
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

20

Recent Developments in Bit-Parallel Algorithms

Pablo San Segundo, Diego Rodríguez-Losada and Claudio Rossi
Universidad Politécnica de Madrid

Spain

1. Introduction

A bit array (or bit vector, bitboard, bitmap etc. depending on its application) is a data

structure which stores individual bits in a compact form and is effective at exploiting bit-

level parallelism in hardware to perform operations quickly as well as reducing memory

requirements. Working at bit level is nothing new: i.e. STL1 for C++ has a bitset container as

data type, and mapping pixels to bits or processes to priority queues in some operative

systems are but two examples of an interminable list of applications where space

requirements are critical.

However, to improve overall efficiency by bit-masking operations is hard in any scenario.

One obvious reason for this is that bit vectors are compact data structures difficult to

manipulate, all the more so since extracting information relative to a single bit of the array

has an overhead which does not exist in a classical implementation. From a theoretical

perspective there have been some important complexity results concerning bit-paralellism,

where modern CPUs are seen as non deterministic Touring Machines with power limited to

the size of its registers (denoted as wsize). In practice, bit-parallelism has become an

important tool for domains such as string matching as in (Baeza-Yates R. and Gonnet G. H

1992), where the complexity of a linear algorithm is reduced by a factor wsize. It is important

to note that these successes have not extended to more complex NP combinatorial problems

in the general case, a key issue and a topic which has been a line of research of the authors in

recent years.

A classical search domain for bit vectors has been board games, the origin of the term

bitboard. In chess-playing programs, the bits in a 64-bit bitboard map to a particular Boolean

property concerning the 64 squares of the chessboard (cf. Heinz E.A. 1997). One of the first

systems to employ bitboards as the basic modelling unit is the KAISSA chess programming

team in the Soviet Union during the late 1960s. Today almost all relevant chess programs

employ this form of encoding and reason, at least partly, over a bit vector space.

This chapter covers the use of bit-parallelism as an AI tool to implement efficient search

procedures. It focuses on fully bit encoded search domains, where declarative frame

knowledge is mapped to bit vectors and procedural frame knowledge (i.e. basic transition

operators etc.) is mapped to simple bitwise operations over a bit vector search space.

1 STL: Standard Template Libraries

www.intechopen.com

 Tools in Artificial Intelligence

350

The material presented is structured in three parts. Section 2 covers exact (optimal) search. It
focuses on a depth-first search algorithm to show the advantages and disadvantages of
search in a bit vector space w.r.t. to a classical encoding, including experiments. Based on
these experiments and recent work of the authors on the maximum clique problem (San
Segundo P. et al. 2007) the section highlights the strength of simple graph models as a tool
for implementing efficient bit parallel search procedures in general, and NP-hard problems
in particular. At the end of the section the Boolean satisfiability problem and the N-Queens
problem are suggested as new candidates for bit-parallel search.
Section 3 covers bit-parallel search in non-exact scenarios. In particular an efficient genetic
algorithm for SAT is compared with an equivalent bit parallel version. The section also
includes computational experiments. Section 4 describes two real life applications where bit-
parallelism has been applied with success, taken from the vision and robotics domain.
Conclusions as well as a brief discussion of future work are stated in Section 5.

2. Exact search in a bit vector space

This section covers exact (optimal) bit-parallel efficient search procedures. It is assumed that
the search domain can be fully bit encoded and that a reasonable bit encoding has already
been found. The subject of how to find one such bit representation for a particular domain
is out of the scope of this Section (and of the Chapter itself). Rather, the Section focuses on
implementation and complexity issues related to systematic bit-parallel search. As case
study the maximum clique problem has been selected for a number of reasons that will be
explained throughout the section.

2.1 Basic bit operators

A typical fully bit encoded search space maps bits to domain entities and states to a number
of bit vectors which represent Boolean properties of these entities. Without loss of
generality, it can be assumed that non Boolean properties which describe a particular state
can be reduced to a collection of Boolean ones. In this scenario, a bit vector is a {0,1}
collection of cardinality the number of domain entities. A possible declaration of this data
structure in C language can be found in figure 1.

Figure 1. Declaration of a bit vector in C language

Since bit vectors map to sets, bitwise operations are needed to compute the fundamental
operators related to set theory. Table 1 shows basic bitwise operations for sets using C style
syntax (i.e., &, |, ^ and ~ map onto AND, OR, XOR and NOT respectively). Note that the
last operator in Table 1 is not an assignment over sets A and B, but a truth assertion.
A fully encoded bit-parallel algorithm employs a bit vector (possibly more than one) to
guide search in the bit space. In any systematic bit-parallel search procedure two classical

typedef unsigned long long BITARRAY;

/*bit vector declaration*/

BITARRAY bitvector [Cardinality];

www.intechopen.com

Recent Developments in Bit-Parallel Algorithms

351

bitwise operators stand out over the rest: A) operator LSB2 (alias Bit Scan Forward or simply
Bit Scan) which finds the first 1-bit in a bit vector, and B) operator PC (Population Count)
which returns the number of 1-bits in a given bit vector. The former (or its counterpart
MSB3) is typically used in node selection strategies whilst the latter is necessary for leaf node

detection (typically the empty bitboard, () 0PC BB =). Notation throughout this paper

includes an additional subindex to LSB or BB to make cardinality explicit (e.g. LSB64 refers to
a bit scan over a 64 bit array).

& BB BBA B A B∩ ≡ () (^) &BB BB BBA A B A B A− ∩ ≡

~ BBA A≡ () (^) &BB BB BBB A B A B B− ∩ ≡

|BB BBA B A B∪ ≡ & (~)BB BBA B A B− ≡

() () ^BB BBA B A B A B∪ − ∩ ≡ & (~)BB BBA B B A φ⊇ ⇔ ==

Table 1. Correspondence from set theory operators to bitwise operations written in C
language.

