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Abstract

Splicing is a critical step in gene expression, responsible for the excision of introns,
producing the mature form of mRNA. Also, the possible arrangements of exons enlarge
the proteome in 80%, enabling one gene to encode more than one protein isoform, thus
increasing proteome. Growing data show deregulation of splicing events in cancer,
being breast cancer the most studied. This aberrant pattern of splicing has an important
role in breast tumor progression. These alterations are mainly caused by misexpression
of some critical alternative splicing factors. The behavior of these splicing factors is
implicated with important clinical features, such as chemoresistance, aggressiveness,
and also metastases. In this chapter, the role of five splicing factors is discussed in the
light of relevant data about in vitro, in vivo, and ex vivo studies to construct a represen‐
tative scheme of their behavior in breast cancer progression. Although the presented
five splicing factors have important role in breast cancer, only three of them (ESRP1,
RBFOX2,  and  SRSF1)  have  a  more  prominent  role  in  tumorigenesis  and  tumor
progression. These concepts will elucidate their role in tumorigenesis and a prospective
use as biomarkers in breast cancer.

Keywords: breast cancer, aberrant splicing, tumor progression, splicing program,
splicing factors
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1. Introduction

1.1. Breast cancer: subtypes and epidemiology

Breast cancer is the most frequently diagnosed cancer and the leading cause of cancer death
among women worldwide, with an estimated 1.7 million cases and 521,900 deaths in 2012 and
accounts for 25% of all cancer cases and 15% of all cancer deaths among women [1]. The USA
government expected 232,670 new cases of breast cancer in 2014, representing 29% of all cancers
in women. Also, breast cancer represents 15% of all women cancer deaths [2].

If diagnosed in the initial stage, breast cancer is curable. However, at advanced stage, it is
almost incurable. Actually, late diagnosis is one of the main factors that contribute to the poor
prognosis of breast cancer patients [2].

Clinically, this heterogeneous disease is divided in three basic therapeutic categories: hormonal
receptor‐positive (ER/PR‐positive; luminal A and luminal B), the most common and numerous,
with several prognostic tests for hormonal‐based therapy‐treated patients; HER2/neu+ or
ERBB2+, with poor prognostic, but with target therapy, there is an improve in survival; and the
triple‐negative breast cancers (ER‐negative, PR‐negative, and HER2/neu‐negative), with seven
subtypes, the majority is aggressive, its treatment is more limited principally with chemother‐
apy, and has an incidence associated with mutated BRCA1 lineage or African ascendancy [3].
Another category, recently classified, was denominated as claudin‐low, which is also triple‐
negative, but with low expression of proteins of cell‐to‐cell junctions, especially tight junctions,
making it a highly infiltrating tumor [4].

1.2. Spliceosome and splicing: molecular basis of a critical event

All eukaryotic genes contain intragenic regions (introns), that usually not encode expression
sequence to produce proteins, and expression regions (exons), that are the responsible for
encoding expression sequence to produce proteins. Therefore, when expressing a gene, it is
important to remove (excising) introns and the constitutive splicing is the event responsible
for this event. In addition, approximately 95% of human genes encodes more than one protein
isoform. This is achieved by differentially splicing the exons of the gene, called alternative
exons, by alternative splicing. Importantly, alternative splicing is responsible for about 80% of
gene variability [5].

Splicing is performed by the spliceosome, a core complex formed by five subcomplexes of
snRNPs (small nuclear ribonucleoproteins), called U1, U2, U4/5 (always present as a bi‐sub‐
complex), and U6 (U from uracil rich), and they participate in different steps during splic‐
ing. Several spliceosome‐associated proteins, named splicing factors, coordinate the
constitutive and alternative splicing. Alternative and constitutive splicing operate through a
combination of positive and negative signals, called silencers and enhancers (cis‐acting sig‐
nals), present in the pre‐mRNA (premature RNA) that are recognized by several splicing
factors (trans‐acting factors). In addition to cis‐acting signals and trans‐acting factors to
splicing be exerted, the integrity of DNA and epigenetic changes (e.g. histone post‐transla‐
tional modifications) are important for physiological splicing as they can alter, or dictate,
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transcription rate and interaction of a splicing core complex and splicing factors, with the
transcript and nucleosome [6, 7].

