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Abstract

Consequently, the research and development for the 5G systems have already been
started. This chapter presents an overview of potential system network architecture
and highlights a superallocation technique that could be employed in the 5G cognitive
radio network (CRN). A superallocation scheme is proposed to enhance the sensing
detection performance by rescheduling the sensing and reporting time slots in the 5G
cognitive radio network with a cluster-based cooperative spectrum sensing (CCSS). In
the 4G CCSS scheme, first, all secondary users (SUs) detect the primary user (PU)
signal during a rigid sensing time slot to check the availability of the spectrum band.
Second, during the SU reporting time slot, the sensing results from the SUs are reported
to the corresponding cluster heads (CHs). Finally, during CH reporting time slots, the
CHs forward their hard decision to a fusion center (FC) through the common control
channels for the global decision. However, the reporting time slots for the SUs and CHs
do not contribute to the detection performance. In this chapter, a superallocation
scheme that merges the reporting time slots of SUs and CHs by rescheduling the
reporting time slots as a nonfixed sensing time slot for SUs to detect the PU signal
promptly and more accurately is proposed. In this regard, SUs in each cluster can
obtain a nonfixed sensing time slot depending on their reporting time slot order. The
effectiveness of the proposed chapter that can achieve better detection performance
under –28 to –10 dB environments and thus reduce reporting overhead is shown
through simulations.

Keywords: 5G, software-defined network, cognitive radio, superallocation technique,
cluster head, fusion center

1. Introduction

Around 2020, the promising 5G technology in cognitive radio networks is expected to be

developed 5G networks that will have to support advanced services and multimedia
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distribution, and reproduction in any medium, provided the original work is properly cited.



applications with a wide variety of requirements, including higher peak and user data rates,

reduced latency, enhanced indoor and outdoor coverage, improved energy efficiency, capacity

and throughput, network densification, autonomous applications and network management,

and Internet of things [1, 2].

The primary technologies and approaches to address the requirements for the 5G systems can

be classified as follows [1, 2]:

• Network densification of existing mobile cellular networks (e.g., peer-to-peer [P2P],

machine-to-machine [M2M], device-to-device [D2D], and heterogeneous networks);

• Full-duplex (FD) communication (e.g., simultaneous transmission and reception);

• Improvement of capacity and throughput (e.g., massive multiple-input multiple-output

[massive MIMO]);

• Improvement of energy efficiency by wireless charging and energy harvesting;

• Advanced services and applications by a cloud-based radio access network (C-RAN) (e.g.,

smart city and service-oriented communication);

• Multiple network operators to share common resources by cooperation and network

virtualization (e.g., network infrastructure, backhaul, licensed spectrum, core and radio

access network, energy/power, etc.).

In this chapter, the main objectives of the beyond 2020 5G cognitive radio network by provid-

ing the technical support that needed to address the very challenging requirements foreseen

for this time frame are proposed. A 5G system (i) has to be significantly more efficient in terms

of energy, cost, and resource utilization (e.g., licensed spectrum utilization) than today's sys-

tem (e.g., 4G); (ii) has to be significantly more versatile to support a significant diversity of

requirements; and (iii) should provide better scalability in terms of the number of connected

devices, densely deployed access points, spectrum usage, energy, and cost. In CRN, both

higher data volume and higher data rates are required to access more spectrum band. As

mentioned before, in 4G, it is clearly expected that more spectrum will be released for licensed

wireless mobile communications. This new spectrum lies in the frequency range between 300

MHz and 6 GHz. However, for the future 5G system, these new spectrum opportunities will

not be sufficient. Moreover, wireless local area networks operating in the unlicensed bands,

such as the ISM and U-NII bands at 2.4 and 5 GHz, as well as the 60 GHz band, can be more

tightly integrated. The present chapter discusses the superallocation and cluster-based cooper-

ative spectrum sensing in the 5G CRN (e.g., highlights the number (i)) to provide more efficient

spectrum utilization.

Cognitive radio (CR) is a new promising technology in the wireless communication era that

has changed the policy of spectrum allocation from a static to a more flexible paradigm [3].

