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Abstract

Staphylococcus aureus  causes hospital-acquired (HA), community-acquired (CA) and
companion animal and livestock-associated (LA) infections. Molecular epidemiology
studies suggest that although host specificity may be associated with specific genetic
lineages,  recent  human-to-animal  and  animal-to-human  transmissions  related  to
mobile genetic elements have been described. Gene transfers include virulence and
antibiotic resistance genes, thus making it difficult to control multidrug resistance S.
aureus  infections. Bacteriophages (phages) and endolysins, the enzymes responsible
for bacterial lysis by phages, are alternatives to the use of antibiotics for the control of
S. aureus infections. In this work, we review current advances in the development of
phage therapy and the study and design of recombinant endolysins to treat S. aureus
infections.  Preliminary  results  of  bacteriophage  isolation  based  on  molecular
epidemiology knowledge show that bacteriophages are specific of genetic lineages and
that this strategy may be used as an approach to isolate and evaluate new bacterio-
phages for therapy.

Keywords: bacteriophage therapy, endolysins, enzybiotics, antibiotic resistance, mo-
lecular epidemiology

© 2017 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,

distribution, and reproduction in any medium, provided the original work is properly cited.



1. Introduction

1.1. Staphylococcus aureus as a zoonotic pathogen

Besides  infecting  human  hosts  in  hospital-acquired  (HA),  in  community-acquired  (CA)
infections as an opportunistic pathogen and in food poisoning by enterotoxic strains, S. aureus
has also been isolated from animal hosts, both in livestock-associated (LA) and in companion
animals’ infections. Due to the raise of methicillin-resistant S. aureus (MRSA) strains, this feature
was included as a phenotypic marker to identify S. aureus, and now they are described as MRSA
or methicillin-sensitive S. aureus (MSSA). Molecular epidemiology approaches helped to the

Genetic line‐

age

Original descri‐

bed host

Further reports Other features

ST1 Human Cow, horse, chicken,

piga

–

CC5 Human Chicken, turkey, dogb,c ST5. Major HA clone; dog isolates in Japan and Spain

ST8 Human Horse, cow, fishd USA300. Major CA clone; fish isolates in Japan

ST9 Pig Chicken –

ST22 Human Cat, doge,c EMRSA-15 global CA epidemic clone

CC97 Cow Human, pigf,g Loss and acquisition of virulence gene and pathogenicity is-

lands lead to change in host specificity; recent transmission be-

tween cattle and pigs in Slovenia and Italy

ST121 Human Rabbit –

CC126 Cow – –

CC130 Cow Sheep, deerh In semiextensive red deer farm in Spain

CC133 Sheep Goat, cow, catb, dogc Cat isolates from Japan; dog isolates from Spain

ST239 Human Cow HA clone in Europe; isolates from bovine milk in Turkeyi

CC705 Cow – –

CC385 Chicken Wild birds –

ST398 Pig Human, cow, chicken,

horse, dogc

Acquisition of genetic elements to evade immune response in

new hosts. mecALGA251 (mecC); Spanish kennel dogs isolates

ST425 Cow – –

ST1464 Sheep – –

Modified from Refs. [5, 59, 60]; a[61]; b[62]; c[63]; d[64]; eST deduced from homology between pet and human strains by
PFGE and by spa-typing [65]; f[7]; g[8]; h[66]; i[67].

