 0 10

GSE58812 0 107

GSE61304 0 61

GSE63626 0 6

GSE65194 0 162

GSE68892 99 0

GSE70233 0 22

Supplementary Table 1. Gene expression microarray datasets used.

Due to the different array design and number of probes of HG-U133A and HG-U133 Plus 2.0,
the raw data files (.CEL) of the two platforms were imported into the R environment separately.
The raw data were normalized using the justRMA function from the affy Bioconductor package
with the Robust Multiarray Averaging (RMA) normalization method [11]. The default hgu133a
and hgu133plus2 annotation were used to obtain probe-level expression intensities. The
intensity of a probe is used to represent the corresponding gene-level expression value. For
any given gene detected by more than one probe sets, the probe set with the highest Jetset score
is selected to represent its gene-level expression [12]. Then, inSilicoMerging package was used
to combine expression intensities from the two microarray platforms and remove batch effect
to obtain log2-normalized intensities [13].

3. Identification of differentially expressed genes among subsets of samples

Some of the samples were provided with relevant clinicopathological data. We used this
information to perform differential expression analysis using the limma Bioconductor package
in R [14]. Specifically, we used disease status (normal vs. cancer), receptor status assessed by
IHC, and the subtype classification to subset samples and performed differential expression
analysis. The aim was to identify a list of candidate genes from these comparisons to be used
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in breast cancer subtyping. Seven categories of differentially expressed genes sets were
defined. They are:

a. Normal versus cancer: ABCA8, ADH1B, ASPM, AURKA, BUB1B, CCNB1, CCNB2, CDC20,
CDK1, CENPA, CEP55, CKS2, COL10A1, CXCL10, CXCL11, CXCL2, CXCL9, DLGAP5, DTL,
FABP4, FOSB, GABRP, ID4, KRT14, KRT15, KRT5, MELK, MMP1, NEK2, NUSAP1, OXTR,
PBK, PRC1, PTN, RRM2, S100P, SFRP1, SPP1, SYNM, TGFBR3, TOP2A, TPX2, UBE2C,
and WIF1.

b. Basal-like: AGR2, CA12, DHRS2, ELF5, EN1, ESR1, FABP7, FOXA1, GABRP, GATA3,
KRT6B, MLPH, NAT1, PIP, PROM1, ROPN1B, SCGB1D2, SCGB2A2, SCNN1A, TFF1, TFF3,
TOX3, and VGLL1.

c. HER2-enriched: CALML5, CEACAM6, CLCA2, CRISP3, ERBB2, ESR1, FGG, GRB7, KMO,
KYNU, NPY1R, PGAP3, PNMT, S100A8, S100A9, S100P, SCUBE2, STARD3, and TFAP2B.

d. Luminal A: ABAT, AGR2, AGTR1, BMPR1B, CA12, CPB1, DACH1, ERBB4, ESR1, FABP7,
GATA3, GFRA1, GREB1, IGF1R, MMP1, NAT1, NPY1R, PGR, PROM1, RARRES1, S100A8,
SCUBE2, SERPINA3, STC2, TBC1D9, TFF1, and TFF3.

e. Luminal B: AGR2, ARMT1, CA12, DHRS2, ESR1, FABP7, GABRP, GATA3, KRT6B, NAT1,
PROM1, SFRP1, SLPI, TFF1, and TFF3.

f. Luminal C: COL10A1, CXCL9, ESR1, FABP7, GABRP, GATA3, IFI44L, SCGB2A2, and TFF1.

g. Apocrine: CALML5, CLCA2, CPB1, CRISP3, ERBB4, ESR1, IGF1R, KYNU, MMP1, NPY1R,
S100A8, S100A9, SERPINA3, and TFF1.

Some of the genes were identified in more than one category, for example the estrogen receptor
1 (ESR1) was found in six of the seven categories. The redundant genes were removed, and
the remaining 100 unique genes were used to perform sample subtyping with consensus
clustering.