Depending on the processor HW architecture and compiler used, both operators might be
available as built-in functions or intrinsics, but their use is always restricted to the size of the
CPU registers (wsize). The extension to bit vectors of cardinality higher than wsize is
conceptually trivial but needs to be done carefully because the impact in overall efficiency is
high. SW implementations of wsize LSB and PC are needed when they are not available as
intrinsics and there are a large number of solutions available in literature (cf. Warren H.S. Jr
2002). For PC we recommend precomputation of a lookup table for all 16 bit possible
combinations. For LSB a nice hashing solution for a 64 bit register CPU can be found in (1).
MN is one magic number from a De Bruijn sequence such as 0x07EDD5E59A4E28C2.
Computation BB&(-BB) isolates a single 1-bit and the *, >> operations constitute a perfect
hash function for the isolani to a 6 bit index. For a more detailed explanation we refer the
reader to (Leiserson, C. t al. 1998).

 64 () [(& ())] 58LSB BB BB BB MN= − ⋅ >> (1)

A common assumption in bit encoded exact search models is that the benefits of parallelism
at bit level have a counterpart in the overhead needed to extract information relative to a
single bit in the compact bit array. This is, in fact, quite true in a general sense and is
probably the reason why bit-parallelism has not attracted so much attention in AI real life
applications as yet. This key issue is covered in the following subsection.

2.2 Complexity of bit scanning in bit-parallel systematic search
Finding a 1-bit in a compact bit array is an important overhead to be taken into account for
efficient bit encoded exact search models. Worst case complexity for a naïve nLSB

computation is ()O n . A more efficient 16 bit direct lookup table implementation computes

2 LSB stands for Least Significant Bit
3 MSB stands for Most Significant Bit

www.intechopen.com

 Tools in Artificial Intelligence

352

nLSB in
4

()
size

n
O

w
. For non bit-encoded models (e.g. an array indexed by the position of the

element) the cost of a single LSB operation is in ()O n , clearly worse w.r.t. the bit model.

However, the situation changes when the problem is extended to finding the first k-bits in a
bit set (alternatively the first k elements in a list). In this case, worst case complexity for lists
is still in O(n) whereas, although it is possible to index the wsize blocks of bits, there is no
getting over the

sixewLSB complexity of finding a 1-bit in a particular block. Worst case

computation, assuming sizek w<= and a 16-bit direct lookup table implementation of

sizewLSB is:

4(1)

()
size

N k
O Bit Scan for k bits

W

−
= (2)

which grows linearly with the number of bits to find. Figure 2 illustrates this inherent
complexity showing time results for finding the first 100 1-bits in a random generated
population of size 5000 with varying densities.

Bit-Scan Complexity

0

10000

20000

30000

.1 .2 .3 .4 .5 .6 .7 .8 .9

Bit density

T
im

e
 (

µ
s

)

NBB

BB

Figure 2. Different computing times for finding the first 100 elements in a randomly
generated population of size 5000 after 1000 runs in a P-4 2.7GHz CPU. BB implements a
compact bit array and NBB a list.

In the figure, BB stands for the compact bit array implementation, as opposed to a list or
array made up of {0,1} integers. For the experiments the abovementioned 16 bit direct
lookup table for LSB was employed. As expected, times for NBB remain reasonably linear
with density whilst BB turns out to be more than 3 times slower in the general case. In (2),
k=100, Wsize=64, gives a 6 ratio difference in favour of NBB in the worst case, but average
case for NBB is twice as fast since LSB will normally take two cycles and not four. As bit
arrays become more and more sparse, average case for LSB decreases by another two factor

since it takes one cycle to bit scan an empty block, so for d=0.1 the new ratio is
4 100

1.5
64 4

⋅
≅

⋅
.

Consider a bit vector space of states where a single bit vector BBg guides some form of
systematic search. This requires that every element of the set is expanded, so operator

NLSB must be called for every element of the set. Thus, the overall inherent complexity of

the bit encoding is similar to finding the first k-bits in BBg where k averages 1-bits for all
states visited:

www.intechopen.com

Recent Developments in Bit-Parallel Algorithms

353

 gPC(BB)
k

Number of subproblems solved
= ∑

 (3)

It is not clear that the benefits of computing transitions using bit-parallelism can outweigh
this inherent bit scan complexity (e.g. in a brute force algorithm). In fact, the intuition is that
additional bit encoded knowledge will be needed for efficient bit-parallel systematic search
to improve a standard implementation. For some years now the authors have been
interested in proving this statement for instances in the NP-complete class. Recent work in
this line of research has led us to one such problem for the graph domain: the maximum
clique problem. As a result, we have implemented a new complete bit-parallel general
purpose algorithm which is one of the fastest general purpose algorithms at the moment
(San Segundo P. et al, 2007). This result is important since it shows that bit-parallelism can
be used as a tool to improve general purpose search algorithms for problems in NP. The
following subsection focuses on this topic.

2.3 Bit encoded knowledge

The subsection is concerned with simple graphs. Simple graphs have a finite set of vertices
V and a set E of pairs of vertices (x,y) called edges. Two vertices are said to be adjacent if
they are connected by an edge. A subset of vertices such that every edge in W belongs to V

is called a subgraph over G induced by W, and is written (/)G E W or simply ()G W . A clique

in G is an induced subgraph where every pair of vertices are bitwise adjacent. The k-clique
problem consists in determining whether a clique of size k exists for a given graph and is
well known to be NP-complete (Karp R.M. 1972). The corresponding optimization problem
is the maximum clique problem (MCP), which looks for the largest possible clique in a given
graph. MCP is NP-hard.
A typical efficient exact MCP algorithm uses a depth-first strategy to implement systematic
search in a branch and bound scheme. Search takes place in a graph space starting with a
small clique which gradually gets bigger and bigger as search advances. Recent examples of
branch and bound algorithms for exact MCP are (Pardalos P.M. and Xue J. 1994) and more
recent (Tomita E. and Kameda, T. 2006) amongst others. Figure 3 shows a primitive branch
and bound MCP algorithm. It receives as input a simple graph G and returns the size of the

largest possible clique in variable max_size. G iN (v) is the neighbour set of vertex vi in G and

contains all vertices in G adjacent to vi.

