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Recent Developments in Bit-Parallel Algorithms 

Pablo San Segundo, Diego Rodríguez-Losada and Claudio Rossi  
Universidad Politécnica de Madrid 

Spain 

1. Introduction 

A bit array (or bit vector, bitboard, bitmap etc. depending on its application) is a data 

structure which stores individual bits in a compact form and is effective at exploiting bit-

level parallelism in hardware to perform operations quickly as well as reducing memory 

requirements. Working at bit level is nothing new: i.e. STL1 for C++ has a bitset container as 

data type, and mapping pixels to bits or processes to priority queues in some operative 

systems are but two examples of an interminable list of applications where space 

requirements are critical. 

However, to improve overall efficiency by bit-masking operations is hard in any scenario. 

One obvious reason for this is that bit vectors are compact data structures difficult to 

manipulate, all the more so since extracting information relative to a single bit of the array 

has an overhead which does not exist in a classical implementation.  From a theoretical 

perspective there have been some important complexity results concerning bit-paralellism, 

where modern CPUs are seen as non deterministic Touring Machines with power limited to 

the size of its registers (denoted as wsize). In practice, bit-parallelism has become an 

important tool for domains such as string matching as in (Baeza-Yates R. and Gonnet G. H 

1992), where the complexity of a linear algorithm is reduced by a factor wsize.  It is important 

to note that these successes have not extended to more complex NP combinatorial problems 

in the general case, a key issue and a topic which has been a line of research of the authors in 

recent years. 

A classical search domain for bit vectors has been board games, the origin of the term 

bitboard. In chess-playing programs, the bits in a 64-bit bitboard map to a particular Boolean 

property concerning the 64 squares of the chessboard (cf. Heinz E.A. 1997). One of the first 

systems to employ bitboards as the basic modelling unit is the KAISSA chess programming 

team in the Soviet Union during the late 1960s. Today almost all relevant chess programs 

employ this form of encoding and reason, at least partly, over a bit vector space. 

This chapter covers the use of bit-parallelism as an AI tool to implement efficient search 

procedures. It focuses on fully bit encoded search domains, where declarative frame 

knowledge is mapped to bit vectors and procedural frame knowledge (i.e. basic transition 

operators etc.) is mapped to simple bitwise operations  over a bit vector search space.  

                                                 
1 STL: Standard Template Libraries 
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The material presented is structured in three parts. Section 2 covers exact (optimal) search. It 
focuses on a depth-first search algorithm to show the advantages and disadvantages of 
search in a bit vector space w.r.t. to a classical encoding, including experiments. Based on 
these experiments and recent work of the authors on the maximum clique problem (San 
Segundo P. et al. 2007) the section highlights the strength of simple graph models as a tool 
for implementing efficient bit parallel search procedures in general, and NP-hard problems 
in particular. At the end of the section the Boolean satisfiability problem and the N-Queens 
problem are suggested as new candidates for bit-parallel search.   
Section 3 covers bit-parallel search in non-exact scenarios. In particular an efficient genetic 
algorithm for SAT is compared with an equivalent bit parallel version. The section also 
includes computational experiments. Section 4 describes two real life applications where bit-
parallelism has been applied with success, taken from the vision and robotics domain. 
Conclusions as well as a brief discussion of future work are stated in Section 5. 

2. Exact search in a bit vector space 

This section covers exact (optimal) bit-parallel efficient search procedures. It is assumed that 
the search domain can be fully bit encoded and that a reasonable bit encoding has already 
been found.  The subject of how to find one such bit representation for a particular domain 
is out of the scope of this Section (and of the Chapter itself).  Rather, the Section focuses on 
implementation and complexity issues related to systematic bit-parallel search. As case 
study the maximum clique problem has been selected for a number of reasons that will be 
explained throughout the section. 

2.1 Basic bit operators 

A typical fully bit encoded search space maps bits to domain entities and states to a number 
of bit vectors which represent Boolean properties of these entities. Without loss of 
generality, it can be assumed that non Boolean properties which describe a particular state 
can be reduced to a collection of Boolean ones. In this scenario, a bit vector is a {0,1} 
collection of cardinality the number of domain entities. A possible declaration of this data 
structure in C language can be found in figure 1. 
 

 

Figure 1. Declaration of a bit vector in C language 

Since bit vectors map to sets, bitwise operations are needed to compute the fundamental 
operators related to set theory. Table 1 shows basic bitwise operations for sets using C style 
syntax (i.e., &, |, ^ and ~ map onto AND, OR, XOR and NOT respectively).  Note that the 
last operator in Table 1 is not an assignment over sets A and B, but a truth assertion. 
A fully encoded bit-parallel algorithm employs a bit vector (possibly more than one) to 
guide search in the bit space. In any systematic bit-parallel search procedure two classical 

typedef unsigned long long  BITARRAY; 

 

/*bit vector declaration*/ 

BITARRAY bitvector [Cardinality]; 
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bitwise operators stand out over the rest: A) operator LSB2 (alias Bit Scan Forward or simply 
Bit Scan) which finds the first 1-bit in a bit vector, and B) operator PC (Population Count) 
which returns the number of 1-bits in a given bit vector. The former (or its counterpart 
MSB3) is typically used in node selection strategies whilst the latter is necessary for leaf node 

detection (typically the empty bitboard, ( ) 0PC BB = ).  Notation throughout this paper 

includes an additional subindex to LSB or BB to make cardinality explicit (e.g. LSB64 refers to 
a bit scan over a 64 bit array). 
 

