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Abstract

For each material dedicated to microfluidic applications, inherent microfabrication and
specific physico‐chemical properties are key concerns and play a dominating role in
further microfluidic operability. From the first generation of inorganic glass, silicon and
ceramics microfluidic devices materials, to diversely competitive polymers alternatives
such as soft and rigid thermoset and thermoplastics materials, to finally various paper,
biodegradable and hydrogel materials; this chapter will review their advantages and
drawbacks regarding their microfabrication perspectives at both research and industrial
scale. The chapter will also address, the evolution of the materials used for fabricating
microfluidic chips, and will discuss the application‐oriented pros and cons regarding
especially their critical strategies and properties for devices assembly and biocompati‐
bility,  as  well  their  potential  for  downstream biochemical  surface modification are
presented.

Keywords: microfabrication, prototyping, manufacturing, thermoplastics, thermo‐
plastics elastomers, assembly, bonding

1. Introduction

Following Pasteur microbiology and Curie radiotherapy, the next coming and significant
medical revolution is geared toward the foreseen convergence and integration of the following
innovative  science  and  technology  components  for  the  emergence  of  a  new  predictive,
personalized, and preemptive medicine and practice. Bioengineering, microbiology, micro‐
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fluidics, optics, and electrochemistry are today the most significant key enabler disciplines.
Their complementary features lead to complex systems and democratization and wide public
access to personalized and new medical products that will promote both wealth and innovation
at the same time, as the IT industry did in the last decades. This technological trend is of
tremendous impacts in both sociological and economical applications. For example, the needs
of in situ personal monitoring are crucial for the comfort and the health surveillance for our
specific aging modern society, and it has become a major concern for the health care system. It
offers additional opportunities to lower the hospital workloads and expense. It also promotes
enhanced therapy efficiency through real‐time and accurate monitoring for proper therapy
delivery. The advent of rapid molecular diagnostic systems shortening pathogenic genomic
identification down to 1–2 h in an integrated manner, beyond the standard cellular culture
identification that may extend from several days up to few weeks is one of the most promising
paths for decentralized and personalized medicine. In addition, it is also a powerful asset to
address  major  problems  in  bacterial  antibiotic  resistance.  Beyond  human  health,  rapid
molecular diagnostic approaches deserve multiple segments from water quality control to
veterinary and agronomy fields for widely accessible, deployable, and low‐cost analytical
systems. The others aspects of the emergence of microfluidic polymer systems are to act as
template for dedicated and addressable microenvironments, thus promoting the organogenesis
of organs reconstruction and substitution and sustaining the development of novel drugs that
are cost effective.

Moreover, the microfluidic science and applications are by essence multidisciplinary. For a
targeted application, a seamless and holistic vision is of tremendous importance. In this
chapter, we aim to provide an overview of materials used for microfluidic applications. Their
selection, evaluation, and integration at both prototyping scale and toward mass production
are discussed. Due to the fact that some materials and strategy might be suited for specific
goals yet not fit for others, the specific drawbacks and advantages regarding their status and
potentials toward a path to products are analyzed.

2. Materials for microfluidic applications

From research development to microfluidic platform applications and product transfer, a
holistic and seamless strategy has to consider from the start point to the end. The right selection
of the material interface, which might be suited for certain targeted applications, can be
detrimental for another purpose. Therefore, navigating material sciences for microfluidic
technology is somehow a nebulous nightmare. These difficulties are also enhanced according
to the fact that these microfluidic techniques were developed by the physics and engineering
landscapes involved in information technology (IT) research and development (R&D), and
therefore they exploited silicon‐based clean room technologies. The lack of an adequate
material culture related to biomaterials and polymer‐based microstructure induced obvious
limitations, which is a significant inhibiting factor for further industrial transfers. Besides the
complexity and the interdisciplines involved in microfluidic applications, where bioengineer‐
ing, microbiology, microfluidics, optics, materials science, and electrochemistry are concerned,
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proper and deep understanding and paradigms of each community are a must for any
achievement of a significant system. Still at its early age, microfluidic science and technology
have already made successful demonstrations addressing the issues; however, this knowledge
is still mostly limited to chemistry, biology, and physics researchers; and unfortunately, it has
not sufficiently penetrated yet the biomedical research and clinical environments. The goal of
this chapter is thus to fill the gap and promote pertinent highlights on materials performance
for microfluidic applications.

Legacies from microelectronics industry and the glassware history in biomedical and chem‐
istry areas, both silicon and glass materials, constitute the initial materials for microfluidic
device fabrication. Currently, materials dedicated to microfluidics can be categorized into three
broad groups: inorganic, polymers, and paper. Beyond silicon and glass, inorganic materials
extend over co‐fired ceramics and vitroceramics. The second polymer‐based category can be
divided into two subcategories (i) thermoset materials, which are thermal or UV curable
materials from a low viscosity precompound dispensed over a mold and (ii) thermoplastic
materials, which are thermoformable materials amendable for rapid prototyping and manu‐
facturing. Both polymer subcategories display rigid to elastomer mechanical properties, and
through adaptable formulation and enriched chemical modification, offer a broad range of
physicochemical surface properties. Finally, paper microfluidics is an emerging technology
based on a patterning approach, where devices drive liquid through capillary actions via
wicking in a cellulose matrix.