4. Consensus hierarchical clustering using subtype-specific genes

The ConsensusClusterPlus Bioconductor package was used to perform consensus hierarchical
clustering on the 10086 samples using the expression intensities of the 100 genes discovered
in the previous step [15]. The distance metric used in the clustering was calculated as one
minus the Pearson correlation coefficient. The parameters used were: maxK = 6, reps = 1000,
pItem = 0.8, pFeature = 1, whereby the clustering was performed 1000 times using the
expression of all the genes of randomly selected samples consisting of 80% of the total sample
size and with a maximum of six clusters. Figure 1 shows the cumulative distribution functions
(CDFs) of the consensus matrix for each number of clusters (i.e. k = 2 to k = 6) on the left and
relative change in area under the CDF curves on the right. Both plots were used to help
determine the appropriate number of clusters to be selected.
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Figure 1. Analysis of breast cancer gene expression cluster stability. The optimum partitioning of breast cancers is de-
termined with (left) consensus CDF and (right) Delta area plots for cluster between k = 2 and k = 6. The optimal choice
of cluster number is 6 whereby the CDF curve is reaching a plateau and has minimal relative change in area under
CDF curves.

Figure 2. Consensus clustering of 10086 samples using the expression profile of 100 genes. The color of each cell of the
matrix represents the gene expression intensity a sample (column) of a given genes (row). The red and blue colors
reflect high and low expression levels, respectively, as indicated in the color bar. Samples with similar gene expression
profiles are grouped together and distributed into six clusters (colored bars).
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We assigned the six clusters with names correspond to convention breast cancer subtypes. To
visualize the classification result, we used the ComplexHeatmap Bioconductor package to
produce heatmap representation of the clustering result [16]. The six clusters were represented
with different colors in the heatmap shown in Figure 2, and they are HER2-enriched (HER2E;
leftmost), basal-like (BasalL), normal-like (NormL), luminal A (LumA), luminal B (LumB), and
mixed luminal (LumMix; rightmost). The clinical features of the six clusters were presented in
Table 1. The mixed luminal cancer has the most number of samples, and the normal-like cancer
has the fewest samples. The patients of the basal-like cancer were significantly younger
(median age at diagnosis 49; t test P-value < 2.2e−16), and the mixed luminal patients were
significantly older (median age at diagnosis 56; t test P-value = 4.3e−15). These are consistent
with previous reports [17–19].

BasalL HER2E LumA LumB LumMix NormL
No. of samples 1727 1330 1251 1533 3735 510

Age range 24–84 26–90 27–88 24–93 24–91 21–86

Median age 49 55 54 53 56 51

ER status by IHC

No. of ER+ 106 157 710 831 2271 101

No. of ER− 1085 614 83 114 77 73

ER+:ER− 1:10.24 1:3.91 1:0.12 1:0.14 1:0.03 1:0.72

Missing ER data 536 (31.0%) 559 (42.0%) 458 (36.6%) 588 (38.4%) 1387 (37.1%) 336 (65.9%)

PR status by IHC

No. of PR+ 44 60 383 315 1061 56

No. of PR− 657 436 104 200 219 48

PR+:PR− 1:14.93 1:7.27 1:0.27 1:0.63 1:0.21 1:0.86

Missing PR data 1026 (59.4%) 834 (62.7%) 764 (61.1%) 1018 (66.4%) 2455 (65.7%) 406 (79.6%)

HER2 status by IHC

No. of HER2+ 49 302 35 174 100 14

No. of HER2− 861 222 285 391 1050 93

HER2+:HER2− 1:17.57 1:0.74 1:8.14 1:2.25 1:10.50 1:6.64

Missing HER2 data 817 (47.3%) 806 (60.6%) 931 (74.4%) 968 (63.1%) 2585 (69.2%) 403 (79.0%)

Table 1. Clinical features of the six clusters.

