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Abstract

White adipose tissue (WAT) expansion is related to the development of metabolic disorders
found in obesity. WAT expansion is the result of generation of new adipose cells by activa-
tion of adipogenesis and/or the increase in adipose cell size (hypertrophy). The balance
between these two processes determines whether WAT expansion occurs predominantly
by hyperplasia, which means the increase in the number of adipocytes, or hypertrophy.
Hypertrophic adipocytes are characterized by changes in adipokine secretion pattern, insu-
lin resistance and altered lipid metabolism, which is the reason why WAT-hypertrophic
expansion is considered unhealthy. Conversely, the generation of new mature adipocytes
by adipogenesis contributes to reduction of the development of hypertrophic adipocytes
and therefore maintain normal WAT functions, leading to healthy hyperplastic expansion.
The adipogenic capacity of adipose tissue depends on the adipogenic potential and the
number of adipocyte precursor cells. Different factors are known to regulate adipogenic
process and adipose tissue function, contributing to a healthy or unhealthy expansion that
occurs under positive energy balance. This chapter discusses the role of fructose intake and
glucocorticoids and testosterone as regulators of adipose tissue function and expansion.

Keywords: fructose-rich diet, glucocorticoid, testosterone, adipogenesis

1. Introduction

Obesity has been defined by the World Health Organization as the excess of adipose tissue (AT)
mass that can be harmful or not for the health. The incidence of this disorder has reached epi-
demic levels during the last few decades. It is associated with a high risk of developing different
pathologies such as type 2 diabetes mellitus (T2DM), cardiovascular diseases, dyslipidaemias
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and cancer, among others. White AT (WAT) dysfunction plays an important role in the
development of metabolic disorders associated to obesity. Anatomically, WAT presents a discon-
tinuous distribution in the organism and it is divided into two major depots, visceral and subcu-
taneous (VAT and SAT, respectively). VAT is mainly located in the abdominal cavity (peri-renal,
retroperitoneal (RPAT), mesenteric, omental and gonadal) and SAT is distributed below the der-
mis (femoral, gluteal, abdominal and gonadal). Studies in humans and animal models indicate
that VAT expansion is associated with an increase in metabolic risk and mortality, whereas accu-
mulation of SAT improves insulin sensitivity and reduces the risk of developing T2DM.

WAT increase is the consequence of two processes: the increase in the size (hypertrophy) and/
or in the number of adipocytes (hyperplasia). The form in which WAT expands correlates
with the presence or absence of WAT-functional alterations. It is well known that hypertrophy
of adipose cells is associated with the change in the pattern of adipokine secretion, increas-
ing the release of leptin [1] and pro-inflammatory cytokines [2], and decreasing the release of
adiponectin [2]. This profile of adipokine secretion contributes to the development of insulin
resistance (IR) observed in hypertrophic adipocytes [3]. Moreover, the increase in cell size is
associated with changes in lipid metabolism [4]. Conversely, adipogenesis activation leads to
an increase in the number of adipose cells, and therefore prevents the development of hyper-
trophy thus contributing to normal WAT function.

WAT has been recently reported to express brown AT (BAT) markers, and its exposure to cold
or beta-adrenergic receptors stimulation to increase the presence of brown-like-multilocular
cells [5]; this process is called WAT ‘browning’. Since these cells are different from brown
and white adipocytes, they have been called beige or brite adipocytes (from the combination
of brown and white). It is known that brown and beige adipocytes originate from different
lineages; while brown adipocytes are generated from MYF5" precursors, beige ones derive
from precursors that express platelet-derived growth factor receptor (PDGFR-a") and stem
cells antigen 1 (Scal®) or from smooth muscle-like precursors that express myosin heavy-
chain 11 (MYH11") [6, 7]. Previous reports have suggested that beige adipocytes could arise
through a less-studied mechanism of transdifferentiation of pre-existent white adipocytes.
The most important functional difference between beige and white adipocytes is the expres-
sion of the mitochondrial-uncoupling protein 1 (UCP-1), which allows the production of heat
via the respiratory-uncoupling reaction. UCP-1 is activated by an increase of free fatty acids
(FFAs), product of cold-induced lipolysis [8]. Peroxisome proliferator-activated receptor-y
coactivator-la (PGCla) is a transcription co-activator which promotes the expression of ther-
mogenic genes during cold-induced browning of WAT. Thereby, enhancing the number of
beige adipocytes results quite relevant because of the consequent increase in energy expendi-
ture that would avoid or reduce unhealthy hypertrophic WAT expansion. This could protect
organisms against metabolic disorders associated to obesity.