Figure 3. A primitive exact branch and bound algorithm for MCP.

www.intechopen.com

 Tools in Artificial Intelligence

354

Simple graphs have {0,1} adjacency matrices where element ijA is 1 if there is a

corresponding edge between vertex i and vertex j in the graph and 0 otherwise. As a
consequence, binary matrices map nicely to bit arrays of size the number of nodes of the
graph (e.g. one bit array per row).
For a full encoding of the MCP search space, an additional bit array BBguide is needed to
guide the search, mapping the set of vertices of the graph at the current node. Initially
BBguide starts with all bits to 1 corresponding with the initial input graph. An empty BBguide
is a leaf node whilst vertices expanded in any path from root to leaf form a clique in G (see
figure 4).

Figure 4. An example of MCP search in a bit encoded graph space. A single bit array guides
the search. The bit encryption maps the i-th vertex of a graph to the i-th bit in the bit array.
Every path from root to leaf node is a clique.

At every node bit scanning is needed during vertex selection for expansion, an overhead
which has an important overall impact w.r.t. a non bit_parallel implementation. To validate
this statement a number of tests have been carried out with a naïve brute force MCP
algorithm denoted BBN-MCP (labelled BB in figure 5), and an equivalent non bit-parallel
implementation N-MCP (labelled as list in figure 5). Both implementations use depth first
systematic search to explore the full space without any pruning strategy and vertices are
selected lexicographically.
Figure 5 shows time results for a number of randomly generated graph instances of different
sizes and densities. In this systematic lexicographic brute force scenario, results indicate that
the complexity of bit scanning at every node far outweighs the advantage of computing
graph transitions efficiently using bitwise operations.
Things change when knowledge gathered during early exploration in depth-first search is
bit encoded to prune the space later on. In MCP, strong efficient upper bounds on the size of
the maximum clique for any graph can be computed through coloring of the graph vertices.

www.intechopen.com

Recent Developments in Bit-Parallel Algorithms

355

Classical vertex coloring of a graph (,)G V E= is just a way to partition set V into disjoint

subsets Ci of same color vertices. The restriction behind coloring is that only non adjacent
vertices can be painted with the same color. Let Ci be the i-th color set of a possible k-coloring
for G (see 4).

1 1

, , ()
k k

i i

i i

C V C V kφ ω
= =

= = ≤∪ ∩ (4)

where ()Vω is common notation for the size of the largest possible clique in G. The best

upper bound by vertex coloring for ()Vω is the graph chromatic number i.e., the minimum

number of colors needed to paint the graph.

Figure 5. Time results for a bit-parallel (BB) and a classical (List) naïve brute force MCP
algorithm.

Since optimal coloring is also in NP, efficient MCP complete algorithms use some form of
greedy coloring strategy to prune the search space. There are many possible such strategies
and an adequate survey is out of the scope of this article.
Of interest in this paper is the fact that previous naïve BBN-MCP implementation turns out
clearly superior to N-MCP when a typical coloring scheme is added. The coloring
implemented is a standard technique commonly used which is in O(n2), and runs wsize
times faster in BBN-MCP than the non bit-parallel implementation. The impact of the
pruning strategy for MCP is so big in the majority of cases that its computation becomes
critical for overall efficiency. Figure 6 shows times for N-MCP and BBN-MCP when the
coloring scheme is included. The situation is now reversed; bit scanning overhead is clearly
surpassed by the benefits of bitwise coloring.

BB vs. List (d=0.1)

0

0.1

0.2

0.3

0.4

0.5

0.6

800 1000 1200 1400 1600 1800

Number of vertices

T
im

e
 (

s
)

BB

List

BB vs. List (d=0.3)

0

200

400

600

800

600 800 1000 1200 1400 1600 1800

Number of vertices

T
im

e
 (

s
)

BB

List

BB vs. List (d = 0.8)

0

20

40

60

80

30 50 70 90

Number of Vertices

T
im

e
s
 (

s
)

BB

List

BB vs. List (d = 0.6)

0

0.02

0.04

0.06

30 50 70 90

Number of Vertices

T
im

e
s
 (

s
)

BB

List

www.intechopen.com

 Tools in Artificial Intelligence

356

Figure 6. Time results for a bit-parallel (BB) and a classical (list) implementation of a naïve
MCP algorithm with a classical vertex coloring strategy to establish bounds.

2.4 Graph models for bit-parallel search

The interest of this article is focused in efficient bit-parallel NP algorithms. In the authors’
view, two very promising lines of research can be undertaken. In the first place, results
presented in the previous subsection make MCP a promising tool for implementing bit-
parallelism in other NP problems. A survey on our very efficient bit-parallel MCP algorithm
can be found in our recent work (San Segundo P. et al. 2007). As has been said, k-clique, the
corresponding non optimization version of MCP, is an NP-complete problem so it is
certainly conceivable that problems with a reasonably benevolent reduction to k-clique can
be efficiently solved using some form of bit-parallelism.
A second and more general line of research can be found in the intrinsic binary nature of
simple graphs, which make them a very important tool by themselves to exploit bit-
parallelism in search. The reason behind this is that the binary adjacency matrix of such
graphs allows for a simple and clear mapping of relations to bits. Moreover it also facilitates
the bit encoding of additional domain dependent knowledge, which can then be computed
by efficient bitwise operations.
Following this second line of research, our attention has recently shifted to bit-parallelism in

the Boolean satisfiability problem (commonly known as SAT). At the moment we have

implemented a number of graph models to represent clause information with, as yet,

modest but highly encouraging results. We note that today’s fastest general purpose SAT

algorithms do not employ reduction to a graph space; it is actually a more common practice

to reduce other problems to SAT (e.g. (Kautz, H. and Selman, B. 1998) is a very efficient

planner which solves a graph plan in a SAT space). Some NP-hard problems taken from

board games have also an interesting reduction to simple graphs which might need

reviewing from a bit-parallel perspective. One such example is N-Queens which aims to

place N queens in an empty NxN square board such that they do not attack each other.