We compared the subtype assignment by ConsensusClusterPlus with the molecular subtyp-
ing by PAM50, SSP2006 and AIMS models using the genefu Bioconductor package (see
Tables 2–4) [20]. The comparisons showed the four major breast cancer subtypes were present
in our analysis. The concordances between different methods on the HER2-enriched and
basal-like subtype were higher than other subtypes. The classification of luminal subtypes
and normal-like samples were more inconsistent. Based on the heatmap and structure of the
dendrogram shown in Figure 2, the transcriptome profiles of HER2-enriched and basal-like
breast cancers were more distinctive compared to other subtypes. Hence, the clustering
results of these two subtypes were more consistent than other subtypes using different

Analysis of 10086 Microarray Gene Expression Data Uncovers Genes that Subclassify Breast...
http://dx.doi.org/10.5772/66161

189



methods. The ConsensusClusterPlus assignment is most similar to that produced by the
PAM50 model, whereas SSP2006 and AIMS models have classified many samples as HER2-
enriched but were determined as luminal B subtype using our method. The major difference
between the ConsensusClusterPlus and PAM50 assignment is that our method identified a
large subgroup within the luminal subtypes, which we defined it as mixed luminal, that were
classified as either luminal A or luminal B by the PAM50 model. We think the increase in the
number of samples, as well as selection of different gene candidates, used in our study helped
to distinguish and define three luminal subtypes rather than two. The implication of this
distinction is rather profound. Although the mixed luminal breast cancers have similar gene
expression profile to the luminal B subtype as seen in Figure 2, we showed in the next section
that the two subgroups vary in their survival outcomes.

Subtype comparison PAM50
BasalL HER2E LumA LumB NormL

ConsensusClusterPlus HER2E 141 909 58 127 51

BasalL 1686 7 0 3 25

LumMix 3 22 1686 2004 15

LumB 6 175 81 1269 2

LumA 3 1 1187 12 41

NormL 7 0 73 0 134

Table 2. Comparison of molecular subtyping by ConsensusClusterPlus and PAM50.

Subtype comparison SSP2006
BasalL HER2E LumA LumB NormL

ConsensusClusterPlus HER2E 263 833 53 6 131

BasalL 1695 2 0 0 24

LumMix 10 109 2882 625 104

LumB 23 541 441 505 23

LumA 5 1 1036 0 202

NormL 0 0 40 0 174

Table 3. Comparison of molecular subtyping by ConsensusClusterPlus and SSP2006.

Subtype comparison AIMS
BasalL HER2E LumA LumB NormL

ConsensusClusterPlus HER2E 384 789 4 1 108

BasalL 1699 3 0 0 19

LumMix 9 400 1511 1489 321

LumB 27 936 30 526 14

LumA 5 10 275 5 949

NormL 1 0 0 0 213

Table 4. Comparison of molecular subtyping by ConsensusClusterPlus and AIMS.
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5. Survival analysis of breast cancer subtypes

We used the Kaplan-Meier method to estimate the survival curves of overall survival (OS),
relapse-free survival (RFS) and distant metastasis-free survival (DMFS). The gene expression
values were converted to expression status using a modified R script taken from the Kaplan
Meier-plotter website (http://kmplot.com/). The survival probabilities were calculated using
the survival package [21]. The log-rank test was used to assess the statistical significance of the
survival differences. The prognostic significance of our classification relating to breast cancer
survival was analyzed using the Cox proportional regression model. The Kaplan-Meier curves
were produced using a modified R script taken from http://biostat.mc.vanderbilt.edu/wiki/
Main/TatsukiRcode#kmplot.

We showed in Figure 3 the Kaplan-Meier plots of the OS, RFS, and DMFS of the six subtypes
that we determined using consensus clustering. In all three survival endpoints, the luminal A
patients had highest survival rates (5-year OS = 86.8%, 5-year RFS = 83.8%, 5-year DMFS =
87.4%), whereas the HER2-enriched had worse outcomes (5-year OS = 67.3%, 5-year RFS =
56.8%, 5-year DMFS = 62.2%). The luminal B breast cancers are widely recognized as high risk
[22–24], and our analysis showed equivalent results. Similar to basal-like and HER2-enriched
breast cancers that had poorer prognosis, the luminal B subtype had greater relative risk of
locoregional and distant breast cancer recurrence.

Figure 3. Kaplan-Meier plots showing the relation between subtypes determined with ConsensusClusterPlus and clini-
cal outcome in breast cancer patients. Overall survival (OS; left), relapse-free survival (RFS; middle), and distant meta-
stasis-free survival (DMFS; right) for samples in the six subtypes based on the consensus clustering with 100 genes.