Adipogenesis is a process that can be divided into two sequential steps: (a) commitment
of mesenchymal stem cells into adipocyte precursor cells (APCs), acquiring the adipogenic
potential and restricting them to the adipocyte lineage; and (b) the terminal adipocyte dif-
ferentiation wherein APCs under specific adipogenic stimuli differentiate into mature adipo-
cytes. In the first step, APCs begin to express CD34, a cell surface antigen that distinguishes
between adipogenic and non-adipogenic cell subpopulations [9]. It is important to highlight
that APCs are not a homogeneous cell population, presenting different ability to differentiate
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into mature adipocytes. This cell ability has been called APCs competency and is mainly
determined by the expression of two transcription factors, zinc finger protein 423 (Zfp423)
and peroxisome proliferator-activated receptor (PPAR)-y2, that are considered competency
markers. Initially, APCs express Zfp423 [10], which in turn activates the basal expression of
PPAR-y2, a key pro-adipogenic signal that assures APCs conversion into adipocytes [11].
APCs differentiation capacity is inversely correlated with the expression of anti-adipogenic
factors, such as preadipocyte factor 1 (Pref-1) and wingless-type MMTV 10b (mouse mam-
mary tumour virus) (Wnt-10b). Pref-1 is produced by APCs and exerts the most potent inhibi-
tory signal of the adipogenic process, by suppressing CCAAT/enhancer-binding proteins (C/
EBPs) gene expression [12]. Pref-1 expression decreases progressively in cells undergoing
differentiation, becoming undetectable in mature adipocytes. Also, the increase of Wnt-10b
levels inhibits APCs differentiation in vitro and in vivo [13].

Terminal adipocyte differentiation is under the control of different transcription factors and
hormones. PPAR-y2 is one of the most important factors that induce adipocyte differentia-
tion, and its expression is absolutely required for adipocyte differentiation. C/EBP-a, -3 and
-0 have been the first transcription factors described as involved in the differentiation of AT
cells. The expression of C/EBP-3 and -0 increases immediately after induction of adipogenesis
and stimulates the expression of C/EBP-a and PPARY-2. The increase in C/EBP-a occurs at the
end of adipogenesis and is more abundant in mature adipocytes, being crucial for the normal
sensitivity to insulin in adipocytes.

Several factors influence the biology and adipogenic potential of WAT, which contribute to
a healthy or unhealthy expansion that occurs under positive-energy balance. The purpose of
this chapter is to discuss the role of three of these factors, such as fructose intake, glucocorti-
coids (GCs) and testosterone, affecting WAT function and expansion (Figure 1).

Adipocyte Precursor Cells
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Figure 1. Adipocyte precursor cells (APCs) are committed mesenchymal stem cells that have acquired the adipogenic
potential, and are restricted to adipocyte lineage. During healthy adipose tissue (AT) expansion, adipogenesis is active
and AT is composed by normal sized and small new generated adipocytes, maintaining normal functions. When AT
undergoes an unhealthy expansion, VAT expands mainly by hypertrophy, and becomes dysfunctional, characterized by
insulin-resistant adipocytes, with abnormal endocrine function and local pro-inflammatory state.
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2. Deleterious effects of high-fructose diet

2.1. Fructose-rich diet intake and fructose metabolism

Fructose is a natural sugar found in fruits and vegetables, also known as levulose and fruit
sugar. Although the intake of natural sources of fructose has been relatively stable for the last
40 years, the introduction of high-fructose corn syrups has led to an exponential increase of
free fructose in food supply [14].

Fructose is metabolized primarily by the liver, although both the small intestinal mucosa and
kidney also contain the enzymes necessary for fructose catabolism [15]. Fructose is trans-
ported into cells by two membrane proteins: GLUT5, a specific fructose transporter highly
expressed along the small intestine, and GLUT2, a transporter of both glucose and fructose
which is expressed in the liver, small intestine and pancreas. Most of ingested fructose passes
via the portal circulation to the liver where it is rapidly cleared. Fructose liver metabolism
bypasses the main glycolysis metabolic control. Therefore, fructose metabolism will generate
pyruvate and acetyl-CoA even during positive-energy balance, and both of them will end in
fatty acid synthesis. This phenomenon explains why high-fructose consumption, more than
other sugar intake, increases de novo lipogenesis, dyslipidaemia and visceral fat deposition, all
of them components of the metabolic syndrome (MS).

2.1.1. Fructose impacts on adipose tissue function and adipogenesis

Fructose effects were initially described by observational studies showing the association
between cardiometabolic diseases and consumption of fructose-containing sugars, but not
with lactose [16]. These considerations were also confirmed by several pre-clinical and clinical
studies globally showing that dietary fructose can induce several metabolic alterations closely
similar to the MS phenotype.

