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Abstract

In the large-scale distributed antenna system (LS-DAS), a large number of antenna
elements are densely deployed in a distributed way over the coverage area, and all the
signals are gathered at the cloud processor (CP) via dedicated fiber links for globally
joint processing. Intuitively, the LS-DAS can inherit the advantage of both large-scale
multiple-input-multiple-output (MIMO) and network densification; thus, it offers enor-
mous gains in terms of both energy efficiency (EE) and spectral efficiency (SE). However,
as the number of distributed antenna elements (DAEs) increases, the overhead for
acquiring the channel state information (CSI) will increase accordingly. Without perfect
CSI at the CP, which is the majority situation in practical applications due to limited
overhead, the claimed gain of LS-DAS cannot be achieved. To solve this problem, this
chapter considers a more practical case with only the long-term CSI including the path
loss and shadowing known at the CP. As the long-term channel fading usually varies
much more slowly than the short-term part, the system overhead can be easily con-
trolled under this framework. Then, the EE-oriented and SE-oriented power allocation
problems are formulated and solved by fractional programming (FP) and geometric
programming (GP) theories, respectively. It is observed that the performance gain with
only long-term CSI is still noticeable and, more importantly, it can be achieved with a
practical system cost.

Keywords: large-scale distributed antenna system (LS-DAS), energy efficiency (EE),
spectral efficiency (SE), long-term channel state information (CSI), fractional program-
ming (FP), geometric programming (GP)

1. Introduction

The large-scale distributed antenna system (LS-DAS) is a promising candidate technol-

ogy for the future 5G wireless network. In a LS-DAS, as shown in Figure 1, a large

number of distributed antenna elements (DAEs) are densely scattered over the coverage

area, and the signals from/to all the DAEs are gathered via dedicated fiber links, at the

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



cloud processor (CP), where the globally joint processing is performed [1, 2]. On one

hand, the LS-DAS can be regarded as a special large-scale multiple-input-multiple-out-

put (MIMO) system, as shown in Figure 2, with distributed deployment of antenna ele-

ments. On the other hand, it can be regarded as a special heterogeneous small-cell

network, as shown in Figure 3, with global inter-cell coordination. As a consequence, the

Figure 1. Illustration of a large-scale distributed antenna system.

Figure 2. Illustration of a traditional large-scale MIMO system.
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LS-DAS can inherit the advantage of both large-scale MIMO and network densification.

Notably, existing studies have already shown that it can offer enormous gains in terms

of both energy efficiency (EE) [3, 4] and spectral efficiency (SE) [5, 6].

Due to the distributed deployment of antenna elements, the average access distance of all the

mobile terminals (MTs) is reduced. Moreover, due to the global coordination among all the

DAEs, the multiplexing gain and diversity gain offered by multiple antenna elements can be

obtained [7–9]. These are the main reasons for high EE and SE offered by a LS-DAS. However,

to exploit the benefit of LS-DASs, the channel state information (CSI) is crucially required at

the CP [10, 11]. Without perfect CSI, the interference among different DAEs will become

intractable, and accordingly the system performance will be severely degraded.

In practical applications, the acquisition of full CSI would require an overwhelming amount of

system overhead, including the training symbols for channel estimation, the system backhaul

for CSI exchanging, and so on. Due to this point, in the literature, some researchers have

shown that the system cost of CSI is quite an important issue for evaluating and designing

multi-antenna systems. For example, in [12], it has been proved that the optimal number of

transmit antennas is equal to the channel coherence interval (CCI). Thus, it will become useless

to utilize more antennas than CCI under given channel dynamics. The authors of [13] particu-

larly focused on the cost of CSI for network MIMO systems; they have shown that the optimal

number of base stations that can be coordinated exists, which is mainly determined by the CCI

in both time and frequency domains. Particularly, for the massive MIMO in frequency division

duplex (FDD) mode, it is also very challenging to acquire full CSI at the base station side. In

[14], a one-bit feedback scheme was proposed by using a set of predefined precoding vectors.