The most studied alternative splicing factors are the proteins of the SR (serine/arginine rich
proteins) family, and hnRNP (heterogeneous nuclear ribonucleoproteins). These two types of
proteins have RNA recognition motifs (RRM) and other domains that allow protein‐protein
and RNA‐protein interactions during splicing [5].

1.3. Understanding the splicing factor stoichiometric relationship

As mentioned above, splicing factors can interact with proteins and RNA. Each splicing factor
can recognize a different RNA sequence, therefore each splicing factor participates in the pre‐
mRNA excision (splicing) of a specific group of genes. Thus, the action spectra of each splicing
factor are limited [5].

Many splicing factors are involved in the alternative splicing of a same pre‐mRNA. For
example, FGFR2 (fibroblast growth factor receptor 2 gene) pre‐mRNA has a UGCAUG
sequence in the exon IIIc; this sequence is recognized by the splicing factor RBFOX2 in the exon
IIIc, but, upstream to exon IIIc exists another sequence (CUGGGA) the SRSF1 splicing factor.
The resulting interaction will dictate the resulting isoform: the IIIc (mesenchymal) or IIIb
(epithelial) transcript isoform of FGFR2. Notwithstanding, the splicing factor hnRNP H/F
recognizes the GGG sequence that is within the sequence (CUGGGGA) that SRSF1 recognizes,
and inhibits the alternative splicing (exon IIIc inclusion). In addition, RBFOX2 interacts with
hnRNP H/F. Thus, an interactive network is formed by these four splicing factors in a stoi‐
chiometric and competitive manner, depending on the expression levels of each splicing factor.
Also, these splicing factors that compete by the same RNA region (SRSF1, hnRNP F/H) bind
with different affinities [8].

Not only is the stoichiometric relationship important to dictate production of transcript iso‐
form production but the localization of the splicing factor network is critical to alternative
splicing. In the cited example (FGFR2 alternative splicing), when the RBFOX2‐hnRNP H/F
network associates downstream of the exon IIIc, the splicing factors act toward alternative
splicing, but they act as alternative splicing suppressors when associated upstream of the
exon [8].

In summary, the association site of splicing factors determines the transcript destiny (constit‐
utive, alternative or even aberrant, truncated, or degraded) [5]. However, how the splicing
pattern of a cell is governed? Some studies elucidated whether splicing program is specific for
each cell. The knowledge about this matter may help to understand why cancer cell presents
such an aberrant splicing pattern.

1.4. Regulating the expression and activity of splicing factors

The relationship between splicing factors is mainly stoichiometric, and the expression levels
of the splicing factors determine the expression of a dominant isoform of a transcript. Thus,
one important question is raised: how the expression and activity of the splicing factors
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determined? Like other proteins by specific stimuli. For example, the activation and activity
level of SR splicing factors are determined by their phosphorylation state (hypo‐ or hyper‐
phosphorylation) [14, 15], and the splicing activity depends on proper de novo phosphorylation
and dephosphorylation [16–18]. One well‐known stimulus is the activation of Ser/Arg‐rich
protein kinase 1 by AKT [19]. The AKT signaling pathway is activated by epidermal growth
factor signaling [20]. Another example is the phosphorylation of SAM68 by MAPK, which
regulates the CD44 alternative splicing [21]. Similar stimuli are important for regulating the
levels of splicing factors and for noncoding RNA, mainly miRNA [22–25]. Therefore, regula‐
tion of splicing factor expression and activity, according to their own properties, is similar to
other genes and proteins.

1.5. Understanding the splicing programs in physio(patho)logical contexts

The knowledge about the cellular splicing pattern (splicing program), that is, the production
of cell‐specific transcript isoform, consequently cell‐specific protein isoforms, help to under‐
stand cell programming and fate, and, by extension, tumor fate.