More complicated scenarios include an initial non empty board (e.g. with a pawn on a

particular square). A possible graph model for such scenarios maps vertices to squares in

the board and places an edge between two squares if a queen placed on any one of them

attacks the other.

Besides optimal search procedures we have also done some recent research on bit-
parallelism in evolutionary algorithms. In this case the aforementioned intrinsic complexity
of bit scanning is not necessarily a key issue because candidate solutions can be generated
using other means (e.g. a permutation index). The issue of bit-parallelism in suboptimal
search procedures is the focus of the next section.

BB vs. List (d=0.3)

0

50

100

150

200

250

300

600 800 1000 1200 1400 1600

Number of Vertices

T
im

e
s
 (

s
)

List

BB
BB vs. List (d=0.1)

0

0.2

0.4

0.6

0.8

1

600 800 1000 1200 1400 1600

Number of Vertices

T
im

e
s
 (

s
)

List

BB

www.intechopen.com

Recent Developments in Bit-Parallel Algorithms

357

3. Evolutionary algorithms

The term Evolutionary Computation denotes a class of population-based heuristic search
techniques inspired by Darwin’s principle of evolution in nature. Starting from a set of
candidate solutions, called population, an evolutionary algorithm (EA) generates a new
population of candidate solutions by means of operations called selection, recombination4 and
mutation, applied to the existing population. This step is called a generation. Generation after
generation the population of candidate solutions evolves toward good solutions of the
problems at hand. In analogy with natural environments, candidate solutions are also called
individuals. Each individual is represented by a chromosome, which is an encoding of a
candidate solution. Every individual has associated a fitness that is a measure of its quality,
i.e., how good the individual is in solving the given problem. The term Evolutionary
Computation denotes a whole family of techniques, which differ on some aspects from the
evolutionary loop. Evolutionary Strategies, Genetic Algorithms, Genetic Programming, and
many other evolutionary based search techniques apply the same basic concepts, but differ
on how the selection, recombination, mutation, encoding of individuals and survivor
selection operations are implemented. A detailed description of all the aspects of the
evolutionary computation galaxy goes beyond the purpose of this work. For a good survey
we refer the reader to (Eiben A.E. and Smith J.E., 2002).
Because of the natural representation of candidate solutions as string of bits, where each bit
represents the truth value of the corresponding variable, SAT is the typical problem that can
be approached using standard genetic algorithms (GAs), i.e. evolutionary algorithms based
on bit-string representation of chromosomes. However, it was observed that since EAs do
not use domain dependent knowledge, they may not outperform well tuned problem
specific algorithms. This observation has been experimentally confirmed, and justifies the
fact that all evolutionary algorithms for SAT proposed in the recent years have incorporated
heuristic information. EAs for SAT can be roughly divided into three main classes
depending on the way they use knowledge: EAs that encode knowledge into the fitness
function, in the genetic operators and those that use the MAX-SAT fitness function (see
below) and add local search to improve the quality of individuals. Usually EAs for SAT
adopt the bit representation, since this is the most natural representation for this problem.
However, EAs based on other representations have been used, like clausal representation,
floating point, and path representation.
Several different evolutionary algorithms have been proposed for the SAT problem, varying
in the representation and/or fitness function. For an exhaustive survey we refer to (Gottlieb
et al., 2002). In the following, we will analyze the ASAP algorithm (Adaptive evolutionary
algorithm for the Satisfiability Problem), which is one of the best evolutionary algorithms for
the Sat problem, and proved to be competitive with the best non-evolutionary algorithms
(Rossi, C. Et al., 2000).
The ASAP algorithm is a (1+1)-evolutionary strategy enhanced with a local search step and a
memory of past states that is used to escape from local minima and to dynamically adapt
the mutation parameter. In a (µ+λ)-strategy the population consists of µ individuals. At each
generation, λ new individuals are generated, and the new population is formed by the best µ
among the (µ + λ) individuals. In ASAP, since the population is formed by only one
candidate solution, there is no recombination operator, and only mutation is used to

4 Recombination is also known as crossover.

www.intechopen.com

 Tools in Artificial Intelligence

358

generate the offspring (see Fig. 7, left). Mutation consists in changing the value of a bit of the
chromosomes chosen at random with a certain probability, called mutation rate.

3.1 Description of the ASAP algorithm

In ASAP, to each new individual a local search procedure called Flip Heuristic is applied.
The technique of using local search operators in combination with evolutionary algorithms
is called Evolutionary Local Search or Memetic search.

Figure 7. ASAP pseudo-code

Roughly, it consists in the application of genetic operators to a population of local optima
produced by a local search procedure. The Flip Heuristic consists in repeatedly flipping one
bit in a randomly generated sequence, and keeping the change if this leads to an increment
of the fitness function (i.e., more clauses becomes satisfied then becomes unsatisfied). When
no increment has been obtained, the procedure terminates.
The choice of an appropriate fitness function is very important in the design of an
evolutionary algorithm. ASAP adopts the most used fitness function for the Sat problem in
EAs, called MAXSAT. The MAXSAT formulation assumes that the Sat problem is expressed
in conjunctive normal form, i.e. it is a conjunction of m clauses ci, i=1..m, each of which is a
disjunction of literals (a variable or its negation).

f(x) = c1(x) ^ ... ^ cm(x), ci = (li1 v…v lik)

where x is the array of the Boolean variables. In the MAXSAT formulation, the fitness value
is equivalent to the number of satisfied clauses, i.e.,

fMAXSAT(x) = val(c1(x)) + . . . + val(cm(x)),

where val (ci (x)) maps the truth value of the i-th clause into an integer value 1 when the
clause is true and 0 when it is false. In this way, the range of the function changes from
{true,false} to {0..m}. Note that in this formulation the optimum value is known in advance,
since the formula is satisfied when all its m clauses evaluates to 1.
ASAP is provided with a memory of past states. This is used to escape from local minima in
a twofold way. Observe that at each generation the algorithm produces a local optimum.