There is considerable evidence suggesting that the intake of added sugars or sugar-sweetened
beverages is associated with increased body weight, presence of unfavourable lipid levels, IR,
fatty liver, cardiovascular disease and MS [17], while these alterations are not found using
artificial sweeteners [18]. Specifically, fructose-sweetened beverages have been reported to
cause body-weight increase and intra-abdominal fat deposition, which would be related
to high circulating levels of triglycerides found after fructose-rich diet (FRD) [19]. Indeed,
dietary fructose activates de novo lipogenesis in liver and therefore increases AT fatty acid
uptake. This powerful lipogenic effect has not been observed after the ingestion of other car-
bohydrates, since fructose metabolism is driven almost completely to fatty acid synthesis, as
mentioned above. Another effect related to fructose consumption is the advanced glycation
end products (AGEs) formation. Fructose produces 10 times more AGEs than glucose does
and these AGEs indirectly contribute to the inflammation and oxidative stress that character-
ize the MS phenotype [20].

As in men, fructose ingestion by rats induces body-weight gain, morphological and func-
tional VAT modifications and MS-like phenotype, while this does not occur when glucose
or starch is administered to rats [21-23]. Previous studies from our group showed that FRD
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given to adult rats during 3 and 8 weeks, induced an increase in circulating levels of key adi-
pokines secreted by RPAT, such as leptin, adiponectin and PAI-1. Interestingly, this altered
secretion pattern was accompanied by enlarged adipocytes and decreased expression of insu-
lin receptor substrates (IRS-1 and IRS-2) in adipocytes [24-28], suggesting an IR state. On the
other hand, Pektas et al. showed that FRD increases gene expression of insulin-signalling
pathway components and pro- and anti-inflammatory markers in WAT from male and female
rats. Gender-dependent differences in fructose feeding were not significant, suggesting that
females were not protected from harmful effects of fructose [29]. In summary, FRD ingestion
during short or long periods of time induces deep changes in VAT functionality, predomi-
nantly by favouring hypertrophic VAT mass expansion.

The deleterious effect of high-fructose intake on hypertrophic AT mass expansion has been
extensively studied; however, the study of fructose effects on adipogenesis is now emerging.
It has been observed that rats fed with FRD during short and long periods showed an increase
in the adipogenic potential of APCs from RPAT, displaying high levels of competency mark-
ers, PPAR-y2 and Zfp423 [26, 28]. These changes in the cell expression pattern of both compe-
tency factors are related to an increased APCs ability to differentiate into mature adipocytes.
Indeed, APCs from FRD-fed rats differentiated into adipocytes showed high intracellular
lipid content and high expression levels of adipogenic genes indicating that FRD intake gen-
erates APCs with a greater ability to become mature adipocytes [26, 28]. Another factor that
could influence cell adipogenic potential in AT depots is APCs number. High-fat diet intake
increases APCs number in different AT depots [30, 31]. Interestingly, we previously reported
that a 3-week FRD intake did not induce any change in RPAT APCs number [26]. However,
prolonged FRD intake (8 weeks) increased RPAT APCs number, indicating that this effect is
dependent on the time period of fructose consumption; thus, prolonged periods of fructose
intake increase RPAT APCs number.

Though literature about the effects of fructose on WAT browning is rather scarce, some authors
have shown that dietary factors are related with this phenomenon. It has been observed that
high-fat ingestion is associated with an increase in UCP-1 expression in BAT and WAT, in
mice [32, 33] and rats [34]. Conversely, other studies show a decrease or no differences in
UCP-1 WAT expression [35]. Moreover, changes in the micronutrient composition induce
WAT browning in rodents [36]. Nevertheless, dietary effects on beige adipocytes generation
and precursors remain to be further studied.

2.1.2. Direct effects of fructose on adipocyte precursor cells

As mentioned above, fructose is extensively extracted and metabolized (50-75%) primarily
by the liver; however, a percentage of fructose enters into the systemic circulation and is
metabolized by extra-hepatic tissues, such as the AT [37]. In fact, fructose concentration in
the portal circulation around VAT can easily reach 5-10 mM [38, 39]. So, it suggests that some
of the effects of FRD intake on AT mass expansion could be the result from a direct fructose
effect on APCs.