2.1. Inorganic materials: silicon, glass and ceramics

Silicon was the first material used for microfluidics [1]. Indeed, in the mid‐80s, the microelec‐
tromechanical systems (MEMS), from which microfluidic technology is one of the branches
that handle fluid, were developed by microelectronic technology. In MEMS, silicon material

Figure 1. (a) QuantStudion3D Digital PCR system from Life Sciences and its silicon chip, 60 µm hexagonal wells
organized in a honeycomb structure. (b) Array of Si cantilevers for label‐free biodetection of illicit drugs in water. (c)
Next generation sequencing HiSeq 2000v3 system developed by Illumina and the silicon chip for microbeads immobili‐
zation.
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was the standard material interface. Fabrication of silicon and glass devices involves either
subtractive methods (e.g., wet and dry etching) or additive methods (such as metal/dielectric/
insulate deposition). Silicon surface chemistry based on the silanol group (‐Si‐OH) is also well
developed and large panels of surface biochemical modification accomplished via silanes
chemistry are accessible. Silicon displays a high elastic modulus (~150 GPa) and so, in such a
way, active pumping and valving integration, as well as Si brittle characteristics induced overall
fragility. Therefore the narrow windows of mechanical properties are limiting factors. Trans‐
parent to IR light, but not in visible range, can cause serious issues and limitations that are
obvious for biological fluorescence‐based optical detection methods and for direct fluid
imaging. Those issues can be partially solved via several hybrid system approaches, where Si
channels can be sealed with transparent materials, such as glass or polymers, leading to a
renaissance for Si‐based detectors for microfluidic systems. However, Si microfluidic systems,
where reagent storage and other embedded biochemical surface functionalization (e.g., DNA,
proteins and cells patternings) are required, feature limitations when considering final
assembly and package steps. Indeed, high pressure, temperature, and voltage constraints
induced complex strategies for overall device integration concerns. Current approaches such
as reactive ion etching (RIE) for plasma exposure in order to activate surface for sealing
purposes or high temperature, high pressure parameters for anodic bonding methods are
definitively not suitable when considering reagent integration, such as proteins, cells, and
nucleic acids species. Even recent efforts developed by Ruchi et al. [2], who reported a low‐
temperature bonding strategy and Si‐Si interface bonding at low‐voltage direct current of
about 80 V, the procedure was still performed at a processing temperature of 365°C. For the
aforementioned strategy, where a hybrid system is implemented, the definite air‐tight and
water‐tight sealing achievements, which are also of priority for biomedical applications
considering contamination issues, suffer from the rather similar limitations. Indeed, hybrid
approaches in most cases currently consist of realizing a pressure‐free soft contact with the
rigid silicon part that needs either oxygen plasma exposure or thermal treatment for sealing
and device completion. However, at the research level, due to the high resolution of Si
nanofabrication capabilities realized by either electronic beam or nanoimprint lithography
among others, and its enriched surface chemistry means for biomolecular grafting, the
following highly representative examples and significant achievements for the microfluidic
community are highlighted. Applications related to the high‐resolution capabilities of silicon
extend over plasmonic, resonators, and microcantilevers systems. Indeed, high‐quality nano‐
optomechanical resonators exhibiting mass sensitivity at the attogram level in the flow through
operating environment have already been reported [3]. Si plasmonic microarrays have been
interfaced for real‐time and label‐free monitoring of biomolecule interactions of A/G with
immunoglobulin G (IgG) antibody [4]. Finally, as a tremendous achievement for the Si‐based
microfluidic approach, beyond the aforementioned limitations, we wish to underline the
obvious advantages of the stationary Si‐based system for complex digital qPCR platforms for
genomic applications. Quantitative determination of pathogenic loads with such Si platforms
definitely opens an area for medical research that benefits patients. In comparison to low‐cost
and single‐use POC (Point‐of‐care) devices for decentralized purposes, where challenges
involved with silicon materials imposed challenging technical needs, Si interface and glass are
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strategic materials of interests for stationary and highly complex systems. Figure 1(a) presents
the QuantStudio® 3D Digital PCR system and the related silicon chip developed by Life
Sciences Technologies Inc. (St. Petersburg, FL, US). We also refer the readers to the silicon
EWOD qPCR platform developed by Gidrol et al. [5] and for further interests to a recent review
by V. Marx [6]. Finally, the silicon interface is the material of reference for the vast majority of
nanomechanical biosensor [7] systems based on the cantilever approach as illustrated in
Figure 1(b). Recently, an array of Si cantilevers for label‐free biodetection of illicit drugs in
water has been reported [8]. For next generation sequencing (NGS) purposes, Figure 1(c)
displays the HiSeq 2000v3 system developed by Illumina Inc. (San Diego, CA, US) and the
silicon chip realized for microbeads immobilization.