PROCEDURE ASAP
 randomly generate chromosome C
 apply Flip Heuristic to C
 WHILE (not termination condition) DO
 BEGIN
 C0=C /* store parent C */
 apply adaptive mutation to C
 apply adaptive Flip Heuristic to C
 compute fitness of C
 ID(fitness C < fitness C0)
 C=C0 /* discard new C */
 ELSE
 UPDATE_TABLE(C)
 END
END PROCEDURE

PROCEDURE UPDATE_TABLE
 BEGIN
 IF (fitness C > fitness CO)
 BEGIN
 empty table T
 add C to table T
 unfreeze all genes
 END
 ELSE /* fitness CO=fitness C*/

 BEGIN
 add C to table T
 IF (table T full)
 BEGIN
 compute frozen genes
 adapt mutation rate
 empty table T
 END
 END
END PROCEDURE

www.intechopen.com

Recent Developments in Bit-Parallel Algorithms

359

Suppose the local search procedure directs the search towards similar (that is, having small
Hamming distance) local optima having equal fitness function values. Then we can try to
escape from these local optima by prohibiting the flipping of some genes and by adapting
the probability of mutation of the genes that are allowed to be modified. To this aim, ASAP
uses the following technique inspired on TABU search (see Fig. 7, right). At each step, a
table T of size k is filled with chromosomes having best fitness. If the best fitness increases
then the table is emptied. When the table is full, the chromosomes are compared gene-wise.
Those genes that do not have the same value in all the chromosomes are labelled as “frozen”.
The information contained in T is used for adapting the search strategy during the execution
as follows. Each time T is full, the mutation rate is recomputed setting it to the value
mutation_rate = ½ · (nº. of frozen variables)/n (thus, 0 < mutation_rate < 0.5), and the
flipping of frozen genes is prohibited. The rationale behind these two actions is the
following. If table T becomes full it means that the search strategy has found for k times best
chromosomes with equal fitness. A non-frozen gene has the same value in all these
chromosomes. This indicates that the search directs often to local optima containing the
same values of such genes. Therefore in the next iteration we allow to flip only not frozen
genes in order to reach search points far enough from the attraction basin of those local
optima. The mutation rate is chosen in such a way that the lower the number of not frozen
genes is, the higher the probability will be to flip them, since a strong basin of attraction,
requires a higher probability of generating individuals that are very different (“far”) from its
parent. The term 1/2 is used to keep the mutation rate smaller than or equal to 0.5.
Although the most obvious way to represent a solution candidate for SAT is a bit string of

length n, where every variable is associated to one bit, in the original implementations of

ASAP this was for simplicity encoded as an array of integer values, taking the value 0 or 1.

A new version of ASAP has been implemented adopting the bit board representation, in

order to exploit the benefits of bit-parallelism. We will refer to the new version as ASAP-BB.

In order to analyze the benefits of adopting the new representation let us analyze in detail

the computational cost of producing a new solution ASAP.

Figure 8. Clause representation: (a) array of indexes; (b) bit arrays.

www.intechopen.com

 Tools in Artificial Intelligence

360

Let m be the number of clauses, n the number of variables and L the average clause length

(number of literals) of a given SAT instance. As mentioned before, each time an offspring

candidate solution is generated, it is repeatedly improved by a series of bit flips. Each time a

bit is flipped the fitness function must be recomputed in order to check whether the change

leads to an improvement. This is the most expensive operation and is repeated several

times. Computing the fitness function implies looping through the clauses and re-

computing them by assigning to its literals the value of the corresponding variable of the

solution. In ASAP, a solution is represented as an array of n integers, and a clause is

represented as an array of integer values, containing the indexes of the variables contained

in the clause (see Fig. 8 (a)). Thus, on average, each clause computation involves L integer

operations. The cost of a fitness function evaluation is m·L.

In ASAP-BB, a solution is encoded as a bit vector of length 2n, containing the values of the

variables in the first half, and their negation in the second half. A clause is encoded as a bit

vector of 2n bits, called clause mask. The first n bits have their value set to ‘1’ if its position

corresponds to the index of a non-negated variable of the clause, and ‘0’ otherwise. The

second n bits are set in the opposite way: bits are set to ‘1’ in correspondence of negated

variables (see Fig. 8 (b)). Thus, the evaluation of a clause is performed as a bit-wise AND

operation between a solution and the clause mask which allows exploiting bit parallelism.

The cost W of such operation depends on the word length and the number of variables of

the problem at hand:

2

_
_

n
W N WORDS

WORD LENGTH

⎡ ⎤
= = ⎢ ⎥

⎢ ⎥
 (5)

and the total cost of evaluating the fitness function will be m·W.
Thus, considering that the fitness calculations are the core of the algorithm, and everything

else is kept unchanged, the expected speedup of ASAP-BB w.r.t ASAP is

 /
mLF

Speedup L W
mWF

= = (6)

where F is the total number of fitness evaluations. The expected speedup depends on the

average clause length and on the number of variables, the latter determining the size of the

bit array.