The scheme only performs well in some specific cases, e.g., the multi-antenna channel follow-

ing one-ring model.

Figure 3. Illustration of a traditional heterogeneous small-cell network.
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In this chapter, we try to liberate the implementation of LS-DAS from the acquisition of full

CSI. We note that the channel of a LS-DAS usually consists of path loss, shadowing, and

Rayleigh fading [7–9]. Compared with Rayleigh fading, path loss and shadowing vary much

more slowly and can be estimated in a much longer interval than CCI. Thus, it requires a

controllable system overhead. In some of the existing studies, path loss and shadowing are

classified as large-scale CSI [4, 6]. To distinguish from the large-scale in LS-DAS, for clarity, we

here use long-term CSI to identify path loss and shadowing. With the knowledge of long-term

CSI, the achievable EE and SE will be particularly investigated in the sequel. Different from the

reported EE and SE with perfect CSI assumption, which actually cannot be achieved in most

practice, our results can be approached with a limited system cost; thus, it is of great signifi-

cance for the realistic implementation of LS-DASs.

In order to control the computational complexity at the CP, we first divide the whole system

into a number of virtual cells (VCs) [5, 15]. As shown in Figure 4, the VC is established in a

user-centric manner, i.e., each MT chooses only a subset of the surround DAEs for its data

transmission. Then, each MT is served by its own VC under the interference from other VCs.

To control the interference, the signals of all the VCs are designed in a coordinated fashion at

the CP while maximizing the EE or SE of the system. Given VCs, the EE-oriented and the SE-

oriented power allocation problems are formulated based on long-term CSI only, both of

which are non-convex problems, and thus are difficult to solve. By adopting the fractional

programming (FP) theory and the geometric programming (GP) theory, we propose two

iterative power allocation algorithms. These algorithms can derive the locally optimal EE and

SE of the system, respectively. It is further observed from the simulation results that the

Figure 4. Illustration of VCs.
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performance gain with only long-term CSI is still remarkable, while it can be achieved with a

practical system cost.

The rest of this chapter is organized as follows. The system model of a multiuser LS-DAS is

described in Section 2. In the subsequent Sections 3 and 4, the achievable EE and SE are

discussed, respectively. Then, we show the simulation results to verify the superiority of the

proposed schemes in Section 5. Finally, the conclusion of this chapter is drawn in Section 6.

Notations: In denotes an identity matrix with a dimension of n, and O is a zero matrix. ð:ÞH

represents the conjugate transpose operation. ℂM·N denotes the set of complexM ·Nmatrices,

and CN represents a complex Gaussian distribution. Eð:Þ represents the expectation operator,

and trð�Þ represents the trace operator.

2. System Model

We consider a LS-DAS with K MTs. Without loss of generality, all the VCs consist of N DAEs,

and the number of antenna elements equipped at each MT is M.

For MT k, the received signal is

yðkÞ ¼ HðkÞxðkÞ þ ∑
K

i¼1;i≠k
Hðk;iÞxðiÞ þ nðkÞ

; (1)

where HðkÞ
∈ℂ

M ·N
; k ¼ 1; 2; :::;K; represents the channel between the DAEs in VC k and MT k,

Hðk;iÞ
∈ℂ

M·N
; k ¼ 1; 2; :::;K; i ¼ 1; 2; :::;K; denotes the channel between the DAEs in VC i and

MT k, xðiÞ∈ℂN · 1
; i ¼ 1; 2; :::;K, is the transmitted signal vector for MT i, and

nðkÞ
∈ℂ

M· 1
; k ¼ 1; 2; :::;K, denotes the additive white Gaussian noise with distribution

CN ð0;σ
2IMÞ.