Besides Si, glass, due to its wide applications in chemistry has been adopted as a key material
for lab‐on‐a‐chip fabrication. Optically transparent with excellent and low‐fluorescence
background, glass also displays highly suitable chemical resistance. Thus it has emerged as a
material of choice. Its transfer to microfluidics has been facilitated due to the traditional “off‐
chip” chemistry developed over several decades. Glass microfabrication involves well‐
established processes such as UV photolithography and chemical etching; however, such
technologies rank relatively low when considering further manufacturing perspectives,
compared to rapid thermal molding technology for polymer‐based microfluidic system. It is
for this reason the glass is generally viewed as an application material. Conversely, it may be
easier and potentiality less cost effective to fabricate small number of microfluidic devices in
glass than making molds for replication purposes using polymer‐based systems. The chemical
and thermal properties of glass enable a wide range of functions to be undertaken on the
device, including the requiring aggressive and corrosive solvents, chemical agents, and others
extreme temperature applications. Finally, assembly, conditioning, and on‐chip reagent
storage steps suffer similar limitations to the Si material. In particular, the glass fusion bonding
is extremely slow and requires very high temperature. However, for high‐pressure demanding
applications associated with its strength, maintaining high level of channel integrity over
operation, glass is definitively positioned at the preferred place. Compatible with
electrophoretic‐based separation techniques, microfluidic glass chips have been used for
numerous demonstrators and coupled to either mass spectroscopy, electrochemical, or
chemiluminescence detection means among others. From peptides to vascular biomarkers and
DNA identification, we refer the reader to recent comprehensive reviews on advances for glass
µCE chips [9, 10]. Glass mostly used the microfabrication approach that involves standard UV
photolithography in combination with either dried or wet etching protocols. Frequently used
wet etching chemical solutions feature a significant isotropic etchant property, therefore, the
achievement of microchannels with straight and high aspect ratio structures are challenging.
Alternative etching profiles such as anisotropic or straight‐walled patterns can be done with
dried RIE processes. Micromilling of glass is the second‐most used approach. It is a subtractive
process, where a rotating cutting tool removes material from a workpiece. Compared to
micromilling of polymers, more attention for glass is required. This is primarily due to its high
hardness and low tensile strength. Most milling is done using computer numerical control
system (CNC micromachining), which represents a great deal of opportunity and flexibility
in terms of pattern generation. However during processing, overheating of the diamond‐
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coated drilling tool has to be considered, and cooling strategies therefore are implemented.
Definitively, CNC micromachining offers a high level of interest for rapid prototyping of glass
microchip, we refer the readers to the recently published micromilling tutorial review [11, 12].

Illustrating the high‐performance capabilities of the glass interface for highly demanding
applications, Figure 2(a) presents the microchip developed by Chan et al. [13] for the high‐
temperature synthesis of CdSe nanoparticles in nanoliter‐volume droplets in a perfluorinated
fluid carrier. Figures 2(b) and (c) highlight the recent efforts by Klearia (Marcoussis, France)
and Dolomite (Royston, UK) companies for the development of low‐temperature bonding
protocols for embedded technologies. Finally, related to the development of NGS technologies,
Figures 2(d) and (e) depict the glass chips made by Pacific Biosciences (Palo Alto, CA, USA)
and Roche Diagnostics (Indianapolis, IN, USA) for their single molecule real‐time sequencing
technology (SMRT) and their 454 sequencing systems, respectively. Distributed by Weill
Cornell Medical Researchers (Ithaca, NY, USA), each SMRT cell is provided at a cost of $ 400.

Figure 2. (a) Glass chip for high‐temperature (300°C) synthesis of CdSe nanoparticles from nanoliter‐volume droplets.
(b) Array of Si cantilevers for label‐free biodetection of illicit drugs in water. (c) High demanding (500°C and 300 bar)
glass chip for droplet generation form dolomite. (d) Pacific Biosciences single molecule Real‐Time Sequencing glass
chip. (e) Glass PicoTiter plate for DNA sequencing systems from 454 DNA sequencing system.

Ceramic microfluidic platforms can be fabricated using low temperature co‐fired ceramic
(LTCC) technology for the achievement of hermetically sealed monolithic microfluidic
platforms with homogeneous surface chemistry and physical properties through a pertinent
cost‐effective manner compared to Si and glass platforms. This is a well‐established technology
for low‐cost and high‐volume production of portable wireless electronic applications, but yet
with limited involvement into the microfluidic landscape. However, its multilayer fabrication
approach allows monolithic integration of complex structures. As a result, three‐dimensional
microfluidic channels and cavities have been already reported [14]. The compatibility with ink
printing techniques has enabled the development of highly integrated devices that incorporate
electrochemical detection as well as all the electronic components for signal and data process‐
ing [15]. However, the integration of optical detection means in such platforms still constitutes
a serious issue due to the overall opacity of ceramic material. To mitigate this issue, two
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strategies have been implemented: (1) the integration of optical fiber and (2) the implementa‐
tion of transparent windows for localized optical analysis [16]. Recently, Microresist Technol‐
ogy Inc. (Berlin, Germany) developed a promising and organically modified ceramic Ormocer
as an optically transparent and UV curable ceramic material to fix this issue.