Recently, CRs that enable opportunistic access to underutilized licensed bands have been

proposed as a promising technology for the improvement of spectrum operations. In an

overlay cognitive radio network, an overlay waveform is used to exploit idle spectra and
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transmit information data within these unused regions. On the other hand, in an underlay

cognitive radio network an underlay waveform with low transmit power is used to transmit

data without harmful effects on the primary network [4]. In this chapter, we focus on overlay

networks where secondary users find the idle channel with spectrum sensing. A precondi-

tion of secondary access is that there shall be no interference with the primary system [5].

This means spectrum sensing plays a vital role in the 5G CRN.

There are a number of spectrum sensing techniques, including matched filter detection,

cyclostationary detection, and energy detection [6–8]. Matched filter detection is known as

the optimum method for detection of the primary users when the transmitted signal is known.

The main advantage of matched filtering is that it takes a short time to achieve spectrum

sensing below a certain value for the probability of false alarm or the probability of detection

compared to the other methods. However, it requires complete knowledge of the primary

user's signaling features, such as bandwidth, operating frequency, modulation type and order,

pulse shaping, and packet format. Cyclostationary detection is especially appealing because it

is capable of differentiating the primary signal from the interference and noise. Due to noise

rejection property, it works even in a very low signal-to-noise ratio (SNR) region, where the

traditional signal detection method such as the energy detection is used. It offers good perfor-

mance but requires knowledge of the PU cyclic frequencies and also requires a long time to

complete sensing. On the other hand, the energy detection senses spectrum holes by determin-

ing whether the primary signal is absent or present in a given frequency slot. It operates

without the knowledge of the primary signal parameters. Its key parameters, including detec-

tion threshold, number of samples, and estimated noise power, determine the detection per-

formance. Also, it is an attractive and suitable method due to its easy implementation and low

computation complexity. However, it is vulnerable to the uncertainty of noise power and

cannot distinguish between noise and signal. Conversely, its major limitation is that the

received signal strength can be dangerously weakened at a particular geographic location

due to multipath fading and the shadow effect [9].

In order to improve the reliability of spectrum sensing, cooperative spectrum sensing was

proposed [10–13]. Each SU performs local spectrum sensing independently and then forward

the sensing results to the fusion center (FC) through the noise-free reporting channels between

the SUs and the FC. In Zarrin and Lim [13], basic methods including AND, OR, and k-out-of-N

logic are used to take hard decisions for a final decision at the FC. However, the reporting

channels are always subject to fading effects in real environments [14]. When reporting chan-

nels become very noisy, cooperative sensing offers no advantages [15–16]. To overcome this

problem, Sun et al. [17] and Xia et al. [18] proposed a cluster-based cooperative sensing scheme

by dividing all the SUs into a number of clusters and selecting the most favorable SU in each

cluster as a CH to report the sensing results, which can dramatically reduce the performance

deterioration caused by fading of the wireless channels. In these schemes, the SU selected as

the CH has to fuse sensing data from all cluster members (the SUs in this cluster). However, in

these schemes, each SU's reporting time slot and the CH reporting time slot offer no contribu-

tion to spectrum sensing, while SU sensing and reporting times and CH reporting time are in

different time slots.

Superallocation and Cluster‐Based Cooperative Spectrum Sensing in 5G Cognitive Radio Network
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Jin et al. [19] proposed a superposition-based cooperative spectrum-sensing scheme that

increases the sensing duration by super positing the SUs’ reporting duration into the sensing

duration. However, this scheme adopts various individual reporting durations. In this case,

synchronization problems occur at the FC. Moreover, the data processing burden at the FC

increases for a large CR network.

In this chapter, we propose a superallocation and cluster-based cooperative spectrum sensing

5G scheme to provide more efficient spectrum sensing. In this scheme, each SU achieves a

nonfixed and longer sensing time for sensing the PU signal bandwidth because both the SUs

and the CHs are superallocated to different reporting time slots. On the other hand, both the

SU and the CH reporting time slots are of fixed length because the synchronization problem

for the FC is relieved. In addition, this proposed scheme decreases the data processing burden

of the FC while all the SUs in the CRN are divided into fewer clusters such that each SU reports

its local decision to the corresponding CH, which then reports to the FC. Simulation results

show that the proposed 5G scheme can improve sensing performance in a low signal-to-noise

ratio environment (i.e., –28 dB) and also greatly reduces reporting overhead in comparison

with cluster-based cooperative spectrum sensing in 4G CRNs.