6. Consensus hierarchical clustering using function-specific genes and
survival analysis

Besides classifying samples according to the expression of genes relating to breast cancer
subtypes, we also aimed to identify subsets of patients that might harbor specific expression
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profiles that could affect their survival outcome. To do this, we used the current knowledge
about protein functions and the participation of genes in biological pathways to select specific
functions and pathways that might have an effect or are affected by the development and
progression of breast cancer. We used databases such as Ingenuity Pathway Analysis (http://
www.ingenuity.com/products/ipa), KEGG (http://www.genome.jp/kegg/), and HGNC (http://
www.genenames.org/) to gather genes participates and/or of the following functions: cadher-
ins, zinc fingers, C2 domain-containing, ion channels, solute carriers, integrins, chemokine
receptors, chemokine ligands, receptor kinases, immunoglobulins, CD molecules, homeobox-
es, interferons, interferon receptors, interleukins, interleukin receptors, intermediate filaments,
histones, chromatin-modifying enzymes, ATPases, glycosyltransferases, phosphatases,
metallopeptidases, apoptosis, autophagy, unfolded protein response, oxidative stress re-
sponse, and epithelial-mesenchymal transition pathway. Consensus clustering was performed
as before using ConsensusClusterPlus with same parameters to determine at most six clusters
from each or collections of gene sets. Then, these clusters were analyzed for their associations
with survival.

Using a P-value cutoff of 0.01, we identified two collections of genes that were statistically
significantly associated with survivals: the CD molecules and the cytokines and cytokine
receptors. Figure 4 shows the Kaplan-Meier plots of OS, RFS, and DMFS for each of the six CD
molecules clusters. In both RFS and DMFS, Cluster 2 (lime green colored) had the best survival
outcome, and is made up of mixed luminal, luminal A, HER2-enriched, and normal-like breast
cancers as shown in Table 5. Cluster 3 (dark green colored), which are mainly HER2-enriched
and luminal B cancers, and Cluster 4 (magenta colored) consists of basal-like cancers had worse
outcomes. We looked into the CD molecules that showed greater expression differences
between Cluster 2 (best survival) and Clusters 3 and 4 (worse survival) by computing the
Cohen's d effect size statistics [25]. Of the 317 CD molecules analyzed, the 20 genes that had
large effect size (d > 1) are: ACKR1, BCAM, CD248, CD34, CD36, EPCAM, FUT3, HMMR, IGF1R,
IL6ST, JAM2, LAMP3, LEPR, LRP1, PDGFRA, PDGFRB, SLC7A5, TEK, TFRC, and TSPAN7.
Figure 5 showed their respective expression distributions in Clusters 2, 3, and 4.

Figure 4. Kaplan-Meier estimates of breast cancer survival of clusters determined using CD molecules. Overall survival
(OS; left), relapse-free survival (RFS; middle), and distant metastasis-free survival (DMFS; right) for samples in the six
subtypes based on the consensus clustering with 317 genes encoding for CD molecules.
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Comparison Subtypes
BasalL Her2E LumA LumB LumMix NormL

Clustering using expression profiles of CD molecules 1  4 9 69 248 1666 0
2 16 173 913 48 469 482
3 34 704 26 221 64 1
4 1132 49 3 14 6 5
5 539 325 57 524 447 16
6 2 70 183 478 1083 6

Table 5. Comparison of sample assignment between subtype-specific genes and CD molecules.

Figure 5. Box plots of the distribution of gene expression values of 20 CD molecules with large effect size between sam-
ples with best and worse outcomes. Cluster 2 (best outcome), 3 and 4 (worse outcomes) are chosen to demonstrate the
difference in gene expression levels between samples from these three clusters. The box plots of Clusters 2, 3 and 4 are
colored in light green, dark green, and magenta, respectively.

