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1. Introduction 

The main difficulties of perception systems, mainly to be applied to robots which play 
soccer, may be listed as: recognition of objects in a very short time and provision of accurate 
information to the control system. To accomplish these tasks, many researches in the sensor 
fusion field have been carried through with the objective of determining complementary or 
redundant information of the world.  

Throughout the years, several works have been proposed to tackle the problem of 
integrating sensor data to enhance the recognition performance of robotic systems (Bai et al, 
2003; Fanny et al, 2004; Lanthier et al, 2004). Bai et al (2003) propose a fusion strategy based 
on Gaussian distribution over the space of robot position, with the main goal of estimating 
the robot position, using only range sensors. As the proposed method is based on an 
asynchronous sensor fusion, and it depends essentially on robot’s dead reckoning, the 
strategy fails whereas the robot runs long distances. Ferrein et al (2005) combines sensor 
fusion techniques to estimate ball position in a robot soccer field, namely, a weight grid and 
a Kalman filter strategies. A comparative study was made and the proposed method 
overperformanced traditional ones, although the work is very Robocup domain-specific. 
Lanthier et al (2004) use data from inexpensive sensors (sonars and infrared (IR) sensors) to 
enhance the accuracy of a stereo-based system, whose strategy of data fusion relies on an 
occupancy grid technique and a Kalman filter.  

All those works propose different ways to combine sensor data in order to improve sensing 
performance. Considering all these elements, a generic framework which copes with the 
problem of perceiving objects in front of a mobile robot is then proposed. The framework 
has been applied in Robocup domains, but it can be easily transferred into other robotic 
fields, under just few adjustments.  

The aim of this chapter is to present the proposed framework, which tries to establish an as 
much as possible tradeoff between accuracy and on-the-fly information. The system consists 
of a vision servoing module, presented on the top of the robot, in charge of perceiving the 

Source: Robotic Soccer, Book edited by: Pedro Lima, ISBN 978-3-902613-21-9,
pp. 598, December 2007, Itech Education and Publishing, Vienna, Austria
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relevant objects (ball and robots), and a set of IR distance sensors whose data are fused with 
the vision information in order to achieve the spatial location of objects in front of the robot. 
In the vision system, a cascade of boost rejection (Viola & Jones, 2001) with a Support Vector 
Machine (SVM) (Vapnik, 1995), at the final stage, are used to guarantee a more accurate 
classification, in a short time. To integrate all sensor data, a Takagi-Sugeno (TS) fuzzy logic 
based system tries to balance the better situation in which each sensor data may be used or 
integrated, and gives the final spatial location of the objects in the soccer field. The proposed 
framework brings threefold contributions: i) a low computation cost perception system; ii) 
to the best we know, a novel calibration system, with the use of a regression SVM to obtain a 
mapping between the world and image coordinate systems, without the need of a rigid 
transformation scheme, and iii) a fusion system which provides a robust sensor integration. 
A thorough analysis of each module has been carried through and results have been shown 
to highlight the proposed framework characteristics.  

The rest of the chapter is structured as follows: in Section 2, the system architecture of the 
soccer robot used and the overall structure of the perception framework are given; in 
Section 3, a brief overview of the image classification methods is presented; in Section 4, the 
fuzzy engine used into the framework is discussed; in Section 5, the novel calibration 
method and its performance analysis are detailed; Section 6 shows some experimental 
results. Finally, Section 7 draws some conclusions and future works. 

2. System Architecture of the Soccer Robot 

In Fig. 1, the hardware architecture of the soccer robot, which have been worked with, is 
depicted. It is essentially a three wheel robot base with a set of IR sensors and a two degrees 
of freedom (DOF) servoing vision head. 