E xðkÞxðkÞ
H

h i

¼ PðkÞ ¼
p
ðkÞ
1

⋱

p
ðkÞ
N

2

4

3

5

; k ¼ 1; :::;K: (2)

Assuming a total transmit power constraint PðkÞ
max for MT k, we set

∑
N

n¼1
pðkÞn ≤PðkÞ

max: (3)

The channel matrix can be modeled as

Hðk;iÞ ¼ Sðk;iÞLðk;iÞ
; (4)

where Sðk;iÞ and Lðk;iÞ reflect the short-term fading and the long-term fading, respectively.

Particularly, the entries of Sðk;iÞ are all independent and identically distributed (i.i.d.) circular

symmetric complex Gaussian variables following CN ð0; 1Þ distribution.
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L
ðk;iÞ ¼

l
ðk;iÞ
1

⋱

l
ðk;iÞ
N

2

4

3

5

; (5)

with

lðk;iÞn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�

Dðk;iÞ
n

�−γ

Sðk;iÞn

r

; n ¼ 1; 2; :::;N; (6)

where Dðk;iÞ
n is the transmission distance between the DAE n in VC i and MT k, and γ is the path

loss exponent, and Sðk;iÞn represents the shadow fading caused by large objects such as tall

buildings or walls.

3. Achievable Ee

Given perfect CSI, the authors of [16] have proposed an energy-efficient power allocation

scheme for traditional DASs. In [17], further taking the inter-VC interference into consider-

ation, an iterative power allocation scheme was presented to improve the EE of a LS-DAS, via

applying the successive Taylor expansion method. In contrast, we investigate the achievable

EE with the long-term CSI only in this section.

First of all, the sum rate of the system can be derived according to Eq. (1) as

R ¼ ∑
K

k¼1
log2 det IM þ

H
ðkÞ
P
ðkÞ
H

ðkÞH

σ2k

 !

; (7)

where

σ2k ¼ ∑
i¼1; i≠k K

∑
N

n¼1
½lðk;iÞn �2pðiÞn þ σ2; (8)

is the total interference-plus-noise power at MT k.

When only the long-term CSI is known, the average sum rate can be calculated via taking

expectation over the short-term channel fading Ω ¼ fSðkÞjk ¼ 1;…;Kg as

R ¼ ∑
K

k¼1
EΩ log2 det IM þ

H
ðkÞ
P
ðkÞ
H

ðkÞH

σ2k

 !" #

: (9)

Then, the EE of the system, denoted as η, can be derived as
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η ¼
R

ρ ∑
K

k¼1
∑
N

n¼1
p
ðkÞ
n þ Pc

; (10)

where

ρ ¼
ε

γ
; (11)

with ε and γ denoting the peak-to-average power ratio and the power amplifier efficiency,

respectively, and Pc denotes the circuit power consumption [4].

In order to investigate the achievable EE under this framework, we formulate the following

optimization problem:

max η (12a)

s:t: ∑
N

n¼1
pðkÞn ≤ PðkÞ

max; (12b)

pðkÞn ≥ 0; k ¼ 1;…; K; n ¼ 1,…; N: (12c)

Because of the non-convexity of R, the problem shown in Eq. (12) is a complicated non-convex

problem [18]. To simplify it, we introduce an upper bound to the objective function as

η̂ ¼

∑
K

k¼1
log2 det IN þ

MP
ðkÞ

�

L
ðkÞ

�2

σ2
k

0

B

@

1

C

A

ρ ∑
K

k¼1
∑
N

n¼1
p
ðkÞ
n þ Pc

; (13)

the numerator of which is an upper bound to R [10]. Accordingly, the problem in Eq. (12) can

be reformulated as

max η̂ (14a)

s:t: ∑
N

n¼1
pðkÞn ≤ PðkÞ

max; (14b)

pðkÞn ≥ 0; k ¼ 1;…; K; n ¼ 1,…; N: (14c)

which is simpler than Eq. (12). However, it is still non-convex [18]. To further solve the

problem in Eq. (14), we express

Achievable Energy Efficiency and Spectral Efficiency of Large‐Scale Distributed Antenna Systems
http://dx.doi.org/10.5772/66049