&  BB BBA B A B∩ ≡   ( ) ( ^ ) &BB BB BBA A B A B A− ∩ ≡  

~ BBA A≡   ( ) ( ^ ) &BB BB BBB A B A B B− ∩ ≡  

|BB BBA B A B∪ ≡   & (~ )BB BBA B A B− ≡  

( ) ( ) ^BB BBA B A B A B∪ − ∩ ≡   & (~ )BB BBA B B A φ⊇ ⇔ ==  

Table 1. Correspondence from set theory operators to bitwise operations written in C 
language. 

Depending on the processor HW architecture and compiler used, both operators might be 
available as built-in functions or intrinsics, but their use is always restricted to the size of the 
CPU registers (wsize). The extension to bit vectors of cardinality higher than wsize is 
conceptually trivial but needs to be done carefully because the impact in overall efficiency is 
high. SW implementations of wsize LSB and PC are needed when they are not available as 
intrinsics and there are a large number of solutions available in literature (cf. Warren H.S. Jr 
2002). For PC we recommend precomputation of a lookup table for all 16 bit possible 
combinations. For LSB a nice hashing solution for a 64 bit register CPU can be found in (1). 
MN is one magic number from a De Bruijn sequence such as 0x07EDD5E59A4E28C2. 
Computation BB&(-BB) isolates a single 1-bit and the *, >> operations constitute a perfect 
hash function for the isolani to a 6 bit index. For a more detailed explanation we refer the 
reader to (Leiserson, C. t al. 1998).  

 64 ( ) [( & ( )) ] 58LSB BB BB BB MN= − ⋅ >>  (1) 

A common assumption in bit encoded exact search models is that the benefits of parallelism 
at bit level have a counterpart in the overhead needed to extract information relative to a 
single bit in the compact bit array. This is, in fact, quite true in a general sense and is 
probably the reason why bit-parallelism has not attracted so much attention in AI real life 
applications as yet. This key issue is covered in the following subsection. 

2.2 Complexity of bit scanning in bit-parallel systematic search 
Finding a 1-bit in a compact bit array is an important overhead to be taken into account for 
efficient bit encoded exact search models. Worst case complexity for a naïve nLSB  

computation is ( )O n . A more efficient 16 bit direct lookup table implementation computes 

                                                 
2 LSB stands for Least Significant Bit 
3 MSB stands for Most Significant Bit 
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nLSB  in 
4

( )
size

n
O

w
.  For non bit-encoded models (e.g. an array indexed by the position of the 

element) the cost of a single LSB operation is in ( )O n , clearly worse w.r.t. the bit model.  

However, the situation changes when the problem is extended to finding the first k-bits in a 
bit set (alternatively the first k elements in a list). In this case, worst case complexity for lists 
is still in O(n) whereas, although it is possible to index the wsize blocks of bits, there is no 
getting over  the 

sixewLSB complexity of finding a 1-bit in a particular block. Worst case 

computation, assuming sizek w<= and a 16-bit direct lookup table implementation of 

sizewLSB is:  

 
4( 1)

( )
size

N k
O Bit Scan for k bits

W

−
=  (2) 

which grows linearly with the number of bits to find. Figure 2 illustrates this inherent 
complexity showing time results for finding the first 100 1-bits in a random generated 
population of size 5000 with varying densities.  

Bit-Scan Complexity
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Figure 2. Different computing times for finding the first 100 elements in a randomly 
generated population of size 5000 after 1000 runs in a P-4 2.7GHz CPU. BB implements  a 
compact bit array and NBB a list. 

In the figure, BB stands for the compact bit array implementation, as opposed to a list or 
array made up of {0,1} integers. For the experiments the abovementioned 16 bit direct 
lookup table for LSB was employed. As expected, times for NBB remain reasonably linear 
with density whilst BB turns out to be more than 3 times slower in the general case. In (2), 
k=100,  Wsize=64, gives a 6 ratio difference in favour of NBB in the worst case, but average 
case for NBB is twice as fast since LSB will normally take two cycles and not four. As bit 
arrays become more and more sparse, average case for LSB decreases by another two factor 

since it takes one cycle to bit scan an empty block, so for d=0.1 the new ratio is 
4 100

1.5
64 4

⋅
≅

⋅
.   