Fig. 1. Hardware architecture of the soccer robot

So that  robots play soccer, integration architecture of the perception, control and navigation 
modules is necessary. Thereby, the architecture proposed in (Costa & Bittencourt, 1999) is 
used as dorsal spine of aggregation of all robot modules. This architecture is illustrated in 
Fig. 2.
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Expert

Coordinator

Interface

Local

Goals

Symbolic

Information
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Selected behaviour

Reactive Level
Perception

Action

Fig. 2. Software architecture of our soccer robot

The cognitive module is a system based on symbolic knowledge which handles information 
come from instinctive level, as well as, asynchronous messages received from other robots 
(autonomous agents). This module gives global and local goals to the robot, as output. The 
instinctive level is in charge of identifying environment states and choosing the more 
appropriate behaviour for the robot’s current state and goals. The reactive level 
communicates directly to the perception system, receiving a frame containing information 
about spatial location and velocity of the targets (ball and robots) in front of the robot. Fig. 3 
illustrates how this process works. Detailed information of the frame contents (Fig. 3) given 
by perception system to the control system is discussed in Section 4. 

Autonomous Agent

Página 1

FRAME CONTENT

Mailbox

(Reactive level)

( frame <numFrame> ( see <perceptionTime> )

( object name <idObject> )

( angle <angleObject> )

( dist <distanceObject> )

( vel <velFuzzy> ) )

Perception

system

Fig. 3. Communication protocol between the perception system and the reactive level
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2.1 The Perception Framework: Overall Architecture 

The perception system consists of two threaded modules. After acquiring sensor data, each 
frame and a respective set of distance data are processed in the specific modules. The 
objective of this step is to prepare these simple data for the data fusion stage. Fig. 4 shows 
this process. 

Image

Acquisition

IR Distance

Acquisition

S1 processing module

Sn processing module

Object 

recognition

Fuzzy

Processor

(Fusion)
object

information

Feature 

extraction

Fig. 4. Communication protocol between the perception system and the reactive level

Particularly, in the vision-based module, each acquired image goes to a feature extractor in 
order to achieve Haar-like features (Viola & Jones, 2001). These features are, then, classified 
using a cascade of weak classifier (Adaboost), with an SVM at the end, validating all the 
classification process. Then, after converting the raw information come from the IR distance 
and synchronizing it by a timing line strategy, all this information goes to a fuzzy processor, 
giving object information in form of frames (Minsk, 1975), illustrated in Fig. 3.  

In the next sections, detailed information about the perception system, as well as, for 
completeness, a brief overview of the classification methods used is given. 

3. Overview of the Classification Methods 

In this section, an overview of the image classification methods applied in the vision system 
is highlighted, as well as, the way these methods have been combined in order to provide a 
more reliable object recognition system. This new approach represents an advance with 
respect of our first implementation in (Oliveira et al, 2005). 

3.1 Adaboost 

In (Viola & Jones, 2001), a complete system for face recognition is presented. Motivated by 
this approach, we decided to use Haar-like features in the same way to recognize the ball 
and robots in the soccer field by means of an SVM, at the end, in order to turn the vision 
task more robust. With the use of an SVM classifier is intended to decrease the high number 
of false alarm the Adaboost classifier, against Haar-like features, is prone to. For 
completeness, we present a brief description of the method and the way it has been used.  

Haar wavelate templates (or Haar-like features) have been firstly used in (Oren et al, 1997), 
along with an SVM classifier, in order to recognize people. The set of these templates was 
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further expanded in (Viola & Jones, 2001) to incorporate other kinds of contrast differences. 
Fig. 5 illustrates the common set of the templates. 

Fig. 5. (a), (b) and (c) are templates for line features; (e) and (f) are for edge features and (g) 
is the center-surrounded feature

These feature templates are regard to contrast differences in the image pixels. Fig. 6 shows 
how these templates are applied in the proposed system. 

Fig. 6. Templates used in the image pixels

Haar-like features are extracted from the image in an overlapping way. Hence, this 
approach leads to an overcompleted set of features feasible to be applied in object 
categorization tasks (Viola & Jones, 2001). For each feature, in the image, a weak classifier 
hj(x) is trained and has the following form: 

,
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)(

<
=

otherwise

fpif
xh

jjj
j

ϕ     (1)

where x is an m×n image subwindow which consists of a feature fj, a threshold z j
 and a 

parity pj which indicates the direction of inequality. Each of hj(x) reacts to a Haar-like 
feature. The final Adaboost classifier is composed by all weak classifiers and it is 
represented as in Fig. 7. 

As in Fig. 7, information about all subwindows extracted from the feature extraction module 
is goes through a cascade of 15 weak classifiers (C1…C15).  