In this regard, there are some available reports describing direct fructose effects on adipo-
genesis, and most of them have been focused on the terminal differentiation stage of 3T3-L1
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preadipocytes [40]. The addition of fructose into the culture medium of 3T3-L1 preadipocytes
stimulates the terminal stage of adipogenesis, a mechanism that is GLUT5-dependent [40, 41].
Both 3T3-L1 preadipocytes and adipocytes express GLUT5 [40, 42]. It has been described that
GLUT5 gene expression is higher in undifferentiated than in differentiated 3T3-L1 cells, in
which it is almost undetectable [40, 43]. This indicates that adipocyte precursors are a better
target for fructose action than mature adipocytes. Several effects have been described using
fructose in the culture medium. In differentiated 3T3-L1 cells, fructose increased lipolysis
and the activity of 11-p hydroxysteroid dehydrogenase-1 [41]. Also, the presence of fructose
(55-5500 uM) during adipocyte differentiation induced an increase in several pro-adipogenic
factors, and either GLUT5 knockdown or its over-expression reduced or increased this effect,
respectively [40].

Previous reports have described direct effects of fructose on cultured RPAT APCs from
adult normal male rats when they were cultured in the presence of fructose (5500 uM) in the
culture medium. Under this condition, APCs expressed high levels of competency factors,
showing greater APCs potential to become adipocytes. Similar results were found when cells
were cultured with a comparable concentration of glucose [28]. It has been proposed that
the balance between mineralocorticoid (MR)/glucocorticoid (GR) receptors plays a key role
in the pro-adipogenic effect of GCs. Fructose decreases GR expression in adipocytes [44], in
agreement with these data APCs grown in the presence of fructose, but not in the presence
of glucose, displayed higher MR and lower GR mRNA levels. Interestingly, when fructose-
exposed APCs were induced to differentiate, they accumulated high lipid content, indicating
that the imprinting of fructose in APCs is reflected in the mature adipocytes differentiation
capacity [28].

As mentioned before, there are two possible mechanisms by which adipogenic potential of
AT can be increased, that is, by enhancing APCs competency and increasing APCs number.
Fructose effects on APCs competency have already been presented. Regarding the direct effect
of fructose on APCs number, our previous studies showed that fructose directly increased
the CD34" adipogenic cell subpopulation in the WAT stromal vascular fraction (SVF), indicat-
ing an increase on APCs [28]. Interestingly, these results were not observed when glucose
was used, which confirms a fructose-specific effect. Taken together, these results are similar
to those observed in cells from FRD-fed rats, thus it is plausible that some effects observed
in RPAT mass expansion from FRD-fed rats can be a consequence of direct fructose effects
on APCs.

2.1.3. Fructose-rich diet intake and metabolic imprinting

The concept of ‘developmental origins of adult disease” states [45] that environmental factors,
including maternal nutrition, experienced in utero and during early postnatal life, can elicit
permanent metabolic and physiological modifications in individuals, leading to enhanced
susceptibility to develop diseases later in life. Limited data are available on the long-term
effects of high fructose exposure during gestation, lactation and infancy. Emerging research
suggests that fructose consumption by mothers and/or their offspring during early life can
lead to persistent neuroendocrine and metabolic dysfunctions.
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Our group has studied the effect of fructose exposure during gestation or lactation, on adult
male pups. Maternal consumption of FRD during gestation alters offspring development
causing impaired insulin sensitivity and RPAT dysfunction, evidenced by hypertrophic adi-
pocytes that secrete larger amounts of leptin in vitro, though with decreased AT mass. A para-
doxical situation could at least partially be the result of a reduced RPAT APCs number [46].
Adult male offspring born to FRD-fed dams throughout gestation were reported to develop
IR, dyslipidaemia, with a distorted pattern of peripheral adipokines and enhanced oxidative
stress [47]. Interestingly, later in life, the offspring normalized their metabolic profile [48].
Conversely, another study showed that FRD intake by gestating mothers resulted in pro-
nounced maternal dysfunctions without major undesirable metabolic effects on the offspring,
even after following their progress up to 6 months of age [49].

When FRD was administered to lactating dams, the offspring showed increased body weight,
hypothalamic leptin resistance, increased food intake, IR and increased VAT mass (due to
both fat mass and adipocyte size) [50].

It was reported that offspring born from mothers consuming FRD during pregnancy and
lactation displayed decreased body weight, hyperinsulinaemia and hypoglycaemia at wean-
ing [51]. Moreover, rat pups consuming high-carbohydrate milk during lactation did develop
obesity at adulthood [52], characterized by increased body weight, hyperinsulinaemia and
augmented skeletal muscle fatty acid transport at adult life [53]. Excessive insulin secretion
in turn promotes enhanced lipogenesis [54] and adipogenesis [55]. Regarding WAT brown-
ing, FRD effects have not been yet studied. Nevertheless, maternal perinatal undernutrition
has been reported to increase the appearance of beige adipocytes in gonadal WAT of rats at
weaning [56]. There is still much to investigate about this mechanism.