2.2. Polymers: thermoset and thermoplastic materials

In the last 15 years, polymers have played the leading role from prototyping and
manufacturing perspectives. This is because they offer a broad range of physical and surface
chemical properties through adaptable formulation and enriched chemical modification.
Based on their adhesiveness intrinsic properties, or activated bonding strategy, complex and
3D multilayered systems have been implemented. Considering both the cost of raw materials
and manufacturing perspectives, several polymer interfaces, but none of all, are amendable
to mass production processes (e.g., hot‐embossing, injection‐molding, and roll‐to‐roll). For
the aforementioned thermoset subcategory, the most common materials are thermal and UV
curable materials, Respectively, polydimethylsiloxane (PDMS) and the so‐called SU‐8
photoresist [17, 18]. On the thermoplastic side, the most popular materials are polycyclo‐
olefin (PCO), polycarbonate (PC), polytetrafluoroethylene (PTFE) and polystyrene (PS).
Polycyclo‐olefin offers high moldability and low water uptake [19, 20]. Polycarbonate [21] has
excellent material toughness properties while polytetrafluoroethylene [22] and polyimide [23,
24] feature excellent chemical resistance, electrical, and thermal properties, respectively.
Polystyrene has become more and more involved for cellular‐based microfluidic systems, due
to its wide applications in cell biology. Indeed, PS has provided decades of conclusions and
sensitive protocol establishment, and numerous cell behaviors and functions have been
determined [25]. Currently, PDMS and a dozen thermoplastic materials cover the vast
majority of microfluidic research activities. The intensive use of PDMS is devoted to rapid
prototyping and proof‐of‐concept demonstrations. However, despite its intrinsic drawbacks,
mainly related to its cellular toxicity, molecular adsorption and absorption, gas permeability,
and bonding issues, PDMS still appears as the preferred material in laboratories. Its industrial
transfer is generally not overly recommended due to the cost concern. On the other hand,
although thermoplastic interfaces offer the solution for product development, the entry cost
in terms of required mold making as well as equipment setting limits its development. In
addition, only well‐established groups have significant infrastructures and facilities to afford
it. To end this section, recently introduced soft thermoplastic elastomers (sTPE) are discussed.
These materials bridge the gap between PDMS and classical rigid thermoplastic materials
such as PC, PCO, and PS [48–52]. The sTPE materials are low‐cost and commercially available
polymers, offering transparency, biocompatibility, and flexibility compared to PDMS, and
they can be rapidly thermoformed like currently used thermoplastics. Additionally, they
display enhanced molding properties; indeed, low‐pressure molding can be performed (e.g.,
<1–2 bar), lowering down the thermomechanical properties of the required molds. Due to
their elastomeric properties, they can easily be peeled off from the mold. Assembling and
bonding procedures are more convenient, and cohesive sealing can be done without thermal
and/or plasma treatment. This material promotes a seamless integration, promoting therefore
a realistic transfer path from prototyping to feasible and realistic industrialization. The sTPE
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material could become a mainstream platform for microfluidic technology and POC
applications.

2.2.1. Thermoset

Thermosets are liquid or solid materials at room temperature. Their molecular polymer chains
cross‐link through a process called curing, when the polymer is heated or exposed to light or
to others radiations. The curing step involves an irreversible chemical reaction. Therefore once
formed, the thermoset parts cannot be reshaped anymore. Typical examples of thermoset
polymers used in microfabrication are PDMS and SU‐8 materials.

2.2.2. PDMS

First introduced in the late 90s, PDMS [26] is the most common microfluidic substrate, a large
portion (40–45%) of research papers published on microfluidic devices utilizes this material
[27]. Devices’ molds are formed via traditional micromachining and photolithography means
and a mixture of two liquid polymer components are mixed together and then casted, cured,
and finally peeled off from the master. Due to its elasticity, integration of microvalves or
micropumps is possible, and complex 3D system and numerous point‐of‐care devices have
been developed for research applications. PDMS displays excellent optical properties for
convenient fluorescence detection and fluid imaging. Due to its gas permeability, PDMS
appears as a material of choice for many but not all cellular studies.

On the other hand, four important properties of PDMS have negative impacts: (1) channel
deformation due its high mechanical compliance, (2) evaporation and absorption, (3) leaching‐
out of uncrosslinked oligomers, and (4) hydrophobic recovery [25]. The compliance issue is
particularly true considering cell culture experiments that require accurate control over shear
force on the endothelial monolayer, the inability to account for mechanical deformation bias
in data analysis and subsequent data interpretation [28]. Oxygen permeability in PDMS is three
orders of magnitude higher as compared to PS, and may in fact produce a hyperoxic micro‐
environment leading to cellular stress [29, 30]. Water vapor resulting from the permeable
PDMS also leads to problematic shifts on volumes, concentrations, and chemical balances [31].
PDMS is also largely prone to bulk absorption of hydrophobic compounds. Regehr et al. [32]
have shown significant depleted estrogen levels in culture media, leading to inhibition of
protein‐1 activator. Similarly, important shifts were identified in response to fluoxetine over
transfected human embryonic kidney (HEK) in between PDMS and polystyrene interfaces [33].
Finally, absorption not only affects fundamental cellular biology on chip, but also drug
discovery and high‐throughput screening applications. However, the PDMS abilities to
provide rapid (1–4 h), easy, low‐cost (50–200 $/kg) and straightforward accessibility make it a
major leading player for prototyping uses at academic level. However, its commercial appli‐
cations are generally avoided. A noticeable exception emerges from this mainstream Eration,
indeed around the multilayered PDMS pressure‐actuated crossed‐channel valve architecture
initially developed by Quake et al. [34]; the Fluidigm company (San Francisco, CA, USA) has
developed several impressive applications ranging from qPCR platforms to mass cytometer
as depicted in Figure 3(a) and (b). Such system can run 48 samples in 770 reaction chambers.
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Each chip shown in Figure 3(c) ranges at a cost from $ 400 to 800. This price highlights the
intrinsic and overall PDMS difficulties and its lengthy processing steps to tackle for low‐costs
microfluidic system for single use perspective. We refer the readers to the following reviews
for extended discussion related to microfluidic products development and the ambiguous
positioning of PDMS material in the community for applications development [25, 35, 36].