Table 1. Animal-associated genetic lineages of S. aureus.
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understanding of the genetic structure of the S. aureus genetic population dynamics and hence
in making predictions on transmissions between humans and animals. Multilocus sequence
typing (MLST) is one of those molecular approaches. MLST analyzes the allelic combination of
seven-to-nine (in S. aureus and other bacterial species) housekeeping genes that are randomly
distributed along the genome. Mutations in S. aureus genes (arcC, aroE, glpF, gmk, pta, tpi and
yqiL) are registered in an open public database (http://saureus.mlst.net) hosted at the Imperial
College of London and supported by the Wellcome Trust Foundation. Each allele for each gene
is designated with a specific number, so the allelic profile of a strain is designated by the numbers
of alleles designated for each gene in the order described previously. Each allelic profile is
designated with a sequence type (ST) number. STs sharing six or less alleles are grouped in clonal
complexes (CC) in which the STs with the highest frequencies and number of shared alleles are
designated as founder or subfounder clones, giving the name to the CC or related subgroups
[1, 2]. Genetic lineages represented by a particular ST or CC are associated with specific hosts
and geographical distributions. Some of them were originally described as specific for human
or animal hosts and further reports associated them with animal or human transmissions,
respectively, thus suggesting the zoonotic potential of S. aureus lineages. Table 1 shows the major
genetic lineages of S. aureus associated with animal hosts.

It is important to establish that the original description of a genetic lineage associated with a
particular host followed by posterior reports of association with other hosts may not represent
the evolutionary story of that lineage; it may only represent the original interest for the host
due to the anthropocentric reasons or by the importance of the animal host as a food source
or its contact with the human owner.

ST398 is one of the most reviewed cases of a clone showing animal-to-human transmission.
Due to the whole-genome sequencing of strains from human endocarditis and bovine mastitis,
differences in genomic content suggested that ST398 may be originated in humans. By loss,
acquisition and reacquisition of pathogenicity islands or a staphylococcal chromosomal
cassette related to methicillin resistance (SCCmec), and particular virulence genes like those
encoding Panton-Valentine leukocidin (PVL) or the tetracycline resistance gene tetR, ST398
susceptible to methicillin was originally transmitted from humans to animals and then back
to humans as a methicillin-resistant strain [3, 4]. Similar events may occur for bovine-specific
clones from CC97. Staphylococcal protein A (spa) and clumping factor A (clfA), which are
important in human pathogenesis, appear as nonfunctional mutants in bovine isolates,
suggesting that they are not important for bovine colonization. Alleles of von Willebrand factor
are specific for each host, and pathogenicity islands seem also specific for each host [5,6].

Reports of interspecies transmission of S. aureus infections are becoming more frequent. In a
study of CA-MRSA distribution in Slovenia, ST398, an originally pig-associated genotype, was
found in 9.9% of the cases [7]. CC97 was first described as associated with bovine mastitis cases
and now has also been found in humans and pigs. Of particular interest is the case of a
multidrug-resistant LA-MRSA genotype from Italy that has been transmitted to pigs as MSSA
and spilled back after methicillin resistance acquisition [8]. Ovine-associated S. aureus isolates
are represented by CC133. In a global survey in Western Europe and Mediterranean countries,
CC700 and CC522 were also ovine-associated. This distribution differs from North and South
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America and Australia, where CC133 is the major ovine clone. Isolates from CC97 (bovine-
associated), CC5, CC8 and CC30 (human-associated) were also found in this report, indicating
high interspecific transmission of these genotypes [9]. Among zoological park animals in
Greece, human-associated lineages ST80, ST8 and ST15, some of them with human pulsotype
by PFGE analysis, suggest human-to-animal transmission [10]. ST80 and ST15 genetic lineages
were also found in companion animals with close human contact in a veterinary teaching
hospital in Greece. Panton-Valentine leukocidin (PVL), a necrotic toxin involved in skin
infection, was found in 68.2% of MSSA isolates and in 50% of MRSA isolates, reinforcing the
probable human origin of those strains. Also ST398 MRSA isolates were found that belong to
the human cluster [11]. S. aureus has also been associated with wildlife animals. Studies in
Spain demonstrate the presence of ST398 (pig- and human-associated) and ST1 (human-
associated) MRSA isolates harboring the novel mecC methicillin resistance gene (see below) in
either red deer, Iberian ibex, wild boar or Eurasian griffon vulture, suggesting a probable
human origin of these isolates [12–14]. All of these examples represent the high transmission
capability of apparently species-specific S. aureus genetic lineages and urge to the implemen-
tation of both molecular epidemiology surveillance and novel infection controls.