The remainder of this chapter is organized as follows. Section 2 describes the system model.

Section 3 offers an overview of energy detection. Section 4 describes the cluster-based cooper-

ative spectrum sensing in the 4G CRN. The proposed superallocation and cluster-based coop-

erative spectrum sensing in the 5G CRN is presented in Section 5 that addresses the spectrum

utilization goal of this chapter for the 5G CRN. Some simulations and comparisons are

presented in Section 6. We finally present the main conclusion of this chapter in Section 7.

2. Cognitive radio network system model

In CRN, the detection performance of the PU signal might be degraded when the sensing

decisions are forwarded to an FC through fading channels. Figure 1 shows the CRN deploy-

ment where SUs are grouped into a cluster governed by a CH based on low-energy adaptive

clustering hierarchy-centralized (LEACH-C) protocol [20] and the CHs of the clusters report

their decisions to an FC through a common control channel. Here, HDF will be applied to

obtain a final decision on the presence of the PU activities. The process of the LEACH-C

protocol is made up of several rounds, and each round consists of two phases: a setup phase

when the CHs and clusters are organized and a steady-state phase when the cluster members

begin to send their measurements to CH and CHs send their decision to the FC. In the setup

phase, each SU sends information about its current location and SNR of reporting channel to

the FC. Based on this information, the FC determines CHs among all CRUs, while the

remaining CRUs will act as cluster members. After the CHs are determined, the FC broadcasts

a message that contains not only the CH ID for each SU but also the information of time

synchronization. If an SU's CH ID matches its own ID, the SU is a CH; otherwise, the SU is a

cluster member and goes to sleep. In the steady-state phase, the SUs start to forward the

measurement of the received PU's signal to the CH, and then the CH collects the measure-

ments from the cluster members and makes the cluster decision about the presence of the PU

and sends it to the FC during their allocated reporting time slots. Afterward, the FC combines
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the received clustering decision to make the final decision, then broadcasts it back to all CHs

and the CHs send it to their cluster members.

Spectrum sensing can be formulated as a binary hypothesis-testing problem as follows:

H1 : PU signal is present,
H0 : PU signal is absent:

�

(1)

Each SU implements a spectrum sensing process that is called local spectrum sensing to detect

the PU's signal. According to the status of the PU, the received signal of an SU can be

formulated as follows:

yjðtÞ ¼
ηjðtÞ, H0

hjðtÞxðtÞ þ ηjðtÞ, H1

�

(2)

where yjðtÞ represents the received signal at the jth SU, hjðtÞ denotes the gain of the channel

between the jth SU and the PU, xðtÞwith variance of σ2x represents the signal transmitted by the

Figure 1. Cluster-based cooperative spectrum sensing in the 5G cognitive radio network.
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PU, and ηjðtÞ is a circularly symmetric complex Gaussian (CSCG) with variance of σ2
η, j at the jth

SU.

In addition, we make the following assumptions [21]:

• xðtÞ is a binary phase shift keying (BPSK) modulated signal.

• xðtÞ and ηjðtÞ are mutually independent random variables.

• The SU has complete knowledge of noise and signal power.

Cluster-based cooperative spectrum sensing in a 5G CRN is shown in Figure 1, which contains

N SUs, K clusters, and one FC. In this network, all the SUs are separated into K clusters, in

which each cluster contains Nc SUs; and the cluster head CHk, k = 1,2, …, K, is selected to

process the collected sensing results from all SUs in the same cluster.

For sensing duration, first, each SU calculates the energy of its received signal in the frequency

band of interest. Local decisions are then transmitted to the corresponding CH through a

control channel, which will combine local decisions to make a cluster decision. Second, all

cluster decisions will be forwarded to the FC through a control channel. At the FC, all cluster

decisions from the CHs will be combined to make a global decision about the presence or the

absence of the PU signal.

3. Overview of energy detection

The energy detection method has been demonstrated to be simple, quick, and able to detect

primary signals, even if prior knowledge of the signal is unknown [22–25]. A block diagram of

the energy detection method in the time domain is shown in Figure 2. To measure the energy

of the signal in the frequency band of interest, a band-pass filter is first applied to the received

signal, which is then converted into discrete samples with an analog-to-digital (A/D) converter.