127



η̂ ¼
f 1−f 2

ρ ∑
K

k¼1
∑
N

n¼1
p
ðkÞ
n þ Pc

; (15)

where

f 1 ¼ ∑
K

k¼1
log2 det

�

σ
2
kIN þMP

ðkÞ
L
ðkÞ2

�

; (16a)

f 2 ¼ ∑
K

k¼1
Nlog2ðσ

2
kÞ; (16b)

both of which are clearly concave functions.

We find that if the numerator of η̂, i.e., f 1−f 2, can be transformed into a concave form, the

problem in Eq. (14) can be recast as a quasi-concave fractional programming problem, further

considering the linearity of its denominator [19]. Toward this end, we linearize f 2 by applying

the first-order Taylor expansion at a given point P as

~f 2ðPjPÞ ¼ ∑
K

k¼1
Nlog2

�

σ
2
kðPÞ

�

þ log
2
ðeÞ ∑

K

k¼1

N

σ2kðPÞ
trðGk½P−P�Þ; (17)

where P ¼ fPð1Þ
;…;P

ðkÞg and

Gk ¼ diagfGðk;1Þ
;…;G

ðk;KÞg; (18a)

G
ðk;iÞ ¼

�

L
ðk;iÞ

�2

; k≠i; k; i ¼ 1;…;K; (18b)

G
ðk;kÞ ¼ O: (18c)

By substituting ~f 2ðPjPÞ for f 2ðPÞ, the problem in Eq. (14) can be approximated as

max η ¼
f 1ðPÞ−

~f 2ðPjPÞ

ρ ∑
K

k¼1
∑
N

n¼1
p
ðkÞ
n þ Pc

(19a)

s:t: ∑
N

n¼1
pðkÞn ≤ PðkÞ

max; (19b)

pðkÞn ≥ 0; k ¼ 1;…; K; n ¼ 1,…; N; (19c)

whose objective function is fortunately fractional with concave numerator and convex denomi-

nator [18]. Adopting the FP theory, the problem in Eq. (19) can be optimally solved in an iterative

way. In our previous paper [4], we have shown in detail how to solve the problem in Eq. (19). In

the following, for brevity, we just present the basic idea and procedure of the iterative algorithm.
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We use t≥1 and s≥1 to denote the successive Taylor expansion iteration step and the FP iteration

step, respectively. After introducing a positive variable ω, the following concave optimization

problem can be formulated

max vðPjPt−1;s−1;ωÞ (20a)

s:t: ∑
N

n¼1
pðkÞn ≤ PðkÞ

max; (20b)

pðkÞn ≥0; k ¼ 1;…; K; n ¼ 1,…; N; (20c)

where

vðPjPt−1;s−1;ωÞ ¼ f 1ðPÞ−
~f 2ðPjPt−1;s−1Þ−ωρ ∑

K

k¼1
∑
N

n¼1
pðkÞn −ωPc: (21)

Further define

VðωÞ ¼ max vðPjPt−1;s−1;ωÞ; (22)

Algorithm 1 Iterative power allocation for maximizing EE.

1. Initialization: P0 ¼ diagfP
ð1Þ
0 ;⋯;P

ðKÞ
0 g with P

ðkÞ
0 ¼ P

ðkÞ
max

N IN , k ¼ 1; :::;K, P
ðkÞ
0;0 ¼ P

ðkÞ
0 , k ¼ 1; :::;K,

ω ¼ 0, and ξ ¼ 1· 10−3, δ ¼ 1 · 10−3, t ¼ 1;s ¼ 1;

2. Solve Eq. (20), and denote the obtained power matrix by P
ðkÞ
0;1, k ¼ 1; :::;K, set P

ðkÞ
1 ¼ P

ðkÞ
0;1,

k ¼ 1; :::;K, and P1 ¼ diagfP
ð1Þ
1 ;⋯;P

ðKÞ
1 g;