Figure 3. (a) Bilayer PDMS pneumatic valving microfluidic system, liquid flow inside the vertically oriented top chan‐
nel and the bottom channel (air flow) is pressure‐actuated for clogging/or liquid motion of the fluidic layer. (b) and (c)
Biomark HD system for digital qPCR from Fluidigm, which run 48 samples in 770 reactions/sample chip.

2.2.3. SU‐8: an epoxy‐based material

Using classical means of photolithography or stereolithography, SU‐8 microfluidic devices can
be built in a complex 3D structure out of an initial liquid resist. SU‐8 contains eight epoxy
groups which undergo a very strong crosslinking upon exposure to UV light. Such composi‐
tion and process lead to highly mechanically, thermally, and chemically stable materials.
However, large internal stress exists due to the process, providing thus an overall brittle
characteristic, and therefore making it difficult in handling and transferring part. SU‐8 can be
deposited and patterned in a range of thicknesses from nanometer to millimeter films, using
lithography (either UV and e‐beam), the lateral feature resolution extends from the macro‐
scopic surface down to submicrometer. SU‐8 can be structured also from the laser ablation
approach. However, as for photolithography means, it appears that both methods have limited
throughput [37]. Indeed, the cycle for resin preparation and others processes are lengthy. It
seems that SU‐8 is limited mainly to academic uses. For in‐depth descriptions of the SU‐8
interface for microfluidic applications, we refer the reader to a couple of comprehensive and
exhaustive reviews [18, 38]. Beyond its use for direct microfluidic device fabrication, SU‐8, due
to its high mechanical strength and its capabilities to create high aspect ratio structures [39]
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and complex 3D networks [40], is definitely a material of choice for mold master making. The
SU‐8 mold has been intensively used for hot‐embossing of thermoplastic devices, or as an
intermediate system for injection‐molding [41].

2.2.4. Alternative thermoset material

Besides PDMS soft thermoset material, several attempts have been introduced in order to
provide alternatives for soft thermoset materials and mainly the use of fluorinated‐based
polymers has been reported. The attractiveness of those solutions arises from the inertness of
the perfluorinated compounds. De Simone et al. [42] have developed a photocurable soft
perfluoropolyethers (PFPE). It exhibits low toxicity and low surface energy and displays
enlarged chemical resistance. For multiphasic microfluidic environment, it might be a material
of choice due to the fact that such Teflon‐like structure is both oleophobic and hydrophobic.
More recently, high aspect ratio (up to 6.5) PFPE microfluidic devices have been fabricated by
a direct photolithographic process. Through a mask‐assisted photopolymerization approach,
the authors have successfully developed a rapid overall process of around 5 min and demon‐
strated important sealing capabilities, indeed the device can withstand a pressure up to 3.8 
bar [43]. Finally, the devices have been tested with some model reactions employing organic
solvents.