An estimation of the received signal power is given by each SU with the following equation:

Ej ¼
1

L
∑
L

t¼1
jyjðtÞj

2 (3)

where yjðtÞ is the tth sample of a received signal at the jth SU and L is the total number of

samples. L ¼ TsFs, where Ts and Fs are the sensing time and signal bandwidth in hertz,

respectively. According to the central limit theorem, for a large number of samples, e.g.,

L > 250, the probability distribution function (PDF) of Ej, which is a chi-square distribution

Figure 2. Block diagram of the energy detection scheme.
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under both hypothesis H0 and hypothesis H1, can be well approximated as a Gaussian random

variable such that

Ej ¼
Nðμ0, j, σ20, jÞ

Nðμ1, j, σ21, jÞ

(

(4)

whereNðμ, σ2Þ denotes a Gaussian distribution with mean of μ and variance of σ2, μ0, j and σ20, j

represent the mean and variance, respectively, for hypothesisH0, and μ1, j and σ21, j represent the

mean and variance for hypothesis H1.

Lemma 1. When the primary signal is a BPSK-modulated signal and noise is a CSCG, the

decision rule in Eq. (4) is modified as follows:

Ej ¼
N σ2

η
,

1

L
σ
4
η

� �

N σ2
η
ð1þ γÞ,

1

L
ð1þ 2γÞσ4

η

� �

8

>

>

<

>

>

:

(5)

where γ ¼
σ2x
σ2
η

that is the SNR of the primary signal at the jth SU. The SNR is a constant in the

nonfading additive white Gaussian noise environment [25]. Here, we omit the subscript of j in

σ2
η, j, which denotes that index of SU, to simplify the notation.

Proof. For hypothesis H1, the mean μ1, j is expressed as

μ1, j ¼ σ2x þ σ2
η
¼ σ2

η
1þ

σ2x

σ2
η

 !

¼ ð1þ γÞσ2
η

(6)

From Boyed and Vandenberghe [26], variance σ21, j is

σ
2
1, j ¼

1

L
½EjxðtÞj4 þ EjηðtÞj4−ðσ2x−σ

2
η
Þ2� (7)

For a complex M-array quadrature amplitude modulation signal [27], EjxðtÞj4 is given as

EjxðtÞj4 ¼ 3−
2

5

ð4M−1Þ

ðM−1Þ

� �

σ
4
x (8)

For the BPSK signal [27], then we set M ¼ 4. By substituting the value M ¼ 4 into Eq. (8), we

obtain

EjxðtÞj4 ¼ σ
4
x (9)

For the CSCG noise signal [26], EjηðtÞj4 is given as

Superallocation and Cluster‐Based Cooperative Spectrum Sensing in 5G Cognitive Radio Network
http://dx.doi.org/10.5772/66047

199



EjηðtÞj4 ¼ 2σ4η (10)

Substituting the values EjxðtÞj4 and EjηðtÞj4 into Eq. (7), we obtain

σ21, j ¼
1

L
½σ4x þ 2σ4η−ðσ4x−2σ2xσ2η þ σ4ηÞ�

¼ 1

L
½σ4η þ 2σ2xσ

2
η� ¼

1

L
1þ 2

σ2x
σ2η

" #

σ4η

¼ 1

L
½1þ 2γ�σ4η:

(11)

For hypothesis H0, substituting the value σ2x ¼ 0 into Eq. (6), mean μ0, j is expressed as

μ0, j ¼ σ2η (12)

Again, substituting the value σ2x ¼ 0 into Eq. (7), variance σ20, j is expressed as

σ20, j ¼
1

L
½EjηðtÞj4−ðσ2ηÞ

2�

¼ 1

L
½2σ4η−σ4η�

¼ 1

L
σ4η

(13)

Then, we can have distributions of a decision statistic under null and alternative hypotheses as

in Eq. (5).