Antibiotic resistance is also a major problem of S. aureus infections. There is a constant
interchange of mobile genetic elements modifying the virulence arsenal of S. aureus genetic
lineages. This suggests that genetic background may be considered for the design of modern
strategies to control S. aureus infections.

After the discovery of penicillin by Alexander Fleming in 1928 and its application to treat S.
aureus infections in 1940, the first penicillin-resistant S. aureus strains were reported by 1945.
Later in 1959, methicillin appears as an alternative to the use of penicillin. By 1961, the first
methicillin-resistant S. aureus (MRSA) strains were reported. A similar story occurred for
vancomycin-resistant (VRSA) and vancomycin-intermediate (VISA) S. aureus. Methicillin
resistance is encoded by a staphylococcal chromosome cassette named SCCmec containing the
mecA or mecC (mecALGA251) genes conferring resistance in humans and animals, for which at
least 11 variants have been described. Apparently, these cassettes originated from a macro-
coccal mecB gene, which originated mecA (SCCmec and chromosomal forms) and mecC in
staphylococci [15]. mecC has been almost exclusively associated with SCCmec type XI and
located in animal strains from different STs and CCs [16], suggesting an intense intergeneric
mobilization of SCCmec cassettes. VRSA strains seem not to be a major problem since only a
dozen of clinical strains has been reported in the last decade. Vancomycin resistance is
mediated by a complex of four genes (vanA, vanH, vanX, vanY) carried in a transposon. These
modify a D-alanyl residue to D-lactate rendering the peptidoglycan structure resistant to
vancomycin binding. vanA plasmids have also been reported, one of them being efficiently
transmissible. This may predict that in the future, VRSA will also become a public health
problem. Spontaneous mutants giving raise to VISA clones within vancomycin-susceptible S.
aureus (VSSA) populations are known as heterogeneous-VISA (hVISA). hVISA/VISA is
difficult to detect because on a first screening isolates behave as VSSA. Under the presence of
vancomycin, VISA individuals are selected, and on a second screening, they behave as VISA.
hVISA/VISA phenotypes have been associated with mutations in around 20 different genes
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that divert metabolism to peptidoglycan synthesis. Peptidoglycan then entraps vancomycin.
hVISA/VISA reports are becoming more frequent in the literature, and it is to date considered
of more relevance than VRSA. Staphylococci also present multidrug resistance genes such as
erm (conferring resistance to macrolides, lincosamides and streptogramin B—MLSB-) and vga
(conferring resistance to lincosamides, pleuromutilins and streptogramin A) genes. Some of
these genes are located in plasmids or transposons that are highly mobile genetic elements [16].
All of these evidences suggest that antibiotic resistance is becoming a major public health
problem for the control of S. aureus infections, so alternative biotechnological approaches
different from classical antibiotic treatments must be used in the future to control S. aureus
infections. Bacteriophage therapy is one of those approaches.

1.2. Bacteriophages

Bacteriophages are viruses that infect only bacteria. They coevolve with their hosts optimizing
its spread and release mechanisms from the bacterial cell to the environment and cause (in the
case of lytic bacteriophages) lysis of the bacteria. They are also a major driving force in S. aureus
evolution as a pathogen since many virulence genes are mobilized between different strains
by means of transduction [17]. Bacteriophages are the most abundant biological entities of
nature, although they are present in all environments, it is in aquatic systems where they are
in greater proportion [18, 19]. Early indications of the presence of viral particles were reported
in 1896 when bacteriologist Ernest Hanking observed that from the waters of the river Jumma
in India, they identify a “substance” with antimicrobial activity against Vibrio cholerae and this
substance was also heat labile and capable of passing through the filters of porcelain used at
that time [20]. Two years later in 1898 Gamaleya observed a similar phenomenon in Bacillus
subtilis. In 1915 and 1917, Twort and D’Herelle, respectively, discovered the viral particles
called bacteriophages [21]. Frederick Twort in 1915 reported antimicrobial activity against
Staphylococcus aureus suggesting that it could be viral particles among other possibilities. As
of D’Herelle, he coined the term bacteriophage in 1917; this discovery was due to their previous
studies to develop a vaccine against dysentery where he observed lytic plaques later named
as bacteriophages [22]. In 1923, the National Institute of Bacteriophages in Tbilisi Georgia was
established. Since then, the search for lytic bacteriophages for the biological control of
infectious diseases has been in the scene.