As far as space is concerned, a similar analysis can be performed. The total storage space for

a clause in ASAP is L m⋅ integers while in ASAP-BB it is 2 n m⋅ ⋅ bits. Assuming an integer

has a size of four bytes, the space occupation ratio is

2

8

4 16

mn
n

Space
mL L

= = (7)

3.2 Experiments
In order to validate the previous analysis of time and space complexity, we have performed
a series of tests on a set of standard benchmark instances, all satisfiable. Instance family

www.intechopen.com

Recent Developments in Bit-Parallel Algorithms

361

3SAT was the first used to test different EA-based algorithms for SAT (cf. Bäck T. et al.,
1998). These instances are random 3-SAT benchmark instances with m/n = 4.35 generated
using the mkcnf6 generator using the forced option to ensure that they are satisfiable. Instance
families II, Aim, Jnh, Par are taken from the 2nd DIMACS challenge on cliques, coloring and
satisfiability (Johnson D. and M. Trick, 1996). The Aim family contains artificially generated
3-SAT instances and are constructed to have exactly one solution. Family Par instances arise
from a problem in learning the parity function. The Jnh instances are randomly generated
and have a varying clause length. Instances II arise from the "Boolean function synthesis"
problem and are used in inductive inference.
Table 2 reports the results of the tests performed. In order to compute the real speedup,
times for ASAP and ASP-BB are averaged after 10 runs on every instance7. The speedup
values have been computed averaging all the results of instances with similar properties (i.e.
m and L values).
The table shows that the measured speedup is in accordance with the analysis performed,
with small differences that are, in general, smaller than the standard deviation , and thus
are not statistically significant. Note that the Par and II instances have a clauses/variables
ratio that is disadvantageous for the bit array representation.
As far as the space ratio is concerned, the bit vector representation saves space w.r.t. the
plain integer array representation only when the number of literals remains low. Worst case
space ratio occurs for II instances, with a 70% increment approx.

4.The geometric correspondence problem

In this final section we present a survey on recent work done by the authors where bit-
parallelism has been applied to a real life problem with success. More specifically, an exact
bit parallel algorithm for the maximum clique problem has been conveniently applied to
solve the correspondence problem between two sets of geometric entities, also known as
relational structure search (Bomze et al., 1999) in the vision domain or the data association
problem (Siegwart & Nourkbash, 2004) in mobile robotics. The section starts with a
description of an adequate representation of the problem for reduction to MCP and ends
with some experiments with real data.

4.1 Description

Given two sets of geometric features (i.e. points, segments etc.) the aim is to find the best
correspondence between both sets. If a weighted graph of geometric relationships is built in
each set, with a relationship (e.g. a metric) established between every two features, the
problem becomes that of finding the Maximum Common Subgraph (MCS) between them.
MCS is known to be NP-hard, and its solution becomes even more difficult in the case of
noisy scenarios, when simplifying hypothesis or approximations cannot be applied. This

5 The 4.3 clause/literal ratio is such that instances generated with lower ratio (the

underconstrained region) almost always have solutions. Those generated with higher ratio
(the overconstrained region), almost always have no solutions. Recent works have identifed
that hard random k-SAT instances lie in such backbone, also know as phase transition region.
6
 See ftp://dimacs.rutgers.edu/pub/challenge/satisfiability/contributed/UCSC/instances

7 ASAP is non-determinist, hence multiple runs must be performed in order to obtain an
average behaviour.

www.intechopen.com

 Tools in Artificial Intelligence

362

setting occurs very often in many applications, as comparing fingerprints, mobile robot
global localization, computer vision, pattern matching, etc.

Family Instance
No. of

variables
(n)

No. of
clauses

(m)

Average
clause

length (L)

BB
length
(W)

Expected
speedup

Average
speedup

σ
Space
ratio

1 30 129 3.00 1 3.00

2 30 129 3.00 1 3.00

3 30 129 3.00 1 3.00

2.959 0.092 0.63

4 40 172 3.00 2 1.50

5 40 172 3.00 2 1.50

6 40 172 3.00 2 1.50

1.551 0.178 0.83

7 50 215 3.00 2 1.50

8 50 215 3.00 2 1.50

3SAT

9 50 215 3.00 2 1.50

1.446 0.145 1.04

50-3_4-1 50 170 3.00 2 1.50

50-3_4-2 50 170 3.00 2 1.50

50-3_4-3 50 170 3.00 2 1.50

50-3_4-4 50 170 2.99 2 1.49

50-6_0-1 50 300 3.00 2 1.50

50-6_0-2 50 300 2.99 2 1.50

50-6_0-3 50 300 2.99 2 1.50

Aim

50-6_0-4 50 300 3.00 2 1.50

1.497 0.022 1.04

II 8a1 66 186 2.42 3 0.81 0.870 - 1.70

1 100 850 5.17 4 1.29

201 100 800 5.19 4 1.30
1.311 0.014 1.21

12 100 850 4.91 4 1.23

204 100 800 4.89 4 1.22

205 100 800 4.89 4 1.22

210 100 800 4.89 4 1.22

213 100 800 4.88 4 1.22

218 100 800 4.88 4 1.22

Jnh

7 100 850 4.89 4 1.22

1.438 0.015 1.27

8-1-c 64 254 2.88 2 1.44 1.410 - 1.39

8-2-c 68 270 2.89 3 0.96 1.47

8-3-c 75 298 2.90 3 0.97 1.62

8-4-c 67 266 2.89 3 0.96 1.45

Par

8-5-c 75 298 2.90 3 0.97

0.930 0.033

1.62

Table 2. Results for SAT tests using ASAP and ASAP-BB. Times are averaged after 10 runs.

www.intechopen.com

Recent Developments in Bit-Parallel Algorithms

363

The relationships between geometric features, also called constraints, are pose invariant
relationships that relate both features. If the sets are composed by 2D features, the
constraints could be:

• Distance: Euclidean distance between two points.

• Angle: Angle between two non parallel segments.

• Distance: Shortest (perpendicular) distance from point to segment.