Consider a bit vector space of states where a single bit vector BBg guides some form of 
systematic search.  This requires that every element of the set is expanded, so operator  

NLSB  must be called for every element of the set. Thus, the overall inherent complexity of 

the bit encoding is similar to finding the first k-bits in BBg where k  averages 1-bits for all 
states visited:  
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 gPC( BB )
k

Number of subproblems solved
= ∑

 (3) 

It is not clear that the benefits of computing transitions using bit-parallelism can outweigh 
this inherent bit scan complexity (e.g. in a brute force algorithm). In fact, the intuition is that 
additional bit encoded knowledge will be needed for efficient bit-parallel systematic search 
to improve a standard implementation. For some years now the authors have been 
interested in proving this statement for instances in the NP-complete class. Recent work in 
this line of research has led us to one such problem for the graph domain: the maximum 
clique problem.  As a result, we have implemented a new complete bit-parallel general 
purpose algorithm which is one of the fastest general purpose algorithms at the moment 
(San Segundo P. et al, 2007). This result is important since it shows that bit-parallelism can 
be used as a tool to improve general purpose search algorithms for problems in NP.  The 
following subsection focuses on this topic. 

2.3 Bit encoded knowledge  

The subsection is concerned with simple graphs. Simple graphs have a finite set of vertices 
V and a set E of pairs of vertices (x,y) called edges. Two vertices are said to be adjacent if 
they are connected by an edge. A subset of vertices such that every edge in W belongs to V 

is called a subgraph over G induced by W, and is written ( / )G E W or simply ( )G W . A clique 

in G is an induced subgraph where every pair of vertices are bitwise adjacent. The k-clique 
problem consists in determining whether a clique of size k exists for a given graph and is 
well known to be NP-complete (Karp R.M. 1972). The corresponding optimization problem 
is the maximum clique problem (MCP), which looks for the largest possible clique in a given 
graph. MCP is NP-hard. 
A typical efficient exact MCP algorithm uses a depth-first strategy to implement systematic 
search in a branch and bound scheme. Search takes place in a graph space starting with a 
small clique which gradually gets bigger and bigger as search advances.  Recent examples of 
branch and bound algorithms for exact MCP are (Pardalos P.M. and  Xue J. 1994) and more 
recent (Tomita E. and Kameda, T. 2006) amongst others. Figure 3 shows a primitive branch 
and bound MCP algorithm. It receives as input a simple graph G and returns the size of the 

largest possible clique in variable max_size. G iN ( v ) is the neighbour set of vertex vi in G and 

contains all vertices in G adjacent to vi.  
 

 

Figure 3. A primitive exact branch and bound algorithm for MCP. 
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Simple graphs have {0,1} adjacency matrices where element ijA is 1 if there is a 

corresponding edge between vertex i and vertex j in the graph and 0 otherwise.  As a 
consequence, binary matrices map nicely to bit arrays of size the number of nodes of the 
graph (e.g. one bit array per row). 
For a full encoding of the MCP search space, an additional bit array BBguide is needed to 
guide the search, mapping the set of vertices of the graph at the current node. Initially 
BBguide starts with all bits to 1 corresponding with the initial input graph. An empty BBguide 
is a leaf node whilst vertices expanded in any path from root to leaf form a clique in G (see 
figure 4 ). 
 

 

Figure 4.  An example of MCP search in a bit encoded graph space. A single bit array guides 
the search. The bit encryption maps the i-th vertex of a graph to the i-th bit in the bit array. 
Every path from root to leaf node is a clique. 

At every node bit scanning is needed during vertex selection for expansion, an overhead 
which has an important overall impact w.r.t. a non bit_parallel implementation. To validate 
this statement a number of tests have been carried out with a naïve brute force MCP 
algorithm denoted BBN-MCP (labelled BB in figure 5), and an equivalent non bit-parallel 
implementation N-MCP (labelled as list in figure 5). Both implementations use depth first 
systematic search to explore the full space without any pruning strategy and vertices are 
selected lexicographically.  
Figure 5 shows time results for a number of randomly generated graph instances of different 
sizes and densities. In this systematic lexicographic brute force scenario, results indicate that 
the complexity of bit scanning at every node far outweighs the advantage of computing 
graph transitions efficiently using bitwise operations.   
Things change when knowledge gathered during early exploration in depth-first search is 
bit encoded to prune the space later on. In MCP, strong efficient upper bounds on the size of 
the maximum clique for any graph can be computed through coloring of the graph vertices. 
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Classical vertex coloring of a graph ( , )G V E=  is just a way to partition set V into disjoint 

subsets Ci of same color vertices. The restriction behind coloring is that only non adjacent 
vertices can be painted with the same color. Let Ci be the i-th color set of a possible k-coloring 
for G  (see 4). 

 
1 1

, , ( )
k k

i i

i i

C V C V kφ ω
= =

= = ≤∪ ∩  (4) 

where ( )Vω is common notation for the size of the largest possible clique in G. The best 

upper bound by vertex coloring for ( )Vω is the graph chromatic number i.e., the minimum 

number of colors needed to paint the graph.  

 

Figure 5. Time results for a bit-parallel (BB) and a classical (List)  naïve brute force MCP 
algorithm.  