In summary, FRD administration during an individual’s development (gestation or lactation
periods) induces a permanent alteration in AT development, increasing its susceptibility to
have an unhealthy RPAT expansion, and leading to unfavourable metabolic consequences
seen at adult age.

2.2. The role of glucocorticoids in adipose tissue biology

GCs have numerous effects on AT biology and functionality. Among others, they regulate
AT endocrine function, AT inflammation in obesity and lipogenic-lipolysis balance [57].
High GC levels in blood or in AT depots would be expected to increase the breakdown of
lipids; however, the GC effects on AT metabolism are controversial. Many reports agree
that GCs increase lipolysis in mature adipocytes [58, 59], while others state that GCs have
an inhibitory effect on lipolysis [59, 60]. Regarding lipogenesis, dexamethasone (DXM), a
synthetic GC, has been shown to potentiate the stimulatory effect of insulin on de novo lipo-
genesis in adipocytes [61]. GCs also may cause an increase in VAT lipoprotein lipase (LPL)
activity, particularly in men [62]. Consequently, a greater amount of fatty acids would be
available for uptake in the VAT, and could help to explain central AT accumulation seen in
individuals with high GC levels. The global balance of GC effects on AT lipid metabolism
seems to indicate that GCs may favour lipid accumulation in adipocytes, contributing to cell
hypertrophy.
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Another important effect of GCs on AT is the regulation of fat distribution, promoting VAT
deposition [63]. One clear example is Cushing’s syndrome (CS) phenotype, mainly character-
ized by high-serum GC levels and increased VAT rather than SAT mass [64]. CS has several
features in common with MS phenotype, such as the presence of VAT-hypertrophic adipo-
cytes, altered lipid metabolism and impaired adipokine secretion [65]. Chronic treatment
with GCs induces obesity and MS, impairing AT metabolism. These alterations suggest that
GCs have a pivotal role in the pathogenesis of central obesity and the associated alterations
seen in the CS phenotype. Interestingly, the restoration of normal peripheral levels of GCs in
a rat model of CS reverses most of dysfunctions [66].

Although plasmatic levels of GC seem not to be increased in human obesity, increased local
production of cortisol within the AT is associated with this disorder [67]. Local cortisol levels
are regulated by 113-hydroxysteroid dehydrogenase type-1 and -2 (HSD1 and HSD2, respec-
tively). Both enzymes are expressed in AT, where they act regulating the interconversion from
the inactive to the active forms of GCs and vice versa, respectively. HSD1 is expressed at
higher levels than HSD2 in AT, generating higher concentrations of the active form, which
may play an important role in GCs-driven AT mass expansion. In animal models, over-
expression of HSD1 in mature adipocytes has generated a model for VAT accumulation [68],
whereas HSD1 knockout mice are resistant to central obesity [69].

GCs are required for the differentiation of APCs [70] and for the maintenance of adipogenic
gene expression in cultured adipocytes and AT [71]. In fact, DXM has been widely used in
vitro as a component of traditional differentiation cocktails, due to its potent adipogenic
stimulus. The main effect of GCs during early stages of adipogenesis results from the inhibi-
tion of anti-adipogenic and the activation of pro-adipogenic transcriptional factors, as well
as the increase of APCs competency factors. GCs decrease Pref-1 and Wnt-10b expression
[72, 73], both factors are highly expressed in preadipocytes, absent in mature adipocytes and
responsible for the undifferentiated phenotype maintenance [74, 75]. Experiments in 3T3-L1
preadipocytes showed that Pref-1 is an early target for DXM action and that its expression
decreases with high DXM concentrations, at the same time that adipocyte differentiation
increases [72]. Similarly, methylprednisolone (another synthetic GCs) or DXM inhibit Wnt/b-
catenin-signalling pathway, promoting adipocyte differentiation [73, 76]. In cultured APCs
from hypercorticosteronaemic rats, mRNA levels of Pref-1 and Wnt-10b decreased at the
time that all differentiation parameters increased, for example, lipid content, expression lev-
els of mature adipocytes genes (Ob, adiponectin, C/EBP-a, PPAR-y2) and leptin secretion
[77]. On the other hand, GCs increased mRNA levels of the pro-adipogenic factors C/EBP-0
and C/EBP-f3 [78], which subsequently regulated the expression of mature adipocytes genes.
Additionally, it has been previously shown that GCs can activate APCs by enhancing the
expression of the competency factors, PPAR-y2 and Zfp423 [77], and consequently increasing
their adipogenic potential.