By the definition of a false alarm probability in a hypothesis testing with a decision statistic of

Ej depending on Ts, and a decision threshold of λj, the probability of false alarm for the jth SU

is given by

P
j
f ðTs, λjÞ ¼ Pr½Ej≥λjjH0�

¼ Q
λj−μ0, j
ffiffiffiffiffiffiffi

σ20, j

q

0

B

@

1

C

A

(14)

where QðxÞ is the Gaussian tail function given by QðxÞ ¼ 1
ffiffiffiffi

2π
p ∫ exp −

t2

2

� �

dt. Form Lemma 1,

the probability of false alarm under a CSCG noise is given by

P
j
f ðTs, λjÞ ¼ Q

λj

σ2η
−1

 !

ffiffiffiffiffiffiffiffiffi

TsFs
p

 !

(15)

By the definition of a probability of detection in hypothesis testing and Lemma 1, the detection

probability for the BPSK-modulated primary signal under a CSCG noise for the jth SU is given by
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P
j
dðTs, λjÞ ¼ Pr½Ej ≥ λjjH1�

¼ Q
λj−μ1, j
ffiffiffiffiffiffiffi

σ21, j

q

0

B

@

1

C

A

¼ Q
λj

σ2η
−γ−1

 ! ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TsFs
ð1þ 2γÞ

s !

(16)

The last equality is obtained by using Eq. (5).

With Eqs. (15) and (16), the probabilities of false alarm and the detection of the PU signal can

be calculated when the duration of sensing time Ts is given.

4. Cluster-based cooperative spectrum sensing in the 4G CRN

A general frame structure for the cluster-based cooperative spectrum sensing in the 4G CRN is

shown in Figure 3. With this frame structure, all local decisions are forwarded to the CHs in

the scheduled SU reporting time slots and are then forwarded to the FC in the scheduled CH

reporting time slots.

Lemma 2. In the cluster-based cooperative spectrum sensing in the 4G CRN, the N SUs in the

network adopted fixed sensing time slot Tcon
s are given by

Tcon
s ¼

1

Fsγ2

�

Q−1ðP
j
f Þ−Q

−1ðP
j
dÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ 2γÞ
q

�2

(17)

to sense the PU's signal with false alarm and detection probabilities of P
j
f and P

j
d, respectively.

Here, the superscript “con” means the conventional or 4G CRN.

Figure 3. A cluster-based cooperative spectrum sensing in a 4G CRN [18].
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Proof: We focus on the BPSK signal and CSCG noise. The probability of detection can be

obtained with Eq. (18) by using Eq. (17):

λj

σ2η
−γ−1

 !
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TsFs
ð1þ 2γÞ

s

¼ Q−1ðPj
dÞ (18)

From Eq. (15), the probability of false alarm can be obtained by

λj

σ2η
−1

 !

ffiffiffiffiffiffiffiffiffi

TsFs
p

¼ Q−1ðPj
f Þ : (19)

By substituting Eq. (19) into Eq. (18) and rewriting this equation, we have

Q−1ðPj
f Þ

ffiffiffiffiffiffiffiffiffi

TsFs
p −γ

 !

ffiffiffiffiffiffiffiffiffi

TsFs
p

¼ Q−1ðPj
dÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ 2γÞ
p

Q−1ðPj
f Þ−γ

ffiffiffiffiffiffiffiffiffi

TsFs
p

¼ Q−1ðPj
dÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ 2γÞ
p

ffiffiffiffiffiffiffiffiffi

TsFs
p

¼ 1

γ

�

Q−1ðPj
f Þ−Q−1ðPj

dÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ 2γÞ
q

�

Ts ¼
1

Fsγ2

�

Q−1ðPj
f Þ−Q−1ðPj

dÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ 2γÞ
q

�2

(20)

Defining the sensing time with the last equation in Eq. (20), i.e., Tcon
s ¼ Ts, we can meet the

requirement on false alarm and detection probabilities.

Because all SUs in k clusters have the same fixed sensing time slot, Tcon
s , the sensing perfor-

mances, i.e., false alarm and detection probabilities, depend on the SNR of an SU. Therefore,

sensing performance is not improved with a fixed sensing time slot. In addition, the reporting

time slots for the SU and the CH are not utilized by the 4G CRN.