1.3. Generalities

Bacterial viruses (bacteriophages or phages) possess genetic material in the form of DNA or
RNA; morphologically, they consist of a head and a tail both constituted of protein. The head
is the core package of nucleic acid surrounded by a protein shell or capsid also called lipo-
protein. The tail varies on complexity from one bacteriophage type to another [23]. According
to their lytic activity, they can be divided into two groups: lytic and lysogenic bacteriophages.
When bacteriophages infect their host, they reproduce and the process ends with lysis of the
bacteria and release of viral progeny. This is known as the lytic cycle. When the bacteriophages
are able to integrate its genetic material into the bacterial genome and thus reproduce for
several generations together with their host’s genome, they are called temperate phages and
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they reproduce by a lysogenic cycle [24]. Bacteriophages which possess double-strand DNA
express highly specific enzymes called viral-associated peptidoglycan hydrolyses (VAPGH)
that bind to the bacterial cell surface and cause disruption of the cell wall to inject their DNA
into the host cell [25]. The filamentous phage releases their viral progeny without causing the
death of the bacteria [18], while nonfilamentous phages cause bacterial lysis by synthesizing
endolysins (enzymes encoded by double-strand DNA phages) that hydrolyze peptidoglycan
as part of an holin-endolysin system. The endolysins and holins are synthesized at late stages
of phage infection. Endolysins accumulate in the cytoplasm until viral particles are assembled
and holins form pores in the membrane allowing cytoplasmic translocation of endolysins
through the membrane for peptidoglycan degradation [26]. Furthermore, single-stranded
DNA or RNA bacteriophages synthesize “lysines” which interfere or inhibit the synthesis of
the bacterial peptidoglycan [27]. The VAPGHs and endolysins are able to degrade the pepti-
doglycan when applied externally, which is why these enzymes represent an alternative to be
used as enzybiotics in Gram-positive bacteria [28]. Bacteriophages and their endolysins are
highly specific, infecting or hydrolyzing only a single species of bacteria attaching to specific
receptors on the surface of host cell. The specificity of interaction between phage attachment
structures and host cell surface receptors determinates host range. [29].

2. Bacteriophage reproduction

2.1. Lytic cycle

Phages replicate inside bacterial host and the process finalizes with lysis of the host and
spreading of phage progeny. Phage replication includes the following steps [30]:

1. Adsorption. Phage attachment to a specific host cell in a process involving interaction
with receptors on the surface of a susceptible host cell and an infecting virus. There are
two major types of receptors: components of a bacterial cell like lipopolysaccharide,
peptidoglycan, outer membrane proteins and teichoic acids, and fimbriae-type receptors
like pilli or flagella.

2. Nucleic acid injection. Through the tail, phage injects its genetic material into the cell
after peptidoglycan degradation behind pore formation (by VAPGH). The phage coat
protein that includes capping head and tail structure remains attached to the bacterial
surface.

3. Replication. After injection of its nucleic acid, phage expresses early genes that redirect
host synthesis machinery to the reproduction of viral nucleic acid and proteins.

4. Assembly and packing phage particles. Once the viral components are synthesized, the
genetic material is encapsulated in its protein coat, and complete virus particles are
formed.