3. while jη̂ðPtÞ−η̂ðPt−1Þj=η̂ðPt−1Þ > ξ do

4. t ¼ tþ 1, s ¼ 1, and ω ¼ 0;

5. P
ðkÞ
t−1;0 ¼ P

ðkÞ
t−1, k ¼ 1; :::;K;

6. Solve Eq. (20), derived VðωÞ and denote the obtained power matrix by P
ðkÞ
t−1;1, k ¼ 1; :::;K;

7. while VðωÞ > δ do

8. ω ¼ η
�

P
ðkÞ
t−1;sjP

ðkÞ
t−1

�

;

9. s ¼ sþ 1;

10. Solve Eq. (20), derived VðωÞ and denote the obtained power matrix by P
ðkÞ
t−1;s, k ¼ 1; :::;K;

11. end while
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12. P
ðkÞ
t ¼ P

ðkÞ
t−1;s, k ¼ 1; :::;K, and Pt ¼ diagfP

ð1Þ
t ;⋯;P

ðKÞ
t g;

13. end while

14. Output: Pt.

we can propose an iterative power allocation algorithm for maximizing EE, as described in

Algorithm 1. By adopting Algorithm 1, the achievable EE with long-term CSI only can be

derived with low computational complexity [4].

4. Achievable Se

For traditional single-cell DASs, the achievable SE was studied in [20, 21], which by consid-

ering the general DAS with random antenna layout has identified that DAS outperforms

colocated multi-antenna systems. In [22], the authors have taken the inter-cell interference

into consideration, and they have presented a close-form expression for the achievable EE in

a multi-cell environment. However, this work has not considered interference coordination.

The authors of [23] took a step further; they have put forward a coordinated power alloca-

tion scheme for dealing with the inter-cell interference. Nevertheless, the result was derived

by approximately treating the inter-cell interference as Gaussian noise, and thus it is only

applicable to the low signal-to-noise-ratio (SNR) situation. In a recent work, the SE of single-

cell multiuser LS-DAS was studied [24]. It however also has not considered interference

coordination, which is in general inevitable in most practical applications. Different from all

the above existing studies, in this section, we investigate the achievable SE of a LS-DAS with

long-term CSI only.

With the target of average system sum rate maximization, the problem of SE-oriented power

allocation can be formulated as

max R (23a)

s:t: ∑
N

n¼1
pðkÞn ≤PðkÞ

max; (23b)

pðkÞn ≥0; k ¼ 1; :::; K; n ¼ 1; :::;N: (23c)

As R is non-convex, this problem is complicatedly non-convex [18]. Besides, the objective

function is actually in an integral form as a result of the expectation operator in R, and it

cannot be directly expressed in a compact closed form, which renders it even more challenging

to obtain the optimal solution of Eq. (23).

We try to simplify the formulated problem. To this end, a closed-form approximation for the

average system sum rate R is leveraged as
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Rap ¼ ∑
K

k¼1
∑
N

n¼1
log2 1þ

½lðkÞn �2pðkÞn ϒ
−1
k M

σ
2
k

 !

þM ∑
K

k¼1
log2ðϒ kÞ−M ∑

K

k¼1
log2eð1−ϒ

−1
k Þ;

(24)

where ϒ k satisfies

ϒ k ¼ 1þ ∑
N

n¼1

½lðkÞn �2pðkÞn

σ
2
k þ ½lðkÞn �2p

ðkÞ
n ϒ

−1
k M

; k ¼ 1; ::;K: (25)

This approximation can be derived through using the random matrix theory [10], and the

introduced parameter ϒ k can be calculated in an iterative way as shown in the following

Algorithm 2.