2.2.5. Thermoplastic polymers

2.2.5.1. Rigid thermoplastics

According to the aforementioned drawbacks of PDMS, intensive use of thermoplastic mate‐
rials, such as polycarbonate and polystyrene, is increasing. These materials are amendable for
rapid thermoforming manufacturing technology in the CD and biology industries. Those
platforms have been clearly identified as materials of choice for microchip research and
subsequent technology transfer. Complementary polymethylmethacrylate (PMMA) and
polyimide, due their favorable position in the semiconductor industry, complete the set of
foreseen thermoplastic candidate. More recently, polycyclo‐olefin polymer has become
another popular substrate for microfluidics. It displays high chemical resistance, low water
absorption, and excellent optical transparency in the near UV range. The materials are
moldable polymers when heated above their glass temperature, offering thus recyclable and
reshaping perspectives. They also provide a subsequent bonding pathway. They are optically
clear and commercially available, and they display slightly better solvent compatibility than
PDMS. However, they are incompatible with most organic solvents, such as ketones and
hydrocarbons. Currently used thermoplastic interfaces are rigid and stiff materials with Young
modulus in the range of Giga Pascal. Consequently, they are not as convenient as PDMS to
achieve conformal contact. Therefore, sealing strategies involve pressurized solvent‐assisted
and thermal approaches to melt surfaces. In addition, the following thermoplastics: perfluor‐
oalkoxy (Teflon PFA) and fluorinated ethylenepropylene (Teflon FEP) can be used for ex‐
tremely inert microfluidic devices. Ultimately, they feature nonstick and antifouling
properties. PFA has been used for high‐quality immobilization of Escherichia coli, Pseudomonas
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putida, and Bacillus subtilis cells in highly dense microarray patterns [44, 45]. For more classi‐
cally used interfaces, Zhang et al. [46] reported sealing and chemical surface modification of
an integrated monolithic PMMA microdevice for DNA purification and amplification of E.
coli. Also, a highly integrated polystyrene microfluidic chip coupled to electrospray ionization
mass spectrometry for on‐chip protein digestion and online analysis was developed [47]. One
of the most important challenges faced when targeting for molding of thermoplastic parts is
the realization of the master cavity featuring submicron resolution, high aspect ratio, and
densely packed structure areas. Most of the materials are crystalline and/or semi‐crystalline,
and they display high coefficient of thermal expansion (CTE) and high shrinkage parameters
compared to amorphous ones. Additionally, due to the fact that they are rigid and often brittle,
they represent sensitive challenges from the manufacturing perspectives. The high shear force
resulting from the pressurized environment generates asymmetric and/or random pull‐off of
plastic edges due to friction in demolding, which is downstream detrimental for sealing and
bonding. The characteristics of the thermoplastic materials induce high specifications on the
thermo‐mechanical properties of the master molds. Currently, the impacts on the master mold
making related to the realization of such thermoplastic parts are only metallic (stainless, nickel‐
cobalt alloy, and aluminum), and from prototyping perspectives, only few epoxy molds can
be employed. Even if elegant CNC laser machining and electroplating processes are available
for mold making, the implementation of such master are expensive and are limited in terms
of resolution, pattern density, and aspect ratio. The work suggest an overall in‐depth consid‐
eration when starting to envisage a microfluidic system development, undoubtedly a holistic
approach should be taken. The overall chip constraints in terms of fabrication, sealing,
packaging, thermomechanical loads, biological compatibility (both in terms of physicochem‐
ical surface properties and reagent integration), biomicrofluidic functions, microfluidic
statistical, and robust properties have to be considered.

2.2.5.2. Soft thermoplastic elastomers: sTPE

The sTPE is a class of material in which elastomeric properties of elastomer rubber (e.g.,
PDMS) are embodied with the ease of processing of thermoplastic materials such as PMMA,
PCO, and PC. The sTPE thus bridges the gap in between thermoplastics and elastomers,
enhancing the advantages of each material. Moreover, the range of sTPE Young modulus
extends continuously from 0.1 MPa to 1–5 GPa. The combination of elastomeric and
thermoplastic properties makes these materials potential substitutes to PDMS and/or hard TP
polymers that are commonly employed in microfluidics [48]. Unlike PDMS, sTPE can be used
in the form of extruded sheets that provide off‐the‐shelf availability without the need of
performing any precompounding step. Extruded films can be stored over a long period of
time (e.g., several years) without any notable degradation, making it possible to use the
material on demand at any time (Figure 4(a)) [49, 50]. The sTPE materials are available at low
cost, and they display optical transparency and biocompatibility for proteins, nucleic acids,
and cell and tissue engineering and diagnostics [49–53]. sTPEs are block copolymers
comprising different monomer sequences that are distributed randomly or statistically in
domains through diblock or triblock architectures [51]. For styrenics‐based sTPE materials
with low PS content (10–12%), thermodynamic incompatibility between blocks induces
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nanophase separation and self‐assembly of PS domains into nanometric clusters (typically 10–
30 nm in diameter) that are distributed in a three‐dimensional fashion within a hexagonal
symmetry in the rubber matrix of ethylene‐butylene (EB). This morphology provides the basis
of the material performance: rigid PS domains act as junction points that stabilize the polymer
matrix while the EB‐dominant phase offers elastomeric properties. Moreover, size and cluster
distributions promote the sTPE surface to be uniform and homogenous at the microfluidic
device level [49–53]. As block copolymer materials, sTPE exhibits two glass transition
temperatures corresponding to the EB soft block (Tg,EB ~ −60 to −75°C) and to the styrene rigid
block (Tg,EB ~ −90 to 105°C), respectively. The negative value of Tg,EB predicts liquid‐like
behavior of the materials.

Figure 4. (a) Photograph of an extruded flexestene foil on a roll from which pieces can be cut conveniently before use.
(b) Series of SEM images illustrating the fabrication of the microfluidic flexestene device. (i) SU‐8 embossing mold used
for the fabrication of the bottom flexestene membrane, (ii) Upper and (iii) lower side of the bottom sTPE membrane,
(iv) SU‐8 mold used for the fabrication of the top sTPE membrane, (v) overview, and (vi) close‐up view of the top
flexestene membrane. Scale bars in the insets of (i), (ii), (iii), and (iv) correspond to 50, 20, 10, and 200 mm, respectively.
The images shown in (iv) and (v) were assembled from several SEM micrographs to achieve the desired field of view.
(c) Photographs of an assembled 3D microfluidic immobilization after filling with solutions of a red and green dye
(left), optical microscope image of the resulting red‐green pattern obtained on the central region of the microfluidic
device (right). (d) high‐throughput fabrication method of sTPE multilayered microfluidic devices, (i) Optical micro‐
graph of the whole micromixer made of two layers of sTPE material bonded on a poly(cyclo)olefin polymer substrate.
The device size is smaller than a centimeter square, and each valve measures 200 µm×200 µm, (ii) detailed view of a
valve at both open and closed positions; and (iii) curve representing the valving cycle at 1.2 Hz, fluorescence intensity
under the deflected membrane is registered, it is maximal when the valve is open and minimal when closed.