5. Proposed superallocation and cluster-based cooperative spectrum

sensing in the 5G CRN

In the 4G CRN approach, sensing time slots, reporting time slots of SUs, and reporting time

slots of CHs are strictly divided as shown in Figure 3. Due to this rigid structure in the 4G

CRN approach, the reporting time slots of other SUs and CHs are not used for spectrum

sensing. However, these reporting time slots can be used in sensing the spectrum by other

SUs by scheduling sensing and reporting time slots effectively. To this end, a superallocation

and cluster-based cooperative spectrum sensing in the 5G CRN is proposed by increasing the

sensing time slot. In the proposed 5G CRN, each SU can obtain longer sensing time slot

because the other SU reporting times and the CH reporting times are merged to the SU sensing

time. Therefore, the sensing time slots for SUs in the proposed 5G CRN can be longer than

those in the 4G CRN.
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Figure 4 shows the proposed scheduling method of sensing and reporting time slots in the

superallocation for cluster-based cooperative spectrum sensing in the 5G CRN. In the figure,

SUnk means the kth SU in the nth cluster in the network. To explain the duration of sensing time

slot for SUnk, we can define the durations of the sensing and reporting time for SUnk with Tnk
s

and Tnk
r , respectively.

In this proposed scheme, the sensing time slot for the first SU in the first cluster, i.e., SU11, is

equal to the sensing time slot in the 4G CRN, i.e., T11
s ¼ Tcon

s ¼ Ts. Except for SU11, other SUs

can obtain longer sensing time slots by scheduling SU reporting slots followed by the reporting

slot for the CH of that cluster. With such a scheduling method, SUs can sense the spectrum

during the reporting time slots of other SUs and CHs. For example, the sensing time slot of

SU12, T
12
s is equal to the total duration of sensing time slot and the reporting time slot of the

SU11, i.e., T
12
s ¼ Ts þ T11

r . Similarly, T13
s becomes the sum of the sensing duration of SU12 and

the reporting duration of SU12, i.e., T
13
s ¼ T12

s þ T12
r ¼ Ts þ ∑

2

i¼1
T1i
r . Obviously, the relationship

of the sensing time slot T1ðjþ1Þ
s of the SU1 (j+1) with the sensing time slot and the reporting time

slot of the previous SUs can be given by

Figure 4. A superallocation and cluster-based cooperative spectrum sensing in the 5G CRN.
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T1ðjþ1Þ
s ¼ T1j

s þ T1j
r ¼ Ts þ ∑

j

i¼1
T1i
r (21)

for j ¼ 1, 2, 3, … Nc.

When Tprop
r ¼ T1j

r for j ¼ 1, 2, 3, …, Nc, the sensing time slot of the jth SU in the first cluster is

written as

T1j
s ¼ Ts þ ðj−1ÞTprop

r (22)

Therefore, T1j
s in the first cluster is greater than or equal to Tcon

s .

For SU in the other clusters, the reporting time slots of SUs in the previous clusters and that of

the previous CH can be used for a sensing time slot of SUs in the current cluster. Thus, Tnj
s is

given by

Tnj
s ¼ ∑

n−1

i¼1
TiNc
s þ ∑

k

i¼1
Tni
r

¼ ðn−1ÞðTs þNcT
prop
r þ T

prop
r,CHÞ þ Ts þ ðj−1ÞTprop

r

(23)

Here, T
prop
r,CH is the duration of the reporting time slot of a CH. Therefore, we can obtain longer

sensing time as the index of CH increases.

5.1. Local sensing

As shown in Eq. (16), the detection probability P
j
d is a function of parameters λj, γ, and TsFs.

For fixed Fs, γ and λj, P
j
d is a function of Ts, which can be represented as P

j
dðTsÞ.

Lemma 3. In the proposed cluster-based cooperative spectrum sensing in the 5G CRN, the N

SUs in the network adopts nonfixed sensing time slot Tnk
s (≥Tcon

s ) in Eq. (23) to sense the PU's

signal. Therefore, the sensing performance in the 5G CRN is improved over the 4G CRN.

Proof: Let P
j
dðconÞ and P

1j
dðpropÞ denote the probability of detection for the conventional and

proposed schemes, respectively. When SU belongs to the first cluster, the CH reporting time

slot is not included in its sensing time. Here, the subscript “prop” means the proposed scheme

in the 5G CRN.

Substituting the values of Ts and T1j
s into Eq. (16), we have

P
j

dðconÞðTs, λjÞ ¼ Q
λj

σ2η
−γ−1

 ! ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TsFs
ð1þ 2γÞ

s !