As mentioned before, at the end of the rejection cascade, an SVM classifier has been 
employed in order to reinforce the decision made previously and decrease the number of 
Adaboost false alarms. 

(a) (b) (c) (d) (e) (f) (g) 



Robotic Soccer 232

Fig. 7. A cascade of rejection classifiers with an SVM classifier at the end

3.2 Support Vector Machine 

SVM is a deterministic learning machine which employs linear discriminant functions into 
the raw input vector, in case of linear SVMs, or into a high dimensional feature space, in 
case of non-linear SVMs (Vapnik, 1995). As a supervised method for data classification, its 
structures embodies a training and prediction stages. In the training stage, algorithms 
provided by optimization theory are applied in order to learn how to separate the input 
space; when necessary, a mapping to a higher dimensional feature space is accomplished to 
guarantee the linear separability of data in any circunstance. In prediction stage, the 
classifier has the following forms in (2) and (3). 

1,

1,
,

−=+

+=+

iii

iii

dbxw

dbxw
     (2) 

Considering a training sample  = {(xi, di)}, where i= 1...N samples, xi is the ith input element 
and di is the ith desired output, represented by the set {+1, -1}. Then, the discriminant 
function for a linear SVM is given by (2), where +1 represents an object and -1, a non-object. 
In case of non-linear SVM, (2) is written in the form. 
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where z  represents a kernel function which implicitly maps, by means of a inner product, 

the input space to a higher dimensional space. The most usual kernel function can be listed 
as:
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A function is only considered a kernel if it satisfies the Mercel’s condition (Cristianini & 
Shawe-Taylor, 2003; Kecman, 2001), i. e., must be semidefinite and positive. 

4. Sensor Fusion Using Fuzzy 

In this section, the fusion processor, shown in Fig. 4, is described. This processor is based on 
a Takagi-Sugeno (TS) fuzzy engine (Takagi & Sugeno, 1985), responsible to decide which 
data from the sensors are to be taken into account in order to guarantee the most accurate 
object information to the robot. The TS fuzzy system has been built from the spatial sensor 
location on the soccer robot, and is depicted in Fig. 8. The main idea of the system is to 
provide spatial location of objects in front of the robot in polar coordinates ( , d) and every 
location is regard to the mass center of the soccer robot. This information comes as from the 
IR distance sensor as from the camera (according to a calibration scheme, described in 
Section 5). 

Hence, the decision of taking the angle or distance information from the IR distance sensor, 
from the camera, or combining both of them, must be made by the TS fuzzy system.  

According to Fig. 8, the further the object is from the IR distance sensor (S1 to S5), the more 
accurate is the determination of the object angle. This is verified in the following way: the 
spread of each IR distance sensor is made by way of a 3 cm wide cylinder (distance between 
receptor and emitter); for instance, an object between A1 and A1’ will have a less accurate 
angle determined by the distance sensors than an object between A2 and A2’, if only IR 
distance sensors are considered. In other words, the angle provided by the IR distance 
sensor will be more accurate in region A2 and A2’ than in region A1 and A1’, since the first 
one is narrower. 

Fig. 8. Determination of the fuzzy structure based on sensor location in the robot 

Nevertheless, considering the precision scale, fuzzy sets are defined, according to Fig. 
9, with the aim of determining the best angle information to the soccer robot 
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Shadow 
Very 

Close Far 

(d) 

distance (d) 

Close 

10 20 30 40 50 60 70 80

Fig. 9. Fuzzy sets determined from sensor physical disposal in Fig. 8. d is measured in cm 

From these fuzzy sets, eight rules were proposed: 

R1: IF distance = SHADOW THEN distance = d(camera) 

R2: IF distance = SHADOW THEN angle = a(camera) 

R3: IF distance = VERYCLOSE THEN distance = d(Si) 

R4: IF distance = VERYCLOSE THEN angle = a(camera) 

R5: IF distance = CLOSE THEN distance = d(Si) 

R6: IF distance = CLOSE THEN angle = a(camera)*0,5 + a(Si)*0,5 

R7: IF distance = FAR THEN distance = d(Si) 

R8: IF distance = FAR THEN angle = a(Si) 

The functions a(.) e d(.) represent, respectively, the angle and distance obtained by the 
camera and IR distance sensors. The real values of distances and angles, after evaluation of 
the rules, are determined by: 

,=
i

iizS
ψ

ψ
     (4)

where } i  is the T-norm of each antecedent and zi is the result of the function f(x, y),

responsible for describing the relationship between the fuzzy sets of the antecedent. 