The splicing pattern of pluripotent cells differs from a differentiated cell. During differentia‐
tion, the transcripts are differentially spliced, generating different isoforms (splicing shift). In
addition, some splicing factors are differentially expressed. Nevertheless, induction of
pluripotent cells from adult cells reverts the splicing program features. Also, the ectopic
regulation of the splicing factors that govern the splicing shift results in an effectively splicing
program shift [9].

These characteristics, that is, the regulation of cellular differentiation‐specific splicing program
by specific splicing factors, also occur in tissue‐specific cells. It is now understood that the
major cell types (epithelial, endothelial, and mesenchymal cells) have a common splicing
program among these cell types of different organs, but a different splicing program among
these cell types, and at least one main splicing factor governs each splicing program (ESRP1,
PTBP1, and RBFOX2 for epithelial, endothelial, and mesenchymal cells, respectively). Not‐
withstanding, the cell type‐specific splicing programs observed in these cell types may be
controlled by a balanced expression of antagonist splicing factors, as well as antagonistic
interactions between these three main splicing factors (ESRPs, RBFOX2, and PTBP1) [10].

Another important characteristic in physiologic splicing program regulation is the splicing
shift and balance in cellular reprogramming, such as EMT (epithelial‐to‐mesenchymal
transition). When EMT is triggered in epithelial cells, which have a high epithelial splicing
program/low mesenchymal splicing program ratio, a balance is created by a splicing program
switch. These cells express higher levels of RBFOX2 and have several splicing features similar
to mesenchymal cells [11].

In carcinoma cells, a similar pattern is observed. These cells commonly have an epithelial
splicing program/mesenchymal splicing program ratio resembling their phenotype, that is, a
cell with lower epithelial features and high mesenchymal features has a lower epithelial
splicing program/mesenchymal splicing program ratio, that is, their splicing program prone
to a mesenchymal splicing program [11]. In addition, growing data point to a common splice
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program in cancer, considering its cellular type (epithelial, endothelial, or mesenchymal),
despite its origin, with the main governing splicing factors as in healthy cells [12]. Under‐
standing these common splicing program features shared among tumors allows us to predict
tumor behavior during tumor progression in breast cancer according to their differentiation
state.

1.6. Epithelial‐to‐mesenchymal transition (EMT)

Epithelial‐to‐mesenchymal transition (EMT) is the most important mechanisms that allow
epithelial malignant cell to migrate, leading to metastases. During EMT, epithelial cells that
are naturally attached to their tissue lose their epithelial markers and gain mesenchymal
characteristics, being able to move away from tissue and migrate to a distant site, where they
settle and return to an epithelial state by the reverse event mesenchymal‐to‐epithelial transition
(MET) [12–14]. Several transcription factors regulate EMT, and other, different, regulate MET.
As example, proteins of the Twist, Snail, and Zeb families, the well‐known transcription factors
of EMT, recognize specific DNA sequences (regulatory regions) near the promoters of genes,
repressing genes of epithelial markers. Also, these transcription factors are involved in the
expression of genes related to extracellular matrix degradation and migration [13, 14].

Important, misregulation of splicing factors has been observed during this event, and they are
involved with a switch to the production of mesenchymal isoforms of several genes [11, 15–17].

1.7. Aberrant splicing in breast cancer

In cancerous cells, it is possible to observe an aberrant, thus different, pattern of splicing of
several genes, even without DNA sequence change (mutations) or epigenetic changes [16, 18].
Actually, these alterations are due to the expression of misregulated splicing factors.

Several studies observed the misregulated expression of splicing factors in cancer, mainly
breast cancer, although suggesting that the aberrant splicing is caused by an unbalanced
stoichiometric relationship of splicing factors, compared to normal cells, leading to malig‐
nant features. Thus, many studies summarized the misregulated splicing factors observed in
cancer and/or the consequences of aberrant splicing, including breast cancer [18–20]. For ex‐
ample, upregulation of RBFOX2, SRSF1, SF3B1, hnRNP A1, hnRNP F, and hnRNP H and
downregulation of ESRPs are involved with tumor aggressiveness in breast cancer and oth‐
er cancers [9, 11, 17, 21–38].