The actions of GC on AT cells can be exerted through their binding to MR and GR [79, 80],
although the contribution of MR and GR in mediating GC effects on AT cells has not been
fully understood. In 3T3-L1 and in mouse and human preadipocytes, MR rather than GR has
been reported to be important in mediating the pro-adipogenic effects of GCs [79, 81, 82].
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However, another study by Lee et al. found that human preadipocytes express lower levels
of MR than those of GR. Moreover, the blockade of GR but not of MR inhibited adipogenesis
activation caused by GCs [80]. Nevertheless, the participation of MR or GR in the biological
actions of GCs upon the AT is still a matter for debate, while there is currently no consensus
about this.

Most studies on the stimulatory role of GCs on preadipocyte differentiation have been largely
limited to the 3T3-L1 cell line [83, 84]. However, the role of GCs in vivo should not be assumed
on the basis of those studies. Taking into account the potent pro-adipogenic action of GCs, it
is difficult to explain the presence of hypertrophic adipocytes under conditions of high GC
levels, when they are supposed to favour the generation of new cells and therefore small adi-
pocytes through a continuously activated adipogenesis. In this regard, previous reports show
evidence for a dual behaviour of the adipogenesis in a model of high GC levels, characterized
by initial activation and a subsequent inhibition of the adipogenic process [66, 77]. This dual
behaviour could be in part because of differential expression levels of MR: while MR expres-
sion does not change in early stages of hypercorticosteronaemia, it decreases under chronic
high GC levels condition. This fact could suggest that MR is involved in the development of a
GCs-resistant state in AT and it could explain, at least in part, the inhibition of adipogenesis in
a powerful pro-adipogenic environment. However, the contribution of GR to the lack of GCs
effect cannot be disregarded, even in the presence of similar GR expression levels.

The recruitment of immune cells, such as macrophages, lymphocytes and natural killer
(NK) cells, occurs in VAT during obesity and contributes to the development of a chronic
inflammatory state [85]. Furthermore, there is a macrophage polarization towards the M1
pro-inflammatory type in detriment to the M2 anti-inflammatory type [85]. The role of GCs
mediating the inflammatory response in AT depends on MR or GR activation, which will
determine a pro- or anti-inflammatory response, respectively. While GR activation induces a
decrease of pro-inflammatory cytokine secretion, MR activation generates the opposite effect
[86]. Nevertheless, in CS patients the establishment of an AT inflammatory state is debated
[87, 88]. In our animal model of high GC levels, the RPAT expression of macrophages infiltra-
tion markers (TNF-a, IL-6, MCP-1 and F4/80) does not increase [66]. This suggests an anti-
inflammatory effect of GCs exerted through GR activation or a lower pro-inflammatory effect
due to low MR expression [66].

It has been described that GCs suppress thermogenesis in rodents BAT, by decreasing the
expression of UCP-1 [89]. Also, GCs treatment decreases BAT-specific genes expression in
a brown adipose cell line [90]. However, available information about GCs action on beige
adipocytes generation is contradictory and inconclusive. MR antagonist in high-fat-fed mice
has been observed to promote WAT browning, inducing the expression of UCP-1 in VAT and
SAT (inguinal) and the generation of brown-like adipocytes [91]. On the other hand, human
and mouse adipocytes expressed lower levels of UCP-1 when cultured in the presence of
DXM [92]. Additionally, DXM-treated mice showed decreased UCP-1 mRNA levels in both
SAT and WAT depots, at the same time that developed glucose intolerance and hypertrophic
adipocytes [92]. Further studies are needed to clarify the role of GCs on WAT browning and
the potential effects on metabolic disorders.
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The molecular basis and a more complete understanding of GCs effects on in vivo AT mass
expansion remain to be defined. Adipogenesis activation or inhibition, depending on the
competency and number of APCs, could be one factor modulating the way in which an
AT depot expands. This fact is crucial because the metabolic dysfunctions associated with
obesity are dependent on the development of adipocyte hypertrophy. Thus, the possibility
to increase APCs adipogenic potential could result in the activation of adipogenesis (hyper-
plastic AT mass expansion), and probably the compensation of adipocyte hypertrophy, with
consequent benefits for AT functionality. The fact that CS patients as well as GCs-treated
rodents show enlarged adipocytes [93, 94] suggests that GCs must also stimulate hyper-
trophy, through either increased lipogenesis or decreased lipolysis, in addition to hyper-
plasia, through adipogenesis activation, probably in balance where hypertrophy exceeds
hyperplasia.