Since optimal coloring is also in NP, efficient MCP complete algorithms use some form of 
greedy coloring strategy to prune the search space. There are many possible such strategies 
and an adequate survey is out of the scope of this article.  
Of interest in this paper is the fact that previous naïve BBN-MCP implementation turns out 
clearly superior to N-MCP when a typical coloring scheme is added. The coloring 
implemented is a standard technique commonly used which is in O(n2),  and runs wsize 
times faster in BBN-MCP than the non bit-parallel implementation. The impact of the 
pruning strategy for MCP is so big in the majority of cases that its computation becomes 
critical for overall efficiency. Figure 6 shows times for N-MCP and BBN-MCP when the 
coloring scheme is included.  The situation is now reversed; bit scanning overhead is clearly 
surpassed by the benefits of bitwise coloring. 
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Figure 6. Time results for a bit-parallel (BB) and a classical (list) implementation of a naïve 
MCP algorithm with a classical vertex coloring strategy to establish bounds. 

2.4 Graph models for bit-parallel search 

The interest of this article is focused in efficient bit-parallel NP algorithms.  In the authors’ 
view, two very promising lines of research can be undertaken. In the first place, results 
presented in the previous subsection make MCP a promising tool for implementing bit-
parallelism in other NP problems. A survey on our very efficient bit-parallel MCP algorithm 
can be found in our recent work (San Segundo P. et al. 2007). As has been said, k-clique, the 
corresponding non optimization version of MCP, is an NP-complete problem so it is 
certainly conceivable that problems with a reasonably benevolent reduction to k-clique can 
be efficiently solved using some form of bit-parallelism.  
A second and more general line of research can be found in the intrinsic binary nature of 
simple graphs, which make them a very important tool by themselves to exploit bit-
parallelism in search. The reason behind this is that the binary adjacency matrix of such 
graphs allows for a simple and clear mapping of relations to bits. Moreover it also facilitates 
the bit encoding of additional domain dependent knowledge, which can then be computed 
by efficient bitwise operations.  
Following this second line of research, our attention has recently shifted to bit-parallelism in 

the Boolean satisfiability problem (commonly known as SAT). At the moment we have 

implemented a number of graph models to represent clause information with, as yet, 

modest but highly encouraging results. We note that today’s fastest general purpose SAT 

algorithms do not employ reduction to a graph space; it is actually a more common practice 

to reduce other problems to SAT (e.g. (Kautz, H. and Selman, B. 1998) is a very efficient 

planner which solves a graph plan in a SAT space). Some NP-hard problems taken from 

board games have also an interesting reduction to simple graphs which might need 

reviewing from a bit-parallel perspective. One such example is N-Queens which aims to 

place N queens in an empty NxN square board such that they do not attack each other. 

More complicated scenarios include an initial non empty board (e.g. with a pawn on a 

particular square).  A possible graph model for such scenarios maps vertices to squares in 

the board and places an edge between two squares if a queen placed on any one of them 

attacks the other. 

Besides optimal search procedures we have also done some recent research on bit-
parallelism in evolutionary algorithms. In this case the aforementioned intrinsic complexity 
of bit scanning is not necessarily a key issue because candidate solutions can be generated 
using other means (e.g. a permutation index). The issue of bit-parallelism in suboptimal 
search procedures is the focus of the next section. 
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3. Evolutionary algorithms 

The term Evolutionary Computation denotes a class of population-based heuristic search 
techniques inspired by Darwin’s principle of evolution in nature. Starting from a set of 
candidate solutions, called population, an evolutionary algorithm (EA) generates a new 
population of candidate solutions by means of operations called selection, recombination4 and 
mutation, applied to the existing population. This step is called a generation. Generation after 
generation the population of candidate solutions evolves toward good solutions of the 
problems at hand. In analogy with natural environments, candidate solutions are also called 
individuals. Each individual is represented by a chromosome, which is an encoding of a 
candidate solution. Every individual has associated a fitness that is a measure of its quality, 
i.e., how good the individual is in solving the given problem. The term Evolutionary 
Computation denotes a whole family of techniques, which differ on some aspects from the 
evolutionary loop. Evolutionary Strategies, Genetic Algorithms, Genetic Programming, and 
many other evolutionary based search techniques apply the same basic concepts, but differ 
on how the selection, recombination, mutation, encoding of individuals and survivor 
selection operations are implemented. A detailed description of all the aspects of the 
evolutionary computation galaxy goes beyond the purpose of this work. For a good survey  
we refer the reader to (Eiben A.E. and Smith J.E., 2002). 
Because of the natural representation of candidate solutions as string of bits, where each bit 
represents the truth value of the corresponding variable, SAT is the typical problem that can 
be approached using standard genetic algorithms (GAs), i.e. evolutionary algorithms based 
on bit-string representation of chromosomes. However, it was observed that since EAs do 
not use domain dependent knowledge, they may not outperform well tuned problem 
specific algorithms. This observation has been experimentally confirmed, and justifies the 
fact that all evolutionary algorithms for SAT proposed in the recent years have incorporated 
heuristic information. EAs for SAT can be roughly divided into three main classes 
depending on the way they use knowledge: EAs that encode knowledge into the fitness 
function, in the genetic operators and those that use the MAX-SAT fitness function (see 
below) and add local search to improve the quality of individuals. Usually EAs for SAT 
adopt the bit representation, since this is the most natural representation for this problem. 
However, EAs based on other representations have been used, like clausal representation, 
floating point, and path representation. 
Several different evolutionary algorithms have been proposed for the SAT problem, varying 
in the representation and/or fitness function. For an exhaustive survey we refer to (Gottlieb 
et al., 2002). In the following, we will analyze the ASAP algorithm (Adaptive evolutionary 
algorithm for the Satisfiability Problem), which is one of the best evolutionary algorithms for 
the Sat problem, and proved to be competitive with the best non-evolutionary algorithms 
(Rossi, C. Et al., 2000). 
The ASAP algorithm is a (1+1)-evolutionary strategy enhanced with a local search step and a 
memory of past states that is used to escape from local minima and to dynamically adapt 
the mutation parameter. In a (µ+λ)-strategy the population consists of µ individuals. At each 
generation, λ new individuals are generated, and the new population is formed by the best µ 
among the (µ + λ) individuals. In ASAP, since the population is formed by only one 
candidate solution, there is no recombination operator, and only mutation is used to 