At the end of the fusion process, each object is identified and located by means of a internal 
representation frame structure (Minsky, 1975):  

( frame <numFrame> ( see <timePerception> ) 

( object_name <idObject> ) 

( angle <angleObject> ) 

( dist <distanceObject> ) 

( vel <fuzzyVel> ) ) 
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For each image frame <numFrame>, all objects are located and identified by an object name 
<idObject> and three supplied characteristics: angle relative to the center of the base of the 
robot <angleObject>, object distance regards to the front of the robot <distanceObject> and 
fuzzy velocity of each object <fuzzyVel>.

The fuzzy velocity <fuzzyVel> is determined by (5). Fig. 10 shows the fuzzy sets used. 

<fuzzyVel> = [µl(difP), µm(difP), µh(difP)],    (5) 

where µi(difP) are membership functions, and i represents each fuzzy set of linguistic 
variable velocity (low, medium and high). difP is the difference between centroid location of 
an object in relation of frames n and n  1.

Low Medium High 

(pixels) 

Pixels 10 20 30 40 50 60

Fig. 10. Fuzzy sets for fuzzy velocity (fuzzified by pixel information). This information is just 
fuzzified and passed by the control module as an estimative 

This velocity information is not intended to be accurate since the control module will 
translate it into a treatable knowledge within other fuzzy controllers. Hence, the universe of 
discourse represents the diagonal of the image frame given by the camera sensor. This 
information is just fuzzified and passed to the control module as an estimative.

5. Calibration Method 

Based on the features extracted from the image (height, width, area, centroid), object 
location is determined in polar coordinates ( , d), where  represents the angle and d is the 
distance relatives to the robot mass center. 

To determine these polar coordinates, two regression SVMs have been employed: with 
respect to , a mapping function between the pixel coordinate of the centroid of the object 
and the concerned physical angle; with respect to d, a mapping between the height of the 
object in the image and the respective distance between the robot and the concerned object. 

To obtain the mapping function centroid-angle, radii and parallel lines are drawn in a white 
paper, according to Fig. 11. Objects with a determined centroid pixel have been placed in 
each intersection in order to gather information to train the regression SVM. 
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Firstly, a set of pairs (centroid pixel, angle) is achieved from the centroid of each object in 
front of the robot and the relative angle to the mass center of the robot. 

Fig. 11. Calibration map used to extract angles and distances from the image 

The vision head is composed by two servo-motors, and, thus, it has two DOF: pan and tilt 
movements. In order to taper the angular distortion effect in the image, which occurs when 
the vision head takes different positions related to z axis, an angle value is added to the 
previous pair (centroid pixel, angle), according to Fig. 12. 

In resume, in each angle (20, 35, 50 and 65 degrees), a set of pairs (centroid pixels) is 
determined and a tuple (centroid pixel, angle, angle of head) is given to the regression SVM. 

Fig. 12. Angles of the servoing vision head used to enhance the regression SVM 
performance. The position (0, 0, 0) corresponds to the initial position in which the 
vision head starts when it is switched on 

Initial position (0,0,0) in 
the camera axis (lateral 
view)
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Information about distance is then extracted to complete the perception information when 
the objects are found in shadow areas. To obtain more accurate information of the distances, 
in case of a shadowed object, the robot may rotate its body to correct the estimated distance 
given by the image. This information is achieved by a simple relation between object height 
and distance. 

5.1 Performance Analysis 

Evaluation of the system has consisted to measure the difference between the true and the 
obtained values. To do this, the calibration map, in Fig. 11, was used once, but, now, with 
specific angles (-16.5, -8, 0, 8 and 16.5) and distance values (25, 30, 35, 40, 45, 50 and 55) and 
for each angle shown in Fig. 12. Results are, then, summarized in Table 1. 