According to the existing studies [10], Rap is quite a precise approximation for R. Therefore,

we directly use it as the objective function, and the joint power allocation problem can be

recast as

max Rap (26a)

s:t: ∑
N

n¼1
pðkÞn ≤PðkÞ

max; (26b)

pðkÞn ≥0; k ¼ 1; :::;K; n ¼ 1; :::;N; (26c)

which is much simplified. However, due to the non-convexity of Rap [18], the new problem in

Eq. (26) is still non-convex. In the following, we explore the achievable SE of the system by

contriving an iterative algorithm, which can find a locally optimal solution of Eq. (26) effi-

ciently.

To eliminate the effect of the introduced parameters ϒ1, ϒ2, :::, ϒK, we first fix ϒ1, ϒ 2, :::, ϒK as

constants. Then we can equivalently simplify the objective function in Eq. (26) as

R
0

ap ¼ ∑
K

k¼1
∑
N

n¼1
log2 1þ

½lðkÞn �2pðkÞn ϒ
−1
k M

σ
2
k

 !

: (27)

As log2ð�Þ is monotonically increasing, the problem shown in Eq. (26) can be equivalently

transformed into

min ∏
K

k¼1

∏
N

n¼1

σ
2
k

σ
2
k þ ½lðkÞn �2p

ðkÞ
n ϒ

−1
k M

(28a)

s:t: ∑
N

n¼1
pðkÞn ≤PðkÞ

max; (28b)
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pðkÞn ≥0; k ¼ 1; :::;K; n ¼ 1; :::;N: (28c)

Define

f n;kðPÞ ¼ σ
2
kðPÞ þ ½l

ðkÞ
n �2pðkÞn ϒ

−1
k M ¼ ∑

K

i¼1;i≠k
∑
N

j¼1
g
ðk;iÞ
j ðPÞ þ gðkÞn ðPÞ þ σ

2;

n ¼ 1; :::;N;k ¼ 1; :::;K;

(29)

where

g
ðk;iÞ
j ðPÞ ¼ ½l

ðk;iÞ
j �2p

ðiÞ
j ; k≠i; (30)

gðkÞn ðPÞ ¼ ½lðkÞn �2pðkÞn ϒ
−1
k M; (31)

and then, given a feasible point P, an approximation of f n;kðPÞ can be obtained as

~f n;kðPjPÞ ¼ ∏
K

i¼1;i≠k

∏
N

j¼1

g
ðk;iÞ
j ðPÞ

α
ðk;iÞ
n;j

0

@

1

A

α
ðk;iÞ

n;j

0

B

@

1

C

A
·

gðkÞn ðPÞ

α
ðkÞ
n;n

 !

α
ðkÞ
n;n

·

σ
2

α
0
n;k

 !

α
0
n;k

; (32)

where

α
ðk;iÞ
n;j ¼ g

ðk;iÞ
j ðPÞ=f n;kðPÞ; (33)

α
ðkÞ
n;n ¼ gðkÞn ðPÞ=f n;kðPÞ; (34)

α
0
n;k ¼ σ

2=f n;kðPÞ: (35)

By using the inequality of arithmetic and geometric means, it is easy to obtain that

f n;kðPÞ≥
~f n;kðPjPÞ: (36)

The equality holds if and only if

P ¼ P: (37)

By replacing f n;kðPÞ with ~f n;kðPjPÞ, the problem in Eq. (28) can be recast as

min ∏
K

k¼1

∏
N

n¼1

σ
2
k

~f n;k
ðPÞ (38a)

s:t: ∑
N

n¼1
pðkÞn ≤PðkÞ

max; (38b)

pðkÞn ≥0; k ¼ 1; :::;K; n ¼ 1; :::;N; (38c)
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which is a good approximation for the original problem in the neighborhood of P. More

importantly, it is a standard GP problem [25]; thus, it can be efficiently solved via convex

optimization tools, e.g., the interior point algorithm [18].