• Distance: (Shortest) distance between two parallel segments.
A weighted graph reduction to MC capturing such relationships in each set would map
vertices to the elements of the set and weighted edges to the constraints.
This geometric correspondence problem allows a more convenient formulation (Bailey 2002)
under the MCP paradigm. Figure X illustrates this idea employing two sets L and O. The
former contains N features called landmarks (L1,…, Ln), and the latter is the observation set
containing M features called observations (O1,…, Om). Instead of searching the MCS
between those two sets, a new graph called the association graph is defined, in which the
nodes represent each possible landmark-observation pairing. Thus, the number of vertices
of the correspondence graph is a priori NxM.

L1O1

L1O2

L1O3

L1O4

L2O1

L2O2

L2O3

L2O4
L3O1

L3O3

L3O4

L4O1

L4O2

L4O3

O3
O1

O2

C’12

C’13

L1

L2

L3

L4

L5

C12

C23

Figure 9. The geometric correspondence problem as an MCP search in an associations graph

The edges of the association graph are defined by checking pairs of constraints between the
landmark and the observation initial graphs. If a constraint that relates two landmarks in the
landmark set (e.g. constraint C12 relates landmarks L1 and L2) is compatible with a constraint
that connects two observations in the observation set (in the example C13’ that connects O1
and O3), then L1O3 and L2O1 vertices in the association graph are connected. In this new
association graph, the correspondence problem is reduced to finding the maximum clique,
equivalent to maximizing joint compatibility. Once the problem has been reduced to MCP
we have applied bit-parallelism in a similar way as described in section 2.

www.intechopen.com

 Tools in Artificial Intelligence

364

4.2 Experiments

Two different sets of experiments with the proposed solution to the geometric
correspondence problem have been carried out: image matching and mobile robot global
localization. In both scenarios, the required processing time has been the main output.
Solutions obtained in all cases are optimal. The results have been compared with a finely
tuned version of the MCS algorithm, running in the same computer.

4.2.1 Image matching

In this experiment, a large aerial image of our city, Madrid has been selected because its

repetitive structure. The total image size is 1806x1323 pixels, and each pixel represents

approximately 0,4m, so the area covered is about 792x580m. Figure X shows one ninth of

such image and it can clearly be observed that its “texture” is quite repetitive making the

recognition of a partial image hard for the human eye. Given a partial subimage with

unknown position and orientation, the problem studied is to find the correspondence in the

full image. Pre-processing includes corner detection as in (Rosten & Drummond, 2005,

Rosten & Drummond, 2006) applied to both images to extract relevant points that can be

used as features. It has to be noted that due to different lighting conditions, noise, dynamic

objects, not necessarily the same corners are detected in both images (see figure X). In such a

noisy scenario, the exact solution could be the only way to guarantee robustness.

Figure 10. Computer vision pattern matching

Partial image

(observation) Reference base

image (one ninth)

www.intechopen.com

Recent Developments in Bit-Parallel Algorithms

365

The table shows that processing time quickly increases with the number of landmarks and

observations for the MCS algorithm, but BE-MCP remains reasonably low. Furthermore, the

variance of BE-MCP is quite small w.r.t. MCS, which increases rapidly with the size of the

problem.

Table 3 shows processing times for both algorithms in different settings of landmark-

observation pairs, depending on the corner detection threshold chosen. Each setting is

repeated 10 times with different random observation subimages, and the average, best and

worse times are shown in the table. The algorithms were implemented in C++ and tests

were run on a P4 2,6GHz laptop.

Algorithm

Number of

landmarks
8,83 31,75 0,09 0,20

0,55 4,67 0,06 0,17

23,28 87,45 0,17 0,36

4,17 14,66 0,14 0,33

59,70 207,25 0,39 0,95

6,81 28,64 0,36 0,74
0,37 0,79

1023 1464

7 0,09 0,18

MCS BE-MCP

Number of

observations

Time (s)

10 0,16 0,35

15

1023 1464

16,243,22

10,89 41,44

32,83 86,04

Table 3. Comparison of processing times for different settings between a bit-parallel MCP
search algorithm and an MCS solver

4.2.2 Mobile robot global localization

Finding a robot position in a given map with only observations on local features is called

mobile robot global localization. If the map contains a set of geometric entities such as

segments (e.g. the environment walls), the observations of the robot will also be modelled as

such, but due to noise, dynamic objects (ie.g. people) and sensor limitations, these

observations can be also noisy and incomplete.

Using the MCP approach we have solved the global localization problem using real data

from our interactive tour-guide robot called Urbano (see figure 11). The reference maps

were built in real time with an EKF based SLAM algorithm (Rodriguez-Losada et al. 2006).

This time comparisons between BE-MCP and MCS were carried out under different levels of

noise, in a map composed by approximately 350 features, with observation sets made up of

between 25 and 30 observations. In the observation sets, a variable number of spurious

observations were allowed ranging from 5 to 14 (the latter being almost 50% of the total).

In this case the average time required for MCS increased with the number of noisy

observations, but the time required for BE-MCP remained constant. Furthermore, the

variance in the BE-MCP also remained constant, while the variance in MCS increased

degrading the worst case performance.

5. Conclusions and future work

Using bit-parallelism to implement efficient search algorithms raises a number of

fundamental questions which the authors have tried to cover to some extent in this chapter.

In the first place it has been shown that scanning for 1-bits in a compact bit arrays is an

intrinsic overhead which must be taken seriously into account, especially in systematic

www.intechopen.com

 Tools in Artificial Intelligence

366

search procedures. In the second place emphasis has been laid on the importance of simple

graph models because of their inherent binary adjacency matrix-bit array mapping. This fact

ensures a natural bit encoding of frame knowledge as well as facilitates bit encoding of

additional domain dependent knowledge. Following this line of research, recent work done

by the authors on the maximum clique problem has revealed that its particular nature

makes it a very good tool to implement efficient bit parallel algorithms for problems in NP.