The growing evidence of splicing misregulations in cancer prompted several studies to
understand the impact in splicing by these misregulations.

2. Misregulated splicing factors: directing the tumor fate

Aberrant splicing program in cancer cells is altered in comparison to healthy cells, but still is
governed by splicing factors. In breast cancer, aberrant splicing is intricate with alternative and
constitutive splicing factors. However, only the most relevant and most studied splicing factors
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in breast cancer are presented to understand the splicing behavior during breast cancer tumor
progression. These splicing factors are representative of main types: SF3B1, component of
spliceosomal core complex; SRSF1, a member of SR family; ESRP1 and ESRP2, alternative
splicing factors with main role in tissue‐specific (epithelial) splice program; and RBFOX2, the
main alternative splicing factor that governs tissue‐specific (mesenchymal) splice program.

Complementary data related to these splicing factors in other cancers will be presented for a
greater understand of the tumor progression process in breast cancer.

2.1. SF3B1

SF3B1 (also known as Sap155, Sf3b155), from the SF1 complex, is responsible for the spliceo‐
some core assembly in the pre‐mRNA [5]. It is a constitutive splicing factor and is critical to
the event. The SF3B1 protein complex is responsible for mis‐spliced mRNA retention, per‐
forming quality control, which is the inspection of the intron excision and exon junction [39].

Despite the fact that this splicing factor is mostly studied in hematologic malignances [40] and
its role in solid tumors is still being elucidated [41]. Some breast cancer patients showed a
mutation in SF3B1 that was associated with the alternative splicing of key genes in ER‐positive
breast cancer, such as genes involved with cell metabolism, cell cycle, cell motility, protein
degradation, apoptosis, and other cell events [42].

One extensive study showed upregulation of SF3B1 and SF3B3, associated with endocrine
resistance in breast cancer samples, as well as two important correlations: in ER‐positive breast
cancer, the aggressiveness was associated with higher expression of SF3B3, while the aggres‐
siveness of ER‐negative breast cancer was associated with lower expression of SF3B1. Thus,
researchers were able to correlate the levels, high or low, of SF3B3 and SF3B1, respectively,
with prognosis in breast cancer patients, according to their ER status [32].

Although some studies reported impairment in the expression levels of constitutive splicing
factors, such as SF3B1, other studies observed different behaviors. In one study, overexpression
of some core complex splicing factors was observed in MYC‐overexpressing breast cancer.
Inhibition, or knockdown, of SF3B1 or BUD31, another component of the splicing core
complex, but not of other core complex splicing factor, led to impaired tumor growth, reduced
metastases, and apoptosis resistance abolishment in MYC‐overexpressing breast cancer,
without the substantial effect in normal cells. Studies also found that the overexpression of
these splicing factors is related to the increased transcription rate caused by MYC‐overexpres‐
sion [33].

In brief, deregulation of SF3B1 as well as constitutive splicing factors is implicated with cell
transcription rate rather than an oncoprotein per se.

2.2. SRSF1

SRSF1 is involved, additionally to splicing, with mRNA transport (nuclear exporting) and
translation (in association with elF4E) [43]. It has one SR domain, in which the main regulatory
function occurs, and two RRM domains that interact with RNA and other splicing factors [44].
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The important role of SRSF1 was intensively analyzed in several studies. Overexpression of
SRSF1 in mammary epithelial cells conferred apoptosis resistance by alternative splicing of
apoptosis proteins BIM and BIN, high proliferative rate, invasion of skin and muscle, slight
necrosis, high angiogenesis, and well‐defined borders in vivo [30]. Upregulation of SRSF1 was
responsible for conferring cell motility in several human adenocarcinoma cell lines by
regulating alternative splicing of RON (a tyrosine kinase receptor), generating an alternative
isoform that confers motility properties [31]. Similar results were obtained by other research‐
ers [25]. Also, chemotherapy resistance was observed due to SRSF1 overexpression concomi‐
tant to EMT [45]. The role of SRSF1 upregulation in tumorigenesis was corroborated by other
studies. Knockdown of SRSF1, or one of its products, in SRSF1‐overexpressing cancer cells
reverted the tumor features to a normal phenotype [25, 46].