(24)

P
1j
dðpropÞðT

1j
s , λjÞ ¼ Q

λj

σ2η
−γ−1

 !

·

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�

Ts þ ðj−1Þ ·Tprop
r

	

· Fs

ð1þ 2γÞ

v

u

u

t

0

B

@

1

C

A
(25)
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When the sensing time T1j
s becomes longer, then obviously the detection probability P

j
dðpropÞ

increases. Hence, we show that

P
1j
dðpropÞ≥P

j
dðconÞ (26)

Because
�

Ts þ ðj−1Þ ·Tprop
r

	

≥Tcon
s for j ¼ 1, 2, 3, …, Nc. When j ¼ 1, then we obtain P

1j
dðpropÞ

¼ P
j

dðconÞ.

If SU is not included in the first cluster, P
nj
dðpropÞ denotes the probability of detection for the

proposed scheme. In this case, the sensing time slot includes the CH reporting time slots.

Substituting the value of Tnj
s into Eq. (16), we obtain

P
nj
dðpropÞðT

nj
s , λjÞ ¼ Q

λj

σ2η
−γ−1

 !

·

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�

ðn−1ÞðTs þNcT
prop
r þ T

prop
r,CHÞ þ Ts þ ðk−1ÞTprop

r

	

·Fs

ð1þ 2γÞ

v

u

u

t

0

B

@

1

C

A

(27)

Therefore, P
nj
dðpropÞðT

nj
s , λjÞ > P

ðn−1ÞNcþj
dðconÞ ðTs, λjÞ.

Each SU makes a local hard decision dhdj as follows.

dhdnj ¼
1, if P

nj

dðpropÞ > P
nj

f ðpropÞ

0, Otherwise

(

(28)

5.2. Cluster decision

At the nth CH, all local decisions dhdnj received from the SUs will be combined to make a cluster

decision Q
prop
d,n as follows:

Q
prop
d,n ¼

1, ∑
Nc

j¼1
dhdnj > ξ

0, Otherwise

8

<

:

(29)

where ξ is the threshold for the cluster decision.

5.3. Global decision

At the FC, all cluster decisions ðQ
prop
d,n Þ received will be combined to make a global decision ðGÞ

about the presence or the absence of the PU signal by using a τ-out-of-K rule as follows:

G ¼
1, if ∑

K

n¼1
Q

prop
d,n ≥τ : H1

0, Otherwise : H0

8

<

:

(30)
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where τ is the threshold for the global decision.

6. Simulation and result analysis

To evaluate the performance of the proposed cluster-based cooperative spectrum sensing in

the 5G CRN, Monte Carlo simulations were carried out under following conditions:

The number of SUs is 12.

The number of clusters is 3.

The number of SUs in each cluster is 4.

The durations of sensing, SU reporting, and CH reporting time slots are 1 ms.

Average SNR of each SU in a cluster is –17 dB.

The PU signal is a BPSK signal.

The noise in SUs is CSCG.

The number of samples is 300.

Figure 5. ROC curves of the proposed 5G scheme without cluster reporting time where C1#, C2#, and C3# mean the first,

second, and third clusters, respectively.
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First, the sensing performance of the proposed 5G and 4G cluster-based schemes, in terms of

receiver operating characteristic (ROC), was evaluated under a CSCG channel. In this simula-

tion, each SU conducts local sensing using equal gain combining (EGC).

Figures 5 and 6 show ROC curves for the proposed 5G cluster-based schemes without and

with cluster reporting time (RT), respectively. The proposed 5G scheme outperforms in the

detection of the PU compared with the 4G scheme because the proposed superallocation

technique can have longer sensing time than the 4G one. Test statistics (Eq. (25)) was consid-

ered for the proposed 5G scheme without reporting time for the cluster decision. In addition,

test statistics (Eq. (27)) was considered for the proposed 5G scheme with reporting time for the

cluster decision. When the index of the cluster increases from one to three, the detection

probability increases (Figures 7 and 8).