We use t≥1 and s≥1 to denote the updating iteration step of ϒ k and the arithmetic-to-geometric

approximation iteration step, respectively. Then the following convex optimization problem is

derived

min ∏
K

k¼1

∏
N

n¼1

σ2k

~f n;k

ðPjPs−1
;ϒ

t
kÞ (39a)

s:t: ∑
N

n¼1
pðkÞn ≤PðkÞ

max; (39b)

pðkÞn ≥0;k ¼ 1; :::;K;n ¼ 1; :::;N: (39c)

Accordingly, we propose an iterative power allocation algorithm for maximizing SE as

described in Algorithm 2. In the algorithm, ϒ k;k ¼ 1; :::;K and P are updated in an alternate

way. By adopting the algorithm, the achievable SE with long-term CSI only can be derived

with low computational complexity [6].

5. Simulation Results

In this section, we illustrate the EE and SE performance of the proposed schemes by simula-

tions. To be general, we consider a circular coverage area with a radius of 500 m. There are 20

DAEs randomly deployed in the coverage area with a two-dimension uniform distribution.

The number of MTs is set as K ¼ 3. The number of antenna elements equipped at each MT is

set as M ¼ 3. In order to fully exploit the spatial degree of freedom of each MT and, in the

meantime, well control the system complexity, we set the size of each VC as N ¼ M ¼ 3. As for

the channel parameters, we set γ ¼ 4 (path loss exponent), σ2 ¼ −107 dBm (noise power), and

the shadowing standard deviation is 8 dB. Without loss of generality, we consider the same

transmit power constraint for all MTs, i.e., Pð1Þ
max ¼ Pð2Þ

max ¼ Pð3Þ
max. Particularly, 100 randomly

selected system topologies are considered in the simulation, and the averaged results are

shown in the following.

First, the achievable EE of different schemes is compared in Figure 5. Both the scheme

presented in reference [16] and the simplest equal power allocation scheme are considered. It

can be seen from Figure 5 that the proposed scheme outperforms the other ones, especially

when the transmit power constraint goes larger. The scheme proposed in [16] has not consid-

ered interference coordination; thus, in a multi-VC setting, its performance is worse than the

proposed scheme, although it has assumed the perfect CSI as the CP. In contrast, although

using the long-term CSI only, the proposed scheme can still offer the highest EE performance.

We can also observe from Figure 5 that the key point for high EE is to set proper transmit

power, i.e., when the transmit power has reached a corresponding point, it should no longer be
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increased even though the power consumption constraint goes larger. Intuitively, this observa-

tion can be explained by the fact that when the transmit power goes larger, the sum rate gain

will become smaller and smaller due to the impact of interference; thus, the EE of the scheme

will fall instead of rising.

Algorithm 2 Iterative power allocation for maximizing SE.

1. Initialization: Set P0 ¼ f½p
ð1Þ
1 �0;½p

ð1Þ
2 �0; :::;½p

ðKÞ
N �0g, where ½pðkÞn �0 ¼ P

ðkÞ
max

N , k ¼ 1; :::;K, n ¼ 1; :::;N,

and ε ¼ 1· 10−4, δ ¼ 1 · 10−3, s ¼ 1;

2. for k ¼ 1 to K do

3. t ¼ 1;

4. ϒ
0
k ¼ 1;

5. ϒ
1
k ¼ 1þ ∑N

n¼1
½l
ðkÞ
n �2½p

ðkÞ
n �0

σ2
k
ðP0Þþ½l

ðkÞ
n �2½p

ðkÞ
n �0½ϒ0

k �
−1M

;

6. while jϒ t
k−ϒ

t−1
k j > ε do

7. t ¼ tþ 1;

8. ϒ
t
k ¼ 1þ ∑N

n¼1
½l
ðkÞ
n �2 ½p

ðkÞ
n �0

σ2
k
ðP0Þþ½l

ðkÞ
n �2½p

ðkÞ
n �0½ϒ t−1

k �−1M
;