                                                 
4 Recombination is also known as crossover. 
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generate the offspring (see Fig. 7, left). Mutation consists in changing the value of a bit of the 
chromosomes chosen at random with a certain probability, called mutation rate. 

3.1 Description of the ASAP algorithm 

In ASAP, to each new individual a local search procedure called Flip Heuristic is applied. 
The technique of using local search operators in combination with evolutionary algorithms 
is called Evolutionary Local Search or Memetic search.  
 

 

Figure 7. ASAP pseudo-code 

Roughly, it consists in the application of genetic operators to a population of local optima 
produced by a local search procedure. The Flip Heuristic consists in repeatedly flipping one 
bit in a randomly generated sequence, and keeping the change if this leads to an increment 
of the fitness function (i.e., more clauses becomes satisfied then becomes unsatisfied). When 
no increment has been obtained, the procedure terminates.  
The choice of an appropriate fitness function is very important in the design of an 
evolutionary algorithm. ASAP adopts the most used fitness function for the Sat problem in 
EAs, called MAXSAT. The MAXSAT formulation assumes that the Sat problem is expressed 
in conjunctive normal form, i.e. it is a conjunction of m clauses ci, i=1..m, each of which is a 
disjunction of literals (a variable or its negation). 

f(x) = c1(x) ^ ... ^ cm(x),   ci = (li1 v…v lik) 
 

where x is the array of the Boolean variables. In the MAXSAT formulation, the fitness value 
is equivalent to the number of satisfied clauses, i.e.,  

fMAXSAT(x) = val(c1(x)) + . . . + val(cm(x)), 
 

where val (ci (x)) maps the truth value of the i-th clause into an integer value 1 when the 
clause is true and 0 when it is false. In this way, the range of the function changes from 
{true,false} to {0..m}. Note that in this formulation the optimum value is known in advance, 
since the formula is satisfied when all its m clauses evaluates to 1. 
ASAP is provided with a memory of past states. This is used to escape from local minima in 
a twofold way. Observe that at each generation the algorithm produces a local optimum. 

PROCEDURE ASAP  
  randomly generate chromosome C  
  apply Flip Heuristic to C  
  WHILE (not termination condition) DO  
    BEGIN  
      C0=C      /* store parent C */  
      apply adaptive mutation to C 
      apply adaptive Flip Heuristic to C 
      compute fitness of C   
      ID(fitness C < fitness C0) 
        C=C0   /* discard new C */ 
      ELSE 
        UPDATE_TABLE(C)  
    END  
END PROCEDURE 

PROCEDURE UPDATE_TABLE  
  BEGIN  
    IF (fitness C > fitness CO)  
      BEGIN  
        empty table T  
        add C to table T 
        unfreeze all genes  
      END  
     ELSE /* fitness CO=fitness C*/ 

        BEGIN  
          add C to table T 
          IF (table T full)  
            BEGIN  
              compute frozen genes 
              adapt mutation rate  
              empty table T  
            END  
        END  
END PROCEDURE 
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Suppose the local search procedure directs the search towards similar (that is, having small 
Hamming distance) local optima having equal fitness function values. Then we can try to 
escape from these local optima by prohibiting the flipping of some genes and by adapting 
the probability of mutation of the genes that are allowed to be modified. To this aim, ASAP 
uses the following technique inspired on TABU search (see Fig. 7, right). At each step, a 
table T of size k is filled with chromosomes having best fitness. If the best fitness increases 
then the table is emptied. When the table is full, the chromosomes are compared gene-wise. 
Those genes that do not have the same value in all the chromosomes are labelled as “frozen”.  
The information contained in T is used for adapting the search strategy during the execution 
as follows. Each time T is full, the mutation rate is recomputed setting it to the value 
mutation_rate = ½ · (nº. of frozen variables)/n (thus, 0 < mutation_rate < 0.5), and the 
flipping of frozen genes is prohibited. The rationale behind these two actions is the 
following. If table T becomes full it means that the search strategy has found for k times best 
chromosomes with equal fitness. A non-frozen gene has the same value in all these 
chromosomes. This indicates that the search directs often to local optima containing the 
same values of such genes. Therefore in the next iteration we allow to flip only not frozen 
genes in order to reach search points far enough from the attraction basin of those local 
optima. The mutation rate is chosen in such a way that the lower the number of not frozen 
genes is, the higher the probability will be to flip them, since a strong basin of attraction, 
requires a higher probability of generating individuals that are very different (“far”) from its 
parent. The term 1/2 is used to keep the mutation rate smaller than or equal to 0.5.  
Although the most obvious way to represent a solution candidate for SAT is a bit string of 

length n, where every variable is associated to one bit, in the original implementations of 

ASAP this was for simplicity encoded as an array of integer values, taking the value 0 or 1. 