From the detection efficiency of cooperative spectrum sensing, the probability of detection is

0.8 and the probability of false alarm is 0.2. However, in the worst environment, we need the

probability of detection to be more than 0.9 and the probability of false alarm to be less than

0.1. In the 4G scheme, we can achieve these sensing performances with a longer sensing time

slot but the throughput of the 4G cognitive radio network decreases. In the proposed 5G CRN,

we can easily achieve more than 0.9 and less than 0.1 for the probabilities of detection and false

alarm, respectively, because SU reporting time and CH reporting time merge to sense the PU

signal without decreasing system throughput.

Figure 6. ROC curves of the proposed 5G scheme with cluster reporting time.
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Figure 7. ROC curves of the proposed 5G scheme without cluster reporting time and the 4G scheme.

Figure 8. ROC curves of the proposed 5G scheme with cluster reporting time and the 4G scheme.
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Second, the simulation was carried out under conditions whereby the SNRs of the PU's signal

at the nodes are from –28 to –10 dB. The ROC curves of the proposed 5G scheme without

Figure 9. ROC curves of the proposed 5G scheme without cluster reporting time and the 4G scheme where SNRs of the

PU's signal at the nodes are from –28 to –10 dB.

Figure 10. ROC curves of the proposed 5G scheme with cluster reporting time and the 4G scheme where SNRs of the PU's

signal at the nodes are from –28 dB to –10 dB.
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cluster reporting time and the 4G CRN are illustrated in Figure 9. For our proposed 5G CRN

scheme, it can be seen that the probability of detection increases as sensing time, Tnj
s , increases.

The ROC curves of the proposed 5G CRN scheme with cluster reporting time versus the 4G

scheme are shown in Figure 10. Figures 9 and 10 show that the probability of detection in the

proposed 5G scheme with cluster reporting time is better than the proposed 5G scheme

without cluster reporting time.

In Tables 1 and 2, the exact values of detection probabilities in the proposed 5G and 4G CRNs

are shown. The gain of sensing performance can be verified with the results. For example, the

proposed method with a cluster reporting time can detect the spectrum with nearly 100%

detection probability whereas the 4G one detects the PU's signal with 78% of detection prob-

ability in –10 dB SNR.

7. Conclusion

In this chapter, we propose the superallocation and cluster-based cooperative spectrum sens-

ing in a 5G CRN. The proposed 5G scheme can achieve better sensing performance in compar-

ison with the cluster-based cooperative spectrum sensing 4G cognitive radio network. By

rescheduling the reporting time slots of SUs and CHs, longer sensing durations are guaranteed

for SUs depending on the order of reporting times of SU and CH. With simulations, the gain of

performance is verified (Tables 1 and 2).

SNR –28 –26 –24 –22 –20 –18 –16 –14 –12 –10

4G scheme 0.516 0.5042 0.5119 0.5248 0.5295 0.5487 0.5933 0.6286 0.6994 0.7825

Proposed 5G

Scheme

Cluster 1 0.5073 0.5122 0.5209 0.5421 0.5473 0.5775 0.6290 0.6944 0.7810 0.8776

Cluster 2 0.5154 0.5208 0.5378 0.5533 0.5860 0.6408 0.7055 0.7973 0.9006 0.9747

Cluster 3 0.5149 0.5232 0.5453 0.5737 0.6061 0.6727 0.7507 0.8605 0.9528 0.9949

Global 0.5160 0.5324 0.5682 0.5968 0.6264 0.6957 0.7733 0.8896 0.9734 0.9965

Table 1. Probability of detection (PD) without cluster reporting time under SNR versus number of clusters.

SNR –28 –26 –24 –22 –20 –18 –16 –14 –12 –10

4G scheme 0.516 0.5042 0.5119 0.5248 0.5295 0.5487 0.5933 0.6286 0.6994 0.7825

Proposed 5G scheme Cluster 1 0.5112 0.5170 0.5207 0.5316 0.5517 0.5743 0.6342 0.6993 0.7883 0.8835

Cluster 2 0.5135 0.5236 0.5407 0.5628 0.5882 0.6445 0.7153 0.8217 0.9206 0.9844

Cluster 3 0.5205 0.5346 0.5474 0.5684 0.6191 0.6845 0.7728 0.8849 0.9625 0.9972

Global 0.5261 0.5460 0.5495 0.5790 0.6327 0.6963 0.7949 0.9093 0.9722 0.9995

Table 2. Probability of detection (PD) with cluster reporting time under SNR versus number of clusters.
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