Table 1 shows the angles obtained by the regression SVM. The angles was gathered through 
four different angular positions of the vision head, and with objects in different places in the 
classification map shown in Fig. 11.  

After data have been gathered to populate Table 1, analysis of the system error has been 
carried through and Table 2 summarizes the results. In Table 2, the absolute deviation of the 
measurements is placed regards to the mean values found in Table 1. The mean values of 
the absolute deviation were computed and they corresponds to the mean deviation obtained 
in each angular position of the vision head, as in Table 3. 

It is worth noting a systematic positive error in the final correction values found, which 
indicates a higher error to the right side of the vision system. Hence and according to the 
final mean error of the system (see Table 3), the value of 1.88 degrees has been added to the 
angles obtained by the regression SVM. The final error could be explained by one or more of 
the items in the list below: 

• Radial distortion of the camera lens – higher distortion of the camera lens to the 
right side; 

• Calibration error – an error in building the calibration map;

• Regression SVM – lack of sufficient generalization or information to the regression 
SVM.

The values in the Table 3 can be better visualized with the respective values of the standard 
deviation in each point as shown in Fig. 13. 
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Vision head = 20 degrees (angles obtained by regression SVM) 

True

angle

In

25 cm 

In

30 cm 

In

35 cm 

In

40 cm 

In

45 cm 

In

50 cm 

In

55 cm 

Mean

-16.5o -16.0o -15.0o -15.0o -15.0o -15.0o -15.0o -15.0o -15.1o

-8o -9.0o -10.0o -9.0o -9.0o -9.0o -9.0o -9.0o -9.1o

0o -1.0o -1.0o -1.0o -1.0o -1.0o -1.0o -1.0o -1.0o

8o 5.0o 4.0o 4.0o 5.0o 5.0o 5.0o 5.0o 4.3o

16.5o 14.0o 14.0o 14.0o 14.0o 14.0o 14.0o 14.0o 14.0o

Vision head = 35 degrees (angles obtained by regression SVM)

-16.5o -15.0o -15.0o -16.0o -16.0o -16.0o -16.0o -16.0o -15.9o

-8o -10.0o -10.0o -10.0o -10.0o -10.0o -10.0o -10.0o -10.0o

0o -1.0o   -1.0o   -1.0o   -1.0o   -1.0o   -1.0o   -1.0o   -1.0o

8o 5.0o 4.0o 4.0o 6.0o 6.0o 6.0o 6.0o 5.6o

16.5o 14.0o 14.0o 14.0o 14.0o 14.0o 14.0o 14.0o 14.0o

Vision head = 50 degrees (angles obtained by regression SVM)

-16.5o -18.0o -18.0o -17.0o     -17.7o

-8o -11.0o -10.0o -11.0o     -10.7o

0o -2.0o -2.0o -2.0o     -2o

8o 4.0o 5.0o 7.0o     5.3o

16.5o 13.0o 12.0o 12.0o     12.3o

Vision head = 65 degrees (angles obtained by regression SVM)

-16.5o -17.0o -17.0o      -17o

-8o -8.0o -9.0o      -8.5o

0o -1.0o -2.0o      -1.4o

8o 4.0o 4.0o      4o

16.5o 13.0o 12.0o      12.5o

Table 1. Results for each vision head angle assumed in the training phase (20, 35, 50 and 65) 

Vision head = 20 degrees 

True angle Mean Absolute deviation 

-16.5o -15.1o -1,4o

-8o -9.1o 1,1o

0o    -1.0o 1,0o

8o 4.3o 3.7o

16.5o 14o 2.5o

Vision head = 35 degrees 

-16.5o -15.9o -0.6o

-8o -10.0o 2.0o

0o    -1.0o              1.0o

8o   5.6o 2.4o

16.5o 14.0o 2.5o

Vision head = 50 degrees 

True angle Mean Absolute deviation 

-16.5o -17.7 o 1.2o

-8o -10.7 o 2.7o

0o -2.0 o 2.0o
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8o 5.3 o 2.7o