A new version of ASAP has been implemented adopting the bit board representation, in 

order to exploit the benefits of bit-parallelism. We will refer to the new version as ASAP-BB. 

In order to analyze the benefits of adopting the new representation let us analyze in detail 

the computational cost of producing a new solution ASAP. 
 

 

Figure 8. Clause representation: (a) array of indexes; (b) bit arrays. 
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Let m be the number of clauses, n the number of variables and L the average clause length 

(number of literals) of a given SAT instance. As mentioned before, each time an offspring 

candidate solution is generated, it is repeatedly improved by a series of bit flips. Each time a 

bit is flipped the fitness function must be recomputed in order to check whether the change 

leads to an improvement. This is the most expensive operation and is repeated several 

times. Computing the fitness function implies looping through the clauses and re-

computing them by assigning to its literals the value of the corresponding variable of the 

solution. In ASAP, a solution is represented as an array of n integers, and a clause is 

represented as an array of integer values, containing the indexes of the variables contained 

in the clause (see Fig. 8 (a)). Thus, on average, each clause computation involves L integer 

operations. The cost of a fitness function evaluation is m·L. 

In ASAP-BB, a solution is encoded as a bit vector of length 2n, containing the values of the 

variables in the first half, and their negation in the second half. A clause is encoded as a bit 

vector of 2n bits, called clause mask. The first n bits have their value set to ‘1’ if its position 

corresponds to the index of a non-negated variable of the clause, and ‘0’ otherwise. The 

second n bits are set in the opposite way: bits are set to ‘1’ in correspondence of negated 

variables (see Fig. 8 (b)). Thus, the evaluation of a clause is performed as a bit-wise AND 

operation between a solution and the clause mask which allows exploiting bit parallelism. 

The cost W of such operation depends on the word length and the number of variables of 

the problem at hand: 

 
2

_
_

n
W N WORDS

WORD LENGTH

⎡ ⎤
= = ⎢ ⎥

⎢ ⎥
 (5) 

 

and the total cost of evaluating the fitness function will be m·W. 
Thus, considering that the fitness calculations are the core of the algorithm, and everything 

else is kept unchanged, the expected speedup of ASAP-BB w.r.t ASAP is 

 /
mLF

Speedup L W
mWF

= =  (6) 

 

where F is the total number of fitness evaluations. The expected speedup depends on the 

average clause length and on the number of variables, the latter determining the size of the 

bit array. 

As far as space is concerned, a similar analysis can be performed. The total storage space for 

a clause in ASAP is L m⋅ integers while in ASAP-BB it is 2 n m⋅ ⋅  bits. Assuming an integer 

has a size of four bytes, the space occupation ratio is 

 
2

8

4 16

mn
n

Space
mL L

= =  (7) 

3.2 Experiments 
In order to validate the previous analysis of time and space complexity, we have performed 
a series of tests on a set of standard benchmark instances, all satisfiable. Instance family 
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3SAT was the first used to test different EA-based algorithms for SAT (cf. Bäck T. et al., 
1998). These instances are random 3-SAT benchmark instances with m/n = 4.35 generated 
using the mkcnf6 generator using the forced option to ensure that they are satisfiable. Instance 
families II, Aim, Jnh, Par are taken from the 2nd DIMACS challenge on cliques, coloring and 
satisfiability (Johnson D. and M. Trick, 1996). The Aim family contains artificially generated 
3-SAT instances and are constructed to have exactly one solution. Family Par instances arise 
from a problem in learning the parity function. The Jnh instances are randomly generated 
and have a varying clause length. Instances II arise from the "Boolean function synthesis" 
problem and are used in inductive inference. 
Table 2 reports the results of the tests performed. In order to compute the real speedup, 
times for ASAP and ASP-BB are averaged after 10 runs on every instance7. The speedup 
values have been computed averaging all the results of instances with similar properties (i.e. 
m and L values).  
The table shows that the measured speedup is in accordance with the analysis performed, 
with small differences that are, in general, smaller than the standard deviation , and thus 
are not statistically significant. Note that the Par and II instances have a clauses/variables 
ratio that is disadvantageous for the bit array representation. 
As far as the space ratio is concerned, the bit vector representation saves space w.r.t. the 
plain integer array representation only when the number of literals remains low. Worst case 
space ratio occurs for II instances, with a 70% increment approx. 

4.The geometric correspondence problem 

In this final section we present a survey on recent work done by the authors where bit-
parallelism has been applied to a real life problem with success. More specifically, an exact  
bit parallel algorithm for the maximum clique problem has been conveniently applied to 
solve the correspondence problem between two sets of geometric entities, also known as 
relational structure search (Bomze et al., 1999) in the vision domain or the data association 
problem (Siegwart & Nourkbash, 2004) in mobile robotics. The section starts with a 
description of an adequate representation of the problem for reduction to MCP and ends 
with some experiments with real data. 