Regarding the activity of SRSF1, very important results have been obtained. In one study,
it was observed a differential expression of SRSF1 in cancer cell lines: it is highly ex‐
pressed in the mesenchymal‐like cells (low‐density culture) when compared to the epithe‐
lial‐like cells (high‐density culture). The difference in the expression levels is related to an
EMT alternative splicing profile: EMT cells produce a full‐length mRNA of SRSF1, while
epithelial cells produce an mRNA with a premature stop codon, leading to degradation of
SRSF1 mRNA. The main cause of that striking difference was analyzed: mesenchymal‐like
cells have highly phosphorylated ERK1/ERK2 pathway proteins compared to epithelial‐
like cells, and inhibition of the phosphorylation status in this pathway led to a hypophos‐
phorylated status of Sam68, another splicing factor that mediates the splicing of SRSF1
results in the production of an isoform with a premature stop codon, decreasing SRSF1
levels [47]. Thus, SRSF1 levels depend on signaling pathways in cancer cells too, and ex‐
tracellular signals that led to EMT are also responsible for SRSF1 upregulation. This is
corroborated by inhibition of proteins’ intricate in important pathways that led, or sustain,
EMT. For example, inhibition GSK3 kinase, as well as knockdown of AKT and GSK3beta
kinase, led to SRSF1 downregulation, with a loss of apoptosis resistance and colony for‐
mation impairment [48]. In addition, inhibition of SRK1, a kinase of several SR proteins,
led to reduced tumor growth in vivo through inhibition of angiogenesis [49]. Therefore,
the activation of SR splicing factors by phosphorylation is crucial in the tumor context.

SRSF1 upregulation was observed not only in in vitro and in vivo models, but also in ex vivo
samples. SRSF1 upregulation is observed in malignant tissue, but not in nonmalignant lesions
[49]. SRSF1 upregulation was observed in several tumors, if compared to normal surrounding
tissue, concomitant with antiapoptotic isoform of BIN1 and oncogenic isoform of transcript
targets of SRSF1 were observed in in vitro studies [25]. Moreover, SRSF1 upregulation was
found to be correlated with tumor invasiveness only in some malignant lesions [45]. The
tumorigenic role of SRSF1 is corroborated by the synergistic correlation between the oncogene
MYC. A high expression of SRSF1 occurs significantly more often in tumors that overexpress
MYC, and positively correlated with a high histological grade compared to low SRSF1 and/or
low MYC‐expressing breast tumors [30].

In summary, SRSF1 is an oncoprotein per se, as its overexpression causes tumor promo‐
tion, EMT, aggressive phenotypes, and chemoresistance. Nevertheless, signaling pathways
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directly regulate its activity and expression level. In addition, it is intricately related to the
cell transcription rate, as seen in the overexpression of MYC in breast cancer.

2.3. ESRP1 and ESRP2

Epithelial splicing regulatory proteins (ESRPs) 1 and 2 participate in the epithelial‐specific
splicing program, downregulated during EMT [50]. ESRP1 knockout is lethal in embryos, and
several developmental genes are regulated by these splicing factors [51].

As ESRPs are involved in the splice program in epithelial cells and play an important role in
EMT. EMT transcription factors downregulate ESRPs, impacting the production of several
protein isoforms coded by different genes, such as FGFR2 and CD44, as well as adhesion
molecules, surface receptors, and cytoskeleton [50, 52–56], independently of the stimuli that
trigger EMT [34, 36, 57], resulting in predominance of mesenchymal splice program, mainly
by ESRP1 downregulation [17, 34]. Otherwise, ESRP1 overexpression abrogates EMT [36, 54,
56, 58, 59], and the inverse phenomenon—the induction of MET—upregulates ESRP1 and
reverts EMT [60].

The intricate role and behavior of ESRP1 in EMT seem to be orchestrated by upstream
regulators, and indeed it is. ESRP1 expression is directly inhibited by some EMT transcription
factors that recognize specific sequences near ESRP1 promoter, repressing its expression
during EMT [54, 59].