2.3. Testosterone modulates fat store deposition and function

It is well known that AT mass and distribution pattern display a clear dimorphism between
genders, which has been observed in humans, non-human primates and laboratory ani-
mals. Women have greater percentage of AT and proportionately lower lean mass than men.
Furthermore, there is a differential distribution of AT among individuals, while men have
greater predisposition to accumulate VAT (android distribution), women accumulate gluteal-
femoral AT (gynoid distribution). Since VAT expansion is associated to high risk of T2DM
and cardiovascular disease development, the greater predisposition to VAT accumulation in
men is one of the reasons for higher male incidence in metabolic disorders development.
In physiological range, plasma testosterone levels are inversely correlated with VAT mass
and therefore associated with a favourable metabolic profile. The same relation has been
shown with plasmatic sex hormone-binding globulin (SHBG) concentration and VAT mass.
Dehydroepiandrosterone (DHEA) is an adrenal precursor of the peripheral steroid synthe-
sis and it is considered a weak androgen. Some studies have found an inverse correlation
between the DHEA levels and central obesity. However, this relationship is not clear with
supra- or sub-physiological testosterone levels. Treatments with testosterone in transsexual
individuals are accompanied by an increase in AT mass [95], while in patients with hypo-
gonadism a decrease of AT has been observed [96]. In both examples, the risk of developing
cardiovascular diseases was enhanced [95-97].

The relationship between blood androgen levels and AT function in women is more complex.
It is accepted that androgen excess is associated with central obesity, although there are stud-
ies that are not consistent with this assumption. Women with polycystic ovary syndrome
(PCOS) often have hyperandrogenaemia associated with IR and accumulate VAT mass. It has
been seen that in humans, testosterone induces IR in adipocytes, in part by decreasing glucose
uptake by these cells. Neonatal androgenization, an experimental model of PCOS, clearly
showed that transiently testosterone excess altered AT function, increasing VAT mass [98],
adipocyte size and plasmatic leptin, PAI-1 and FFA levels. These alterations shifted towards
those favouring IR and inflammation in adult life [27]. On the other hand, neonatal treatment
with a non-steroidal antagonist of the androgen receptor (AR), flutamide, induced a decrease



Dietary and Hormonal Factors Involved in Healthy or Unhealthy Visceral Adipose Tissue Expansion
http://dx.doi.org/10.5772/65927

in the levels of leptin and greater LPS-induced TNF-a secretion [99]. In general, the treatment
with testosterone in the first days of life increases the susceptibility to the development of MS
[76] and, on the contrary, the treatment with flutamide improves this condition, showing that
testosterone effects are specific receptor-dependent (AR) [100].

The effects of androgens on lipid metabolism, insulin sensitivity and adipogenic process are
well known. Androgens exert their biological actions through its specific receptor, which is
part of the nuclear receptors family that includes GR, MR and PPAR-y, among others. AR is
expressed in both adipose cells and APCs [101]. However, the levels of its expression differ
among AT depots. VAT has higher AR expression levels than SAT [101-103], which would
explain in part the differential actions of testosterone on these different AT depots.

It is accepted that androgens have stimulating effects on lipolysis. In rats, castration
inhibits catecholamines- or cAMP-induced lipolysis [104], while testosterone treatment
increases forskolin- and adrenaline-induced lipolysis [105]. Also, DHEA has positive
effects on the lipolytic process. It has been found that rats treated with DHEA show an
increase in plasma glycerol and FFA, and in the epididymal AT pad it increases the expres-
sion levels of adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL) [106].
In humans, androgen effects on lipolysis are dependent of the AT depot being studied.
Treatment with testosterone in transsexual individuals has been reported to increase
lipolysis in VAT, but not in the SAT. In vivo studies also show that testosterone increases
catecholamine-induced lipolysis in abdominal AT, but not in the femoral fat pad. There is a
correlation between plasma testosterone levels and the degree of post-stimulation lipolysis
in omental AT [107].

In vitro studies with preadipocyte cell line 3T3-L1 and multipotent cell lines C3H10T1/2,
have shown that androgens (e.g. testosterone, dihydrotestosterone (DHT) and DHEA)
inhibit cell proliferation and differentiation into mature adipocytes [108-110]. The same
inhibitory effect was observed in human APCs from different AT depots (mesenteric, omen-
tal and abdominal subcutaneous). In rats, castration produces a dual effect according to
the AT depot studied; while increasing adipogenic potential of APCs from peri-renal AT, a
decreased effect was observed in epididymal AT [111]. Part of the anti-adipogenic action of
androgens would be exerted through the inhibition of PPAR-y2 and C/EBP-a. On the other
hand, it has been observed that testosterone and DHT also inhibit the commitment of mes-
enchymal cells into APCs obtained from lean and obese women [112, 113]. The induction of
the APCs to differentiate into mature adipocytes increases the expression of the AR [103],
although Dieudonne et al. showed that this protein level decreases [101]. It is important to
emphasize that most of the literature related to androgen effects on adipogenesis is focused
on the terminal phase of this process, but very little is known about the actions on APCs
number and competency.