5. Phage progeny release. Phage late proteins like holins and endolysins or murein synthesis
inhibitors are produced, and they are responsible for the lysis of the host cell and the
release of viral particles to the environment.
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2.2. Lysogenic cycle

The lysogenic cycle comprises the same steps as lytic cycle, but after penetration of the genetic
material, the phage nucleic acid is inserted into the chromosome of the bacteria and is
replicated as a segment of the own bacterial genome for one or more generations without
metabolic consequences for the bacterium. After this cycle, the genetic material of the phage
can be excised from the bacterial chromosome and enter into a lytic cycle; usually, this occurs
under physiological stress or damage of the genetic material.

3. Endolysins

The term endolysin was coined until 1958 to refer to the phage component responsible for the
bacterial lysis. Lytic phages present a genetic cassette encoding a holin-endolysin system. At
the end of the reproductive cycle, once mature viral particles have been assembled, holins are
synthesized in critical concentrations and inserted into the cell membrane, creating pores for
the translocation of endolysins, previously accumulated in the cytoplasm, to reach the
peptidoglycan structure [19]. Endolysins are classified according to its enzymatic activity
(Figure 1) in: (1) N-acetylmuramoyl-alanine amidases, which hydrolyze the amide bond

Figure 1. Enzymatic activities of endolysins. (A) N-acetyl-muramidase catalyzes the hydrolysis of N-acetylmuramoil-
β-1,4-N-acetylglucosamine. (B) N-acetylglucosaminidase catalyzes the hydrolysis of N-acetylglucosaminil-β-1,4-N-ace-
tylmuramine. (C) Endopeptidase hydrolyzes peptidic bonds on amino acids chains linked to the glycan moiety or in
the pentapeptidic bridge. (D) N-acetylmuramoyl-L-alaninamidase hydrolyzes the amide bond that connects the glycan
with the amino acids. (E) Transglycosylases attach the glycosidic β-1,4 bonds resulting in the formation of a 1,6 anhy-
drous ring in N-acetylmuramic acid (modified from Barrera-Rivas et al. [19]).
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between the N-acetyl-muramic in the glycan chain and the L-alanil residues; (2) endo-β-N-
acetylglucosaminidases, which hydrolyzes the N-acetylglucosamine β-1,4-N-acetylmuramine
acid linkage; (3) N-acetyl-muramidases, which catalyze the hydrolysis of N-acetylmuramoil-
β-1,4-N-acetilglucosamine bond; (4) transglycosylases, which disrupt β-1-4 glycosidic bonds
by forming a 1–6 anhydride ring in the N-acetylmuramic residue; (5) endopeptidases, which
may hydrolyze both the tetrapeptide linked to the glycosil moieties and the pentapeptide
entrecrossing bridge [31, 32].

Endolysins encoded by double-stranded DNA bacteriophages have a molecular weight be-
tween 25 and 40 kDa [33]. Most of endolysins are composed of at least two functional do-
mains: one containing the catalytic activity located generally in the N-terminal domain
and one responsible for the recognition of a specific substrate associated with the C-termi-
nal domain. In some cases, more than one catalytic domain or more than one recognition
domain are present [19]. The recognition domain usually joins to specific molecules in the
bacterial cell envelopes such as monosaccharides, coline or teichoic acids [34]. Endolysin
activity is usually species specific, although there have been reports of endolysins with a
wider substrate range. Besides, the cell wall recognition domain is not always essential for
endolysin activity. The endolysin got a wider substrate range, but it conserved certain spe-
cificity, since it was no active against all bacteria. Studies of crystallography and mutation
analysis with endolysin PlyL against Bacillus anthracis led to propose that the C-terminal
domain of this endolysins inhibits the activity of the catalytic domain by particular inter-
molecular interactions. This inhibition is released when the C-terminal domain binds to its
particular ligands in the target cell wall, thus acting as a regulatory domain [35]. Most of
the reported endolysins from phages against S. aureus have two catalytic domains and a
cell wall recognition domain being LysK one of the must studied endolysin models. LysK
has a cysteine/histidine-dependent aminohydrolase/peptidase (CHAP) catalytic domain
that hydrolyzes the peptidic bond between the D-alanine of the oligopeptide chain attach-
ed to the sugar backbone and the first glycine of the pentaglycine bridge that is typical of
S. aureus peptidoglycan and confers resistance to lysozyme. CHAP presents the higher ac-
tivity of both hydrolytic domains. LysK also has an N-acetylmuramoyl L-alanine amidase
or amidase-2 (Ami-2) catalytic domain which catalyzes the hydrolysis of the N-glycosidic
bond between the N-acetylmuramic residue and the L-alanine of the oligopeptide attached
to the sugar backbone. A third domain called SH3b is responsible for the specific recogni-
tion of cell wall components, strain specificity and modulator of hydrolytic activities [36,
37]. Endolysin 2638A has similar triple domain structures: an amino-terminal domain with
endopeptidase activity, a central Ami-2 domain (with the highest activity in this phage)
and a SH3b cell wall recognition domain [38]. Modular structure of S. aureus endolysins
has allowed the construction of chimeric endolysins by the combination of catalytic and/or
recognition domains. An example is the endolysin Ply187AN-KSH3b, which is a transla-
tional fusion of the CHAP domain of phage Ply187 and the cell wall recognition domain
SH3b from LysK endolysin. This endolysin was effective in a mouse model of endophthal-
mitis that also decreased inflammatory response and protected the retina from tisular
damage [39].
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4. Evolution of phage therapy