Indeed, like PDMS, which similarly displays a negative glass transition temperature, the
selected sTPE forms a spontaneous and conformable close contact with flat substrates,
generating tight air and water sealing [49–53]. Additionally, the soft blocks provide bonding
capabilities above their glass transition, which implies that even at room temperature, the
polymer chains can be reorganized according to the contact surface. The bonding strength is
variable and dependent on time and temperature; and irreversible bonding was obtained at
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room temperature [50, 52]. Depicting the enhanced molding capabilities of sTPE interface,
Brassard et al. [51] have demonstrated the rapid and reliable patterning of open through‐hole
microstructures in sTPE material using a method based on hot‐embossing (Figure 4(b)). The
sTPE‐based 3D microfluidic patterning device was then used for the immobilization of up to
96 different biological probes in a 10×10 array format of 50 µm×50 µm spots (Figure 4(c)).

Additionally, for novel tissue engineering biomaterial platform, high molding performances
have been confirmed in a newly reported process. We reported a rapid microfabrication of a
biocompatible sTPE sheet in an overall 3 min process operating within an ultralow applied
pressure (1.6 bar) [52]. Smooth muscle cells contact guidance studies have been conducted over
an array of 4‐µm‐patterned grooves [52]. For reader's information, contributing to the estab‐
lishment of the biocompatibility, the bonding and the microfabrication performance of sTPE,
which are highly dependent on block copolymers formulation (molecular weight of each block
of each diblock (DB) and triblock (TB) and the DB/TB ratio) and also to the additives compo‐
sition (tackifiers and processing agents); we underline the Flexstene sTPE materials perform‐
ance (InfineFlex Inc., San Diego, US and Blackholelab Inc., Paris) for the fabrication of adjacent
micropillar arrays with different heights for cellular studies [53]. We also demonstrated that
sTPE can be used as a rapid technique for the fabrication and assembly of pneumatically driven
valves in a multilayer microfluidic device using a simple SU‐8 mold material for embossing
purposes (Figure 4(d)) [54]. The quality of the obtained soft thermoplastic valve shows a robust
behavior with an opening−closing frequency of 5 Hz. Finally, more recently [49], we demon‐
strated the implementation of a sTPE CD‐like microfluidic system for genomic assay. This
device integrates all required molecular assay steps, from cellular lysis to gDNA polymerase
chain reaction amplification, amplicons digestion, and microarray hybridization on a plastic
support. The low‐temperature, pressure‐free assembly and bonding of sTPE material on the
flat polyclo‐olefin thin substrate offer a pertinent solution for simple and efficient loading and
storage of the required on‐CD board elements. This was demonstrated through the integration
and the conditioning of microbeads, magnetic discs, and dried enzyme species. This work
highlights a seamless strategy that promotes a feasible path to transfer from prototyping
toward realistic industrialization. This work aims to establish the full and pertinent potential
for sTPE centrifugal system as a mainstream microfluidic diagnostic platform for clinical
molecular diagnostics, water and food safety, besides other applications.

2.3. Paper, biodegradable and hydrogel materials

2.3.1. Hydrogels

Hydrogels display a molecular architecture analog to extracellular matrix, with water uptake
properties up to 80% of its total mass. Hydrogels are highly porous and thus an excellent matrix
for cellular biology studies. However, direct tissue engineering from bulky hydrogels are
challenging due to the restricted depth for nutriments diffusion of around hundreds micro‐
meters [55]. Microfluidic technology, through both top‐down and bottom‐up approaches, has
demonstrated its abilities to tackle this fundamental issue. From a top‐down approach,
microchannels are fabricated inside the hydrogel while for the bottom‐up, hydrogels filled
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microchannels cavities. Matrigel™ and collagen are the mostly used animal‐derived hydro‐
gels. They promote excellent cellular adhesion and proliferation [55]. Recently, Bang et al. [57]
engineered a 3D neural circuit in a microfluidic Matrigel hydrogel system. They had grown,
aligned, and organized 3D networks of axon bundles at an average speed of 250 µm. d‐1 for a
period of 6 in vitro days. Alternatively, alginate and agarose plant‐derived hydrogels and
synthetic ones, such as polyacrylamide or polyethylene glycol (PEG), can be used [58]. Even
though synthetic hydrogels slightly lack cellular adhesion compared to animal‐derived ones,
they nevertheless promote higher flexibility and enriched formulation adaptability for fine
tuning objectives. Hydrogel composition, structure, morphology, and rigidity have been used
in a high‐throughput manner in droplet‐based microfluidics [59]. Recently, agarose hydrogels
have been integrated in a microfluidic system for E. coli purification and concentration, and
finally for fluorescence immune detection. Authors reported that 90% recovery efficiency could
be achieved with a million‐fold volume reduction from 400 µL to 400 pL. For concentration of
1 × 103 cells mL–1 bacteria, approximately ten million‐fold enrichment in cell density was
realized. Urine and blood clinical isolates were further tested and validated [60]. We refer the
readers to follow the review for further reading [61].