Androgens effects on WAT browning have not been yet explored. However, the thermo-
genic capacity of BAT is associated with sexual dimorphism, evidenced by differential UCP-1
expression levels between males and females [114, 115]. It has been observed that testoster-
one inhibited the expression of UCP-1 [116] and PGCl-a in cultured precursors of brown
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adipocytes [117]. These results coincide with the lowest mitochondrial activity observed
in male compared to female rats [118]. These observations show that androgens inhibit
thermogenic capacity in brown adipocytes and therefore the same effect could be expected
on beige adipocytes.

In obesity, plasmatic testosterone levels are diminished, favouring the increase in VAT mass.
At the same time, low levels of testosterone induce inhibition of lipolytic metabolism and
stimulate LPL expression favouring lipogenesis [119]. This altered lipolysis/lipogenesis bal-
ance contributes to an increase lipid storage in adipose cells and therefore to the development
of unhealthy VAT mass expansion. Adipocyte hypertrophy is associated with higher leptin
secretion into circulation. Leptin impacts on reproductive axis function by inhibiting testis
testosterone production [120]. These feedback effects contribute to generate a vicious cycle
between AT dysfunction and androgen.

The development of a pro-inflammatory state is one of the features of unhealthy VAT mass
expansion. Androgens have been described as anti-inflammatory factors. In hypogonadism,
pro-inflammatory cytokines levels increase, while androgen replacement therapy decreases
them [121]. Therefore, the decrease of testosterone levels associated to obesity contributes
to the pro-inflammatory state observed. On the other hand, low testosterone levels in cir-
culation would be one of the factors that activate adipogenesis, contributing to the increase
of VAT adipocyte number, as observed in obese individuals. However, the effect of low
androgen levels on cell hyperplasia is not strong enough to prevent adipocyte hypertrophy
development, and therefore VAT depot dysfunction, main characteristics of the hypertrophic
obese phenotype.

3. Conclusion

Endocrine-metabolic alterations associated to obesity are related to WAT dysfunction,
mainly VAT. However, the increase of VAT mass per se is not an unequivocal indication
of VAT dysfunction, whereas the adipocyte size actually is. Therefore, the balance between
hypertrophy and hyperplasia will determine the appearance of enlarged adipocytes and,
consequently, the development of VAT dysfunction. There are many factors that regulate
this balance in WAT expansion. In this chapter, we have addressed three of them: fructose
intake, GCs and testosterone. Both, fructose intake and GCs, stimulate adipogenesis by
modulating APCs competency and number, and thus terminal differentiation. However,
in both cases the chronic exposure to these factors led to hypertrophic adipocytes, and
therefore to an unhealthy WAT expansion. Chronic exposure to high GC levels seems to
induce a resistance state in APCs that would limit their adipogenic potential, partially by
a lower response to GCs stimuli due to MR expression decrease. Conversely, testosterone
is an anti-adipogenic factor that favours unhealthy expansion. Obesity is associated with
reduced testosterone levels, which would promote adipogenesis; however, much extensive
research is needed to determine the role of androgens in APCs adipogenic potential in
obesity. Finally, factors inducing adipogenesis could become a therapeutic target against
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Figure 2. The analysis of three different factors regulating adipogenesis and VAT expansion shows differential
effects, depending on the factor analysed. Early GC excess and FRD intake make APCs more competent, this
means favouring their ability to differentiate into mature adipocytes, consequently increasing adipogenesis.
Nevertheless, this increased adipogenesis occurs in parallel with hypertrophic VAT expansion. GCs chronic excess
causes APCs competency to decrease, adipogenesis to fall and VAT expansion mainly by the hypertrophy of pre-
existent adipocytes. Effects of low testosterone levels associated to obesity need to be further studied. Nonetheless,
it is already known that testosterone is an anti-adipogenic factor involved in unhealthy VAT expansion, favouring
adipocyte hypertrophy. In summary, all three factors are involved in increased hypertrophy/hyperplasia balance,
generating a dysfunctional VAT.

endocrine-metabolic disorders, favouring WAT healthy expansion and thus mitigating obe-
sity-associated pathologies (Figure 2).
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