4.1 Description 

Given two sets of geometric features (i.e. points, segments etc.) the aim is to find the best 
correspondence between both sets. If a weighted graph of geometric relationships is built in 
each set, with a relationship (e.g. a metric) established between every two features, the 
problem becomes that of finding the Maximum Common Subgraph (MCS) between them. 
MCS is known to be NP-hard, and its solution becomes even more difficult in the case of 
noisy scenarios, when simplifying hypothesis or approximations cannot be applied. This 

                                                 
5 The 4.3 clause/literal ratio is such that instances generated with lower ratio (the 

underconstrained region) almost always have solutions. Those generated with higher ratio 
(the overconstrained region), almost always have no solutions. Recent works have identifed 
that hard random k-SAT instances lie in such backbone, also know as phase transition region. 
6
 See ftp://dimacs.rutgers.edu/pub/challenge/satisfiability/contributed/UCSC/instances 

7 ASAP is non-determinist, hence multiple runs must be performed in order to obtain an 
average behaviour.  
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setting occurs very often in many applications, as comparing fingerprints, mobile robot 
global localization, computer vision, pattern matching, etc. 
 

Family Instance 
No. of 

variables 
(n) 

No. of 
clauses 

(m) 

Average 
clause 

length (L)

BB 
length 
(W) 

Expected 
speedup

Average 
speedup

σ 
Space 
ratio 

1 30 129 3.00 1 3.00 

2 30 129 3.00 1 3.00 

3 30 129 3.00 1 3.00 

2.959 0.092 0.63 

4 40 172 3.00 2 1.50 

5 40 172 3.00 2 1.50 

6 40 172 3.00 2 1.50 

1.551 0.178 0.83 

7 50 215 3.00 2 1.50 

8 50 215 3.00 2 1.50 

3SAT 

9 50 215 3.00 2 1.50 

1.446 0.145 1.04 

50-3_4-1 50 170 3.00 2 1.50 

50-3_4-2 50 170 3.00 2 1.50 

50-3_4-3 50 170 3.00 2 1.50 

50-3_4-4 50 170 2.99 2 1.49 

50-6_0-1 50 300 3.00 2 1.50 

50-6_0-2 50 300 2.99 2 1.50 

50-6_0-3 50 300 2.99 2 1.50 

Aim 

50-6_0-4 50 300 3.00 2 1.50 

1.497 0.022 1.04 

II 8a1 66 186 2.42 3 0.81 0.870 - 1.70 

1 100 850 5.17 4 1.29 

201 100 800 5.19 4 1.30 
1.311 0.014 1.21 

12 100 850 4.91 4 1.23 

204 100 800 4.89 4 1.22 

205 100 800 4.89 4 1.22 

210 100 800 4.89 4 1.22 

213 100 800 4.88 4 1.22 

218 100 800 4.88 4 1.22 

Jnh 

7 100 850 4.89 4 1.22 

1.438 0.015 1.27 

8-1-c 64 254 2.88 2 1.44 1.410 - 1.39 

8-2-c 68 270 2.89 3 0.96 1.47 

8-3-c 75 298 2.90 3 0.97 1.62 

8-4-c 67 266 2.89 3 0.96 1.45 

Par 

8-5-c 75 298 2.90 3 0.97 

0.930 0.033 

1.62 

Table 2.  Results for SAT tests using ASAP and ASAP-BB. Times are averaged after 10 runs. 
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The relationships between geometric features, also called constraints, are pose invariant 
relationships that relate both features. If the sets are composed by 2D features, the 
constraints could be: 

• Distance: Euclidean distance between two points. 

• Angle: Angle between two non parallel segments. 

• Distance: Shortest (perpendicular) distance from point to segment. 

• Distance: (Shortest) distance between two parallel segments. 
A weighted graph reduction to MC capturing such relationships in each set would map 
vertices to the elements of the set and weighted edges to the constraints. 
This geometric correspondence problem allows a more convenient formulation (Bailey 2002) 
under the MCP paradigm. Figure X illustrates this idea employing two sets L and O. The 
former contains N features called landmarks (L1,…, Ln), and the latter is the observation set 
containing M features called observations (O1,…, Om). Instead of searching the MCS 
between those two sets, a new graph called the association graph is defined, in which the 
nodes represent each possible landmark-observation pairing. Thus, the number of vertices 
of the correspondence graph is a priori NxM. 
 

L1O1

L1O2

L1O3

L1O4

L2O1

L2O2

L2O3

L2O4
L3O1

L3O3

L3O4

L4O1

L4O2

L4O3

O3
O1

O2

C’12

C’13

L1

L2

L3

L4

L5

C12

C23

 

Figure 9. The geometric correspondence problem as an MCP search in an associations graph 

The edges of the association graph are defined by checking pairs of constraints between the 
landmark and the observation initial graphs. If a constraint that relates two landmarks in the 
landmark set (e.g. constraint C12 relates landmarks L1 and L2) is compatible with a constraint 
that connects two observations in the observation set (in the example C13’ that connects O1 
and O3), then L1O3 and L2O1 vertices in the association graph are connected. In this new 
association graph, the correspondence problem is reduced to finding the maximum clique, 
equivalent to maximizing joint compatibility. Once the problem has been reduced to MCP 
we have applied bit-parallelism in a similar way as described in section 2. 
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4.2 Experiments 

Two different sets of experiments with the proposed solution to the geometric 
correspondence problem have been carried out: image matching and mobile robot global 
localization. In both scenarios, the required processing time has been the main output. 
Solutions obtained in all cases are optimal. The results have been compared with a finely 
tuned version of the MCS algorithm, running in the same computer. 