2.3.2. Biodegradable materials

Biodegradable polymers for tissue engineering and drug delivery purposes display degrada‐
tion time ranging from 24 h to several months. They offer, in a microfluidic format, a promising
opportunity for microstructured tissue scaffolds. Commonly used biodegradable matrices are
polycaprolactone, poly(lactide‐co‐glycolide), and polyglycolic acid (PGA). Their degradation
and mechanical properties are tunable, and they display minimal changes in the systemic
immune responses. Their degradation products such as glycolic acid for PGA are through
metabolite response absorbed by the hosted living body. Curing of these materials takes place
as their dimer version polymerizes via a ring‐opening reaction under appropriated heating
and catalytic steps. An excellent review related to biodegradable material properties and their
microenvironment integration has been recently published [62]. Various technologies, such as
printing, soft‐lithography, stereolithography, hot‐embossing, and injection‐molding methods,
have been used toward integration [63, 64].

2.3.3. Paper

Paper is the most recently introduced microfluidic material. Its cellulose matrix acts to wick
liquids while specifically, hydrophobically, patterning areas to avoid liquid motion. The
patterned barriers define the shape (i.e., width and length) while the thickness of the paper
accounts for the height. Hydrophilic wicking regions thus serve as channel networks opened
to air. Paper as chip material is one of the cheapest materials, and it can be easily stacked in
3D devices [65]. The fabrication approaches can be divided into two groups. Lithographic‐
based methods, where particular coated polymer areas are removed, thus are forming the
channels. Second, the printing and the cutting approaches allow direct hydrophobic barrier
definition without exposure of the effective channels to any reagents. Fundamentally, paper‐
based microfluidic systems are not suitable for large‐volume samples and their applicable
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detection perspectives are limited owing to the intrinsic cellulose matrix properties. Recently
published by Mace et al. [66], paper‐based diagnostic devices and their manufacturing
perspectives are commented in detail. Wax printing approaches and assembly of 3D vertical
flow assays are further discussed therein. Concerning printing and cutting approaches, the
reported channel resolution is quite low and limited to 200 µm. Paper‐based technology,
displays undoubtedly tremendous limitations considering heterogonous component integra‐
tion such as valves and other reagent storage issues. Recently, Thom et al. [67] have performed
the integration of light‐emitting diodes (LEDs) onto paper microfluidic device for the fluores‐
cence detection of β ‐d‐galactosidase. From medium to low complexity bioassay integrations,
paper‐based technology appears to be a promising pathway for portable and low‐cost platform
in the future, and thus a material of choice for optimized and multiplexed lateral flow assays
in the health care segment. We refer the readers to follow recently published review for further
reading on paper‐based microfluidic system for bioanalytical applications [68, 69].

3. Conclusion

This chapter presents an overview of materials for microfluidic applications and their appli‐
cations in recent research. The large range of materials dedicated to microfluidics is a key
component for successful microfluidic applications. The optimal selection of an adequate
material platform for a targeted application is of tremendous importance and represents
significant technical challenges. In a concomitant manner, this decision has to be taken
accordingly an exhaustive list of requirements essentially related to the biocompatibility, the
overall thermomechanical properties, the latter inherent to bonding and reagent integration.
Beyond the traditional proof‐of‐concept works developed at the academic research level,
another higher level of concern exists when real applications and medical research are
envisioned. Two important issues therefore need to be addressed. First, a reevaluation of the
biocompatibility and the overall stability of the intrinsic microfluidic performance when
handling real samples. The second aspect involves the scaling‐up of each microfabrication,
bonding, conditioning, and other packaging needs, and their interdependences and costs. The
gap currently is wide in these aspects, and it is one of the most severe limitations for micro‐
fluidic applications. Therefore dedicated efforts are needed to tackle this issue. The introduc‐
tion of sTPE highlights a seamless strategy that promotes a feasible path transfer from
prototyping toward realistic industrialization, working from the earliest research steps to the
end with a unique polymer interface. Beyond, the polymer materials presented in this chapter,
there is tremendous space considering the introduction of other functional polymers in the
microfluidic applications. We envision that new research activities focused on conductive,
piezo, and magnetically doped polymers among other polymers not only provide a fantastic
opportunity for further progress and advancement but also for a new field of research and IP
development. The considerations extend surely over new blends of material development for
specific goals and needs at large. The high level of multidisciplinary skills required in the field
is challenging for the academic community; however, such multidisciplinary nature that
extends from biology/medicine, microfabrication, microfluidic materials, and electronic and

Overview of Materials for Microfluidic Applications
http://dx.doi.org/10.5772/65773

349



optical through sensors also provide unique solutions. Definitively, the development of
innovative materials will bring innovations, and our community has to act proactively in this
direction for the success of microfluidic research and the real benefit for progress in health‐
related biomicrofluidic applications.
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