16.5o 12.3 o 4.2o

Vision head = 65 degrees 

-16.5o -17.0 o 0.5o

-8o -8.5 o 0.5o

0o -1.4 o 1.5o

8o 4.0 o 4.0o

16.5o 12.5 o 4.0o

Table 2. Absolute deviation between the mean of the angle values obtained by the regression 
SVM and the real angles (calibration map) 

Vision head angle Erro correction 

20o 1.4o

35o 1.46 o

50o 2.56o

65o 2.1o

Mean 1,88o

Table 3. Mean error correction of each vision head angular position 
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Vision Head Angles

Mean Error Correction = 1,88 degrees

Fig. 13. Graph of the overall error correction 

6. Experimental Results 

A version of the proposed framework using an SVM multi-classifier to recognize the objects 
in the soccer field (same team robot, the other team robot and ball) can be found in (Oliveira 
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et al, 2005). To evaluate this system, Table 4 summarizes results over different illumination 
values, according to Robocup rules for F180 robot competition (Robocup, 2007).  

Illumination  

(lux)

Classification  

Rate (%) 

570 87.75 

660 84.08 

780 84.87 

800 86.36 

920 87.72 

970 90.00 

Table 4. Classification rate over different illumination values, measured by means of a 
luximeter 

A luximeter was used to evaluate the illumination over the objects in the field. In order to 
decrease the illumination changing effect, the YCrCb colour space was used. After the object 
pixels have been classified, a cluster algorithm was applied in order to give the centroid of 
the object, considering: for the robots, the colours of the balls on the top of the robot, which 
discriminates the same team and the other team robots; and the ball.  

Considering different kernels, Table 5 shows the overall performance classification rate over 
800 luxs of illumination. 

Kernel

type

Classification  

Rate (%) 

Linear 77.6 

Gaussian 84.6 

Sigmoid 78.5 

3 deg. polynomial 64.2 

Table 5. Use of different kernel types and its respective classification rate in 800 luxs 

It is worth noting that Gaussian kernel has given the best classification rate and has 
motivated its use for classification and the results in Table 4. 

Considering all the aforementioned, and motivated by the speed and good results in object 
recognition (Viola & Jones, 2001) by the boost classifiers, we have decided to apply a new 
classification approach, described in Section 3.1. 

The performance of the system was again evaluated in the same conditions. Table 6 shows 
the last results in different illumination values (in luxes). As can be seen in Table 6, the 
classification performance rate increased with a respective increasing in speed (from 5 to 10 
fps), since the Gaussian SVM is only applied in the final stage of the cascade rejection of the 
Adaboost (15 stages used. For more information, see Section 3.1). 
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Illumination  

(lux)

Classification  

Rate (%) 

570 88.01 

660 90.34 

780 91.23 

800 91.67 

920 93.45 

970 94.06 

Table 4. Classification rate over different illumination values, measured by means of a 
luximeter 

7. Conclusions 

A framework for perception in robotics soccer has been presented. The proposed framework 
has shown been effective in recognize coloured objects in the soccer field but it might be 
slightly changed to be used in different approaches, through a new set of training samples 
and fuzzy rules. 

A TS fuzzy engine has been used to integrate information from different sensors, 
particularly, an IR distance sensor and a camera. To integrate these sensor data, a novel 
calibration method, based on a regression SVM, was developed and it has shown a robust 
mapping between the calibration map and the obtained values in camera space, with a low 
average error of 1.88 degrees.  

Also, the vision system was evaluated, and the new scheme, with an addition of a cascade of 
boost rejection and an SVM, has given better performance than in (Oliveira, 2005). The 
Adaboost classifier decreased the computation cost for the object recognition task and the 
SVM, used at the last stage of the cascade, reinforce the decisions taken by the Adaboost. 

Future work has been conducted to a temporal image fusion by means of a tracking system, 
which will allow a robot to analyze of the behaviour of the robots and the ball. Moreover, 
this system will help to enhance the classification performance by decreasing yet more the 
number of false alarms. 
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Many papers in the book concern advanced research on (multi-)robot subsystems, naturally motivated by the

challenges posed by robot soccer, but certainly applicable to other domains: reasoning, multi-criteria decision-

making, behavior and team coordination, cooperative perception, localization, mobility systems (namely omni-
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source for researchers interested in the involved subjects, whether they are currently "soccer roboticists" or

not.
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