4.2.1 Image matching 

In this experiment, a large aerial image of our city, Madrid has been selected because its 

repetitive structure. The total image size is 1806x1323 pixels, and each pixel represents 

approximately 0,4m, so the area covered is about 792x580m. Figure X shows one ninth of 

such image and it can clearly be observed that its “texture” is quite repetitive making the 

recognition of a partial image hard for the human eye. Given a partial subimage with 

unknown position and orientation, the problem studied is to find the correspondence in the 

full image.  Pre-processing includes corner detection as in (Rosten & Drummond, 2005, 

Rosten & Drummond, 2006) applied to both images to extract relevant points that can be 

used as features. It has to be noted that due to different lighting conditions, noise, dynamic 

objects, not necessarily the same corners are detected in both images (see figure X). In such a 

noisy scenario, the exact solution could be the only way to guarantee robustness. 

 

 

Figure 10. Computer vision pattern matching 

Partial image 

(observation) Reference base 

image (one ninth) 
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The table shows  that processing time quickly increases with the number of landmarks and 

observations for the MCS algorithm, but BE-MCP remains reasonably low. Furthermore, the 

variance of BE-MCP is quite small w.r.t. MCS, which increases rapidly with the size of the 

problem. 

Table 3 shows processing times for both algorithms in different settings of landmark-

observation pairs, depending on the corner detection threshold chosen. Each setting is 

repeated 10 times with different random observation subimages, and the average, best and 

worse times are shown in the table. The algorithms were implemented in C++ and tests 

were run on a P4 2,6GHz laptop. 

 

Algorithm

Number of 

landmarks
8,83 31,75 0,09 0,20

0,55 4,67 0,06 0,17

23,28 87,45 0,17 0,36

4,17 14,66 0,14 0,33

59,70 207,25 0,39 0,95

6,81 28,64 0,36 0,74
0,37 0,79

1023 1464

7 0,09 0,18

MCS BE-MCP

Number of 

observations  

Time (s)

10 0,16 0,35

15

1023 1464

16,243,22

10,89 41,44

32,83 86,04
 

 

Table 3. Comparison of processing times for different settings between a bit-parallel MCP 
search algorithm and an MCS solver 

4.2.2 Mobile robot global localization 

Finding a robot position in a given map with only observations on local features is called 

mobile robot global localization. If the map contains a set of geometric entities such as 

segments (e.g. the environment walls), the observations of the robot will also be modelled as 

such, but due to noise, dynamic objects (ie.g. people) and sensor limitations, these 

observations can be also noisy and incomplete. 

Using the MCP approach we have solved the global localization problem using real data 

from our interactive tour-guide robot called Urbano (see figure 11). The reference maps 

were built in real time with an EKF based SLAM algorithm (Rodriguez-Losada et al. 2006). 

This time comparisons between BE-MCP and MCS were carried out under different levels of 

noise, in a map composed by approximately 350 features, with observation sets made up of 

between 25 and 30 observations. In the observation sets, a variable number of spurious 

observations were allowed ranging from 5 to 14 (the latter being almost 50% of the total). 

In this case the average time required for MCS increased with the number of noisy 

observations, but the time required for BE-MCP remained constant. Furthermore, the 

variance in the BE-MCP also remained constant, while the variance in MCS increased 

degrading the worst case performance. 

5. Conclusions and future work 

Using bit-parallelism to implement efficient search algorithms raises a number of 

fundamental questions which the authors have tried to cover to some extent in this chapter.  

In the first place it has been shown that scanning for 1-bits in a compact bit arrays is an 

intrinsic overhead which must be taken seriously into account, especially in systematic 
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search procedures. In the second place emphasis has been laid on the importance of simple 

graph models because of their inherent binary adjacency matrix-bit array mapping. This fact 

ensures a natural bit encoding of frame knowledge as well as facilitates bit encoding of 

additional domain dependent knowledge. Following this line of research, recent work done 

by the authors on the maximum clique problem has revealed that its particular nature 

makes it a very good tool to implement efficient bit parallel algorithms for problems in NP. 

 

 

Figure 11. Mobile robot global localization 

Attention has also been paid to bit-parallelism in suboptimal search. The analysis and 
experiments with the ASAP genetic algorithm have shown that bit parallelism can be 
beneficial for the SAT problem depending on the problem instance and of the specific data 
structures used to manage the bits. An optimized bit array structure would allow achieving 
even better performances than the ones obtained in the experiments performed here.  
Finally the authors present a brief survey on two real life applications where bit-parallelism 
has proved successful. 
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