Figure 11. Mobile robot global localization

Attention has also been paid to bit-parallelism in suboptimal search. The analysis and
experiments with the ASAP genetic algorithm have shown that bit parallelism can be
beneficial for the SAT problem depending on the problem instance and of the specific data
structures used to manage the bits. An optimized bit array structure would allow achieving
even better performances than the ones obtained in the experiments performed here.
Finally the authors present a brief survey on two real life applications where bit-parallelism
has proved successful.

6. Acknowledgements

This work is funded by the Spanish Ministry of Science and Technology (Robonauta:
DPI2007-66846-C02-01) and supervised by CACSA whose kindness we gratefully
acknowledge.

Observations Map of the

environment

Urbano robot

www.intechopen.com

Recent Developments in Bit-Parallel Algorithms

367

7. References

Rosten E. and Drummond T., 2005. Fusing points and lines for high performance tracking.

IEEE International Conference on Computer Vision. Oct 2005. Vol 2. pp 1508-1511.

Rosten E. and Drummond T., 2006. Machine learning for high-speed corner detection.

European Conference on Computer Vision.

Rodriguez-Losada D., Matia F., Galan R. Building geometric feature based maps for indoor

service robots. Elsevier: Robotics and Autonomous Systems. Volume 54, Issue 7 , 31

July 2006, Pages 546-558

Bomze I.M., Budinich M., Pardalos P.M., Pelillo M., 1999. HandBook of Combinatorial

Optimization, Supplement Vol A. Kluwer Academic Publishers, Dordrecht, 1999

pp.1-74.

Bailey T. 2002, Mobile Robot Localisation and Mapping in Extensive Outdoor Environments.

PhD thesis. Australian Centre for Field Robotics, University of Sydney.

Siegwart R., Nourkbash. I. An Introduction to Autonomous Mobile Robots, MIT press, 2004.

Eiben A.E. and Smith J.E., 2002. Introduction to Evolutionary Computing, Springer, 2002.

Gottlieb J., Marchiori E. and C. Rossi 2002, Evolutionary algorithms for the satisfiability

problem. Evolutionary Computation Vol. 10, Nr. 1, pp. 35-50, 2002.

Rossi C., Marchiori E. and Kok J.N. 2000, An adaptive evolutionary algorithm for the

satisfiability problem. In Proceedings of ACM Symposiumn Applied Computing,

pages 463–469, 2000.

Bäck T., Eiben A.E. and M. Vink 1998 A superior evolutionary algorithm for 3-SAT. In

Saravanan, N., Waagen, D., and Eiben, A., editors, Proceedings of the Seventh

Annual Conference on Evolutionary Programming. Lecture Notes in Computer

Science, Volume1477, pages125–136, Springer, Berlin, Germany, 1998.

Johnson D. and M. Trick editors 1996, Cliques, Coloring and Satisfiability. AMS, DIMACS

Series in Discrete Mathematics and Theoretical Computer Science, vol 26, 1996.

Baeza-Yates R. and Gonnet G. H 1992, A new approach to text searching. Commun. ACM,

35(10), pp:74–82, (1992).

Heinz E.A. 1997, How DarkThought plays chess, ICCA Journal, 20(3): pages 166-176, 1997.

San Segundo P., Rodriguez-Losada D., Galán R., Matía F. and Jiménez A. 2007, Exploiting

CPU bit parallel operations to improve efficiency in search. International

Conference on Tools for Atificial Intelligence (ICTAI 07). Patrás, Grecia, Octubre 29-

31, 2007.

Leiserson, C., Prokop, H., and Randall, K. (1998). Using de Bruijn sequences to index a 1 in a

computer word. See: http://supertech.csail.mit.edu/papers/debruijn.pdf.

Karp R.M. 1972. Reducibility among Combinatorial Problems. Editors: R.E. Miller, J. W.

Thatcher, New York, Plenum, pp: 85-103 (1972).

Pardalos P.M. and Xue J. 1994, The maximum clique problem. Global Optimization. 4: pp.

301-328, (1994).

Tomita E. and Kameda, T. 2006. An efficient branch-and-bound algorithm for finding a

maximum clique with computational experiments. Journal of Global Optimization

(37), Springer, pp: 37:95-111 (2006)

www.intechopen.com

 Tools in Artificial Intelligence

368

Kautz, H. and Selman, B. 1998. BlackBox: A new approach to the application of theorem

proving to problem solving. En AIPS98 Workshop on Planning as Combinatorial

Search, pag. 58-60, Junio 1998.

Warren H.S. Jr 2002, Hacker´s Delight. Addison-Welsey 2002.

www.intechopen.com

Tools in Artificial Intelligence

Edited by Paula Fritzsche

ISBN 978-953-7619-03-9

Hard cover, 488 pages

Publisher InTech

Published online 01, August, 2008

Published in print edition August, 2008

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

This book offers in 27 chapters a collection of all the technical aspects of specifying, developing, and

evaluating the theoretical underpinnings and applied mechanisms of AI tools. Topics covered include neural

networks, fuzzy controls, decision trees, rule-based systems, data mining, genetic algorithm and agent

systems, among many others. The goal of this book is to show some potential applications and give a partial

picture of the current state-of-the-art of AI. Also, it is useful to inspire some future research ideas by identifying

potential research directions. It is dedicated to students, researchers and practitioners in this area or in related

fields.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Pablo San Segundo, Diego Rodriguez-Losada and Claudio Rossi (2008). Recent Developments in Bit-Parallel

Algorithms, Tools in Artificial Intelligence, Paula Fritzsche (Ed.), ISBN: 978-953-7619-03-9, InTech, Available

from: http://www.intechopen.com/books/tools_in_artificial_intelligence/recent_developments_in_bit-

parallel_algorithms

© 2008 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