9. end while

10. Output ϒ
0

k ¼ ϒ
t
k;k ¼ 1; :::;K:

11. end for

Figure 5. Comparison of achievable EE by different schemes.
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12. Solve Eq. (39) with ϒ k ¼ ϒ
0

k;k ¼ 1; :::;K, and denote the obtained power matrix by P1;

13. while jRapðP
sÞ−RapðP

s−1Þj=RapðP
s−1Þ > δ do

14. for k ¼ 1 to K do

15. t ¼ 1;

16. ϒ
0
k ¼ 1;

17. ϒ
1
k ¼ 1þ ∑N

n¼1
½l
ðkÞ
n �2 ½p

ðkÞ
n �s

σ2
k
ðPsÞþ½l

ðkÞ
n �2½p

ðkÞ
n �s½ϒ0

k �
−1M

;

18. while jϒ t
k−ϒ

t−1
k j > do

19. t ¼ tþ 1;

20. ϒ
t
k ¼ 1þ ∑N

n¼1
½l
ðkÞ
n �2½p

ðkÞ
n �s

σ2
k
ðPsÞþ½l

ðkÞ
n �2½p

ðkÞ
n �s½ϒ t−1

k �−1M
;

21. end while

22. Output ϒ
0

k ¼ ϒ
t
k;k ¼ 1; :::;K:

23. end for

24. s ¼ sþ 1;

25. Solve Eq. (39) with ϒ k ¼ ϒ
0

k;k ¼ 1; :::;K, and denote the obtained power matrix by26: Ps;

26. end while

27. Output: Ps.

Figure 6. Comparison of achievable SE by different schemes.
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Then, we evaluate the performance of the proposed scheme in terms of achievable SE. The

scheme presented in reference [23] and equal power allocation scheme are taken into compar-

ison. The results are shown in Figure 6. We can find that the proposed scheme performs the

best among the three schemes. The scheme presented in [23] is only applicable to the low SNR

condition; thus, the performance gas between it and the proposed scheme goes larger when

the transmit power constraint increases, which implies that the impact of inter-VC interference

becomes bigger. The results identify that it is still effective for enhancing the SE of the system

when only the long-term CSI is available.

Figure 7. Histogram of the number of iteration steps for Algorithm 1.

Figure 8. Histogram of the number of iteration steps for Algorithm 2.
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According to the discussion in [4, 6], the proposed Algorithms 1 and 2 are assured to converge

to a local optimum. The histogram of the number of iteration steps is illustrated in Figures 7

and 8, for Algorithms 1 and 2, respectively. We can observe from the figures that 15 iteration

steps are enough for the convergence of Algorithm 1 and that for Algorithm 2 is 11.

6. Conclusions

The LS-DAS is a promising candidate technology for the future 5G wireless network, due to its

remarkable gains in terms of both EE and SE. In this chapter, we try to liberate the implemen-

tation of LS-DAS from the acquisition of full CSI. With the knowledge of long-term CSI,

including the path loss and shadow fading, the achievable EE and SE have been investigated.

Different from the reported EE and SE with perfect CSI condition, which actually cannot be

achieved in most practice, our results can be achieved with a limited system cost; thus, it is of

great significance for the realistic implementation of LS-DASs. We also use the concept of VC

to control the computational complexity at the CP. Accordingly, we design the transmit power

of all the VCs in a coordinated fashion, to control the interference and finally maximize EE or

SE of the system. Particularly, the EE-oriented and the SE-oriented power allocation problems

are formulated based on long-term CSI only, both of which are non-convex problems, and thus

are difficult to solve. By adopting the FP theory and the GP theory, we propose two iterative

power allocation algorithms. These algorithms can derive the locally optimal EE and SE of the

system, respectively. It is further observed from the simulation results that the performance

gain with only long-term CSI is still remarkable, while it can be achieved with a practical

system overhead.
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