Although all data appoint to ESRP1 downregulation in tumorigenesis and tumor progression,
ESRP1 overexpression can contribute to the tumoral process and metastasis too [61]. However,
ESRP1 downregulation is more expected in tumor progression than its upregulation. ESRP1
upregulation can be found within tumor lesion and can correlate with tumor progression, but
ESRP1 downregulation is observed in the invasive front, mainly in invasive tumors with EMT
features [34]. That phenomenon can be found concomitant with downstream products of
ESRP1, like FGFR2‐IIIc expression in function of ESRP1 downregulation, but not necessarily
with metastases [37]; also can be found in poorly differentiated cancer and correlate with poor
prognosis [36]. Also, ESRP1 downregulation is intricate with advent of cancer stem‐like cell
features in breast cancer [55].

In brief, upstream effectors that dictate cell phenotype and behavior, mainly EMT/MET‐TFs,
also regulate ESRP expression, the main alternative splicing factor that governs the epithelial
splice program. Other transcription factors, such as stem transcription factors, may also
regulate ESRPs, as ESRP upregulation was observed concomitantly with stemness. The low
expression level of ESRPs led to the production of alternative transcript isoforms of key genes
involved with cell metabolism, cell cycle, motility, invasiveness, and robustness.

2.4. RBFOX2

RBFOX2 (also known as Fox2 and Rbm9, and formerly known as the repressor of tamoxifen
transcriptional activity—RTA) is a tissue‐specific splicing factor [11]. It is directly associated
with the production of alternative protein isoforms and rarely to constitutive isoforms [62].
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The first study that described RBFOX2 as an RRM‐containing protein observed that it inhibits
the partial ERβ agonistic activity of tamoxifen through this domain. Moreover, this splicing
factor is intricately related to the repression of ERβ, PR (progesterone receptor), and GR
(glucocorticoid receptor) activities. With these data, it is inductive to think that RBFOX2 is a
repressor of activity in the steroid receptor family [63]

The role of RBFOX2 in EMT has been partially elucidated and has been intensively studied in
breast cancer. Different cancer cell lines have high expression of RBFOX2 [11]. This splicing
factor is associated with a mesenchymal identity, since depletion of RBFOX2 in breast cancer
with mesenchymal features induced MET, thus reverting EMT [11, 17]. Similar events occur
in mouse breast cancer cells. EMT causes Rbfox2 (mouse homolog of RBFOX2) overexpression,
and abolishment of EMT reestablishes the expression levels of Rbfox2. Also, Rbfox2 is
important to maintain invasive features [15].

RBFOX2 expression and splicing activity are regulated by some EMT transcription factors,
leading to a similar splicing pattern to that of breast cancer cells, which is associated with the
expression of distinct isoforms of several genes that govern EMT [17]. RBFOX2 expression is
altered in some cancer in comparison to their normal counterparts [64]. In addition, RBFOX2
has an important role in the overall splicing patter in breast cancer [65] and is more expressed
in claudin‐low and basal‐like cancers than in luminal A and B, leading to the aberrant inclusion
of alternative exons observed in cancer [35]. These aggressiveness of these breast cancer
subtypes (claudin‐low and basal‐like) could be partially explained by the resultant splicing
events of RBFOX2 upregulation [35].

In summary, RBFOX is the primary alternative splicing factor that governs the mesenchymal
splice program, mainly EMT/MET‐TFs. Other transcription factors, such as stem transcription
factors, may regulate RBFOX2. The expression level of RBFOX2 leads to the production of
alternative transcript isoforms of key genes involved with cell metabolism, cell cycle, motility,
invasiveness, and robustness.

3. Lessons from alternative splicing misregulation

Albeit few splicing factors were presented in the last section, though the most important
splicing factors, to date, in breast cancer, the understanding of their role in tumor promotion
and progression in breast cancer allows us to construct and predict the behavior of these
splicing factors, according to clinical features and molecular subtype. Several splicing markers
can discriminate ER+ from ER‐ breast cancer and correlate with a tumor grade, demonstrating
that the ER status impacts the splicing program [11, 35, 56, 66, 67]. Therefore, the splicing factors
play a role in a key and basic event (alternative splicing) that dictates several features and
phenotype of cells.