The second collection of genes consists of 113 cytokines and cytokine receptors. In Figure 6,
the Kaplan-Meier plots showed that Cluster 6 (orange colored) had the worst survival outcome.
It consists of Basal-like, HER2-enriched, and some luminal cancers (see Table 6). We again used
Cohen's d as a measure to assess whether the expression profiles of Cluster 6 and the two
clusters with better survival (Clusters 2 and 4) are significantly different in gene expression for
each gene in this collection. We identified 15 genes that had large effect size (d > 1). They are:
ACKR1, CCL19, CCL20, CCL7, CX3CR1, CXCL1, CXCL12, CXCL14, CXCL8, IL12RB2, IL13RA1,
IL1R1, IL1R2, IL6ST, and PITPNM3, and their respective expression distributions in Clusters
2, 4 and 6 are shown in Figure 7.
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Figure 6. Kaplan-Meier estimates of breast cancer survival of clusters determined using chemokine ligands, chemokine
receptors, interferons, interferon receptors, interleukins, and interleukin receptors. Overall survival (OS; left), relapse-
free survival (RFS; middle), and distant metastasis-free survival (DMFS; right) for samples in the six subtypes based on
the consensus clustering with 113 genes encoding for cytokines and cytokine receptors.

Comparison Subtypes
BasalL HER2E LumA LumB LumMix NormL

Clustering using expression profiles of
cytokines and cytokine receptors

1  68 102 77 341 1585 2
2 33 153 830 62 764 444
3 350 477 166 758 809 21
4 4 30 174 47 409 10
5 750 268 0 219 47 0
6 522 300 4 106 121 33

Table 6. Comparison of sample assignment between subtype-specific genes and cytokines and cytokine receptors.

Figure 7. Box plots of the distribution of gene expression values of 15 cytokines and cytokine receptors with large effect
size between samples of better and worst outcomes. Cluster 6 (worse outcome), 2 and 4 (best outcomes) are chosen to
demonstrate the difference in gene expression levels between samples from these three clusters. The box plots of Clus-
ters 2, 4, and 6 are colored in light green, magenta, and orange, respectively.
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7. Conclusion and perspectives

Breast cancer is a complex disease comprising different subtypes that may be characterized by
the change in expression patterns and/or mutations of few candidate genes. The ability to
distinguish breast cancer subtypes using these underlying differences has significant clinical
implications as it is one of the variables that affect prognosis and treatment of the disease. There
were many studies with goals to classify breast cancer based on the amount of literatures and
gene expression datasets available in public domain. However, there is a lack of recent meta-
analysis to utilize this collection of data generated by various research groups and institutes
over the past 15 years. In this chapter, we presented our effort to employ these high-throughput
microarray dataset to perform breast cancer subtyping of 10086 samples.

The breast cancer subtypes that we characterized using consensus clustering of 100 genes and
10086 samples not only confirmed the existence of the four major intrinsic subtypes, that is,
Basal-like, HER2-enriched, luminal A, and luminal B, but we also defined a normal-like
subtype that consists of cancer samples with similar gene expression profile as that found in
normal and adjacent normal breast samples. In addition, we distinguished a group of luminal
B–like samples with better prognosis (that we term mixed luminal) from the high-risk luminal
B breast cancer.

In addition, consensus clustering of the expression signatures of CD molecules and cytokines
and cytokine receptors were associated with survival outcomes. Thirty-three genes showed
significant differential gene expression between the classes with best and worse survival rates
were identified. The ACKR1 (Atypical Chemokine Receptor 1, CD234 Antigen) and IL6ST
(Interleukin 6 Signal Transducer, CD130 Antigen) were found in both gene sets. Kaplan-Meier
analysis showed patients with higher expression of either one gene had longer survival time.
Others includes CX3CR1 (C-X3-C motif chemokine receptor 1), CXCL12 (C-X-C motif chemo-
kine ligand 12), CXCL14 (C-X-C motif chemokine ligand 14), IGF1R (insulin-like growth factor
1 receptor), IL13RA1 (interleukin 13 receptor subunit alpha 1), IL6ST (interleukin 6 signal
transducer), JAM2 (junctional adhesion molecule 2), and LEPR (leptin receptor) are also genes
that had higher expression associating with better outcomes. On the other end of the spec-
trum are CCL7 (C-C motif chemokine ligand 7), CXCL1 (C-X-C motif chemokine ligand 1),
CXCL8 (C-X-C motif chemokine ligand 8), FUT3 (fucosyltransferase 3 (Lewis blood group)),
HMMR (hyaluronan mediated motility receptor), and SLC7A5 (solute carrier family 7 member
5) that were overexpressed in patients with lower survival rates. We believe these genes are
potential therapeutic targets and diagnostic biomarkers for breast cancer.
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