Since the discovery of bacteriophages, it raised the idea of using them for treatment of bacterial
infections. D’Herelle began testing the therapeutic effects of phages, using animal models such
as chickens and cows first, which provided successful results. Subsequently, there was carried
out human testing and the development of phage therapies became more extensive. In 1923,
the development of phage-based therapy strengthened with the foundation of the Eliava
Institute in Tbilisi, Georgia, in the former USSR. In 1940, they began to commercialize phage
in the United States. During World War II, phage cocktails were used to treat diseases such as
dysentery and gangrene in the soldiers of the former Soviet Union. Their application was
topical, oral and intravenous, although the latter favors the immune response of the individual
treated due to the protein content of the virus, resulting in the elimination of the phage from
the body [40–42]. Until a few years ago, therapies were based solely on the administration of
the complete bacteriophage, but it was until 2000 that the studies for the identification and
purification of lytic enzymes to treat infections caused by bacteria begun. In addition to using
bacteriophages and their enzymes as enzybiotics (enzymatic activities with antibiotic effect)
in the treatment of infections in humans, animals and agriculture, they are also used in the
food industry as preservatives and disinfectants [19]. After the discovery of penicillin, the
development and commercialization of antibiotics in the 1940s and 1950s soon occupied the
global antibacterial market. The lack of knowledge of the biology of phages, the lack of studies
of epidemiology of diseases and also a lack of control during the preparation of therapeutic

Bacteriophages Antibiotics

Advantages

• More abundant entities in nature

• They are natural enemies of bacteria

• Ecologically friendly

• Don’t affect normal microbiota

• Bacteria don’t develop resistance

• Doses are easy to determine

• Broad spectrum of action for the treatment of several

infections; immediately used without identifying the specific

strain causing the infection.

Disadvantages

• Just a small number of phages are effective as

therapeutic agents

• It is necessary to identify the specific strain causing

the infection to use the specific and active phage

• Production of synthetic or semisynthetic antibiotics can

contaminate environment

• Destroy all bacteria cells including normal

microbiota

• Bacteria develop resistance

Table 2. Advantages of bacteriophages over antibiotics.
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stocks led to a temporary delay in the research and development of phage therapy. In early
studies of phage preparations, successful results showed high antimicrobial activity in in vitro
and in vivo assays; however, in subsequent trials, some phages had little or no ability to destroy
bacteria or became lysogenic [43].

Because of the concern in the treatment of diseases caused by pathogens with multiple
resistance to antibiotics, it has revived the interest in the development and use of the bacter-
iophage therapy and their enzymes to treat diseases in animals and humans. Phage therapy
has been used in plants, animals and humans with varying degrees of