The main impact of splicing observed in cancer is due to alternative splicing factor misregu‐
lation rather than the constitutive splicing factor, as mentioned in the previous section. In
addition, not all alternative splicing factors have an expressive role in alternative splicing, but
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only few main splicing factors. ESRP1 and RBFOX2, splicing factors that govern splicing
programs, are responsible for general aggressive phenotypic features of breast cancer, and
SRSF1 plays a critical role in breast cancer tumorigenesis and malignancy. These findings allow
us to predict general features of breast cancer according to the behavior (expression) of these
splicing factors. Current data about these three splicing factors in breast cancer let the con‐
struction of a hypothetical scheme of well‐ and poor‐differentiated breast cancer, starting from
tumor promotion [30, 43], following tumor progression [15, 25, 30, 31, 43, 45–47, 52], metastasis,
and acquired resistance (clone selection) [11, 15, 31, 34, 38, 47, 50, 53, 54, 61], regarding the
behavior of these splicing factors (Figure 1). Summarizing these findings in one figure opens
a door to an important practical use of that knowledge: a potential power as diagnostic and
prognostic markers.

Figure 1. SRSF1, ESRP1, and RBFOX2 participation in tumor progression. Expression patterns of splicing factors ac‐
cording to the pathological status of tumors. Well‐differentiated tumor (upper side): according to the literature, well‐
differentiated tumors express higher levels of ESRP1 and SRSF1 and lower levels of RBFOX2 compared to normal
surrounding tissue, and these characteristics are most striking with tumor progression. However, the invasive front
has an inverse pattern that is similar to EMT cells. The majority of metastatic cells that originate from these tumors do
not have CSC features. Poorly differentiated tumor (lower side): according to the literature, poorly differentiated tu‐
mors express higher levels of RBFOX2 and SRSF1 and lower levels of ESRP1 compared to normal surrounding tissue,
and these characteristics are most striking with tumor progression. As these cells have EMT features (mesenchymal‐
like), the invasive front is derived from the tumor pool in the primary niche. The majority of metastatic cells that origi‐
nate from these tumors have CSC features. These two tumors have two fates in response to chemotherapy: cure and
resistance. Although well‐differentiated tumors are more sensitive to chemotherapy, with a higher cure index, resistant
clones in the primary tumor niche, mainly EMT cells, can be selected and expanded, originating a poorly differentiated
tumor; the metastatic cells and secondary tumor cells are cleared with chemotherapy, but CSCs, when present, are se‐
lected and expanded. Resistant cells (CSCs) express even higher levels of RBFOX2 and SRSF1 and even lower levels of
ESRP1 with an EMT phenotype.
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4. Concluding remarks

Although the prognostic and diagnostic value of splicing factors is not well understood, some
studies have shown that an expression pattern of some splicing factors is observable in breast
cancer. In addition, analysis of splicing factors related to splicing programs help to understand
other processes involved in tumor progression, like aggressiveness. Also, other splicing factors
are related to chemoresistance and hormonal status, mainly estrogen. Thus, the behavior of
splicing factors could be used, at least, as prognostic markers for breast cancer and could help
to choice, or direct, therapy in a near future.
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Abbreviations

ESRP1 Epithelial splicing regulatory protein 1

RBFOX2 RNA binding protein fox‐1 homolog 2

SRSF1 Serine/arginine rich splicing factor 1

SF3B1 Splicing factor 3B subunit 1

PTBP1 Polypyrimidine tract binding protein 1

ER Estrogen receptor

PR Progesterone receptor

ERBB2 ERB‐b receptor tyrosine kinase 2

FGFR2 Fibroblast growth factor receptor 2

hnRNP Heterogeneous ribonucleoprotein particle

MAPK Mitogen activated protein kinase

EMT Epithelial mesenchymal transition

MET Mesenchymal epithelial transition

ERK Extracellular signal‐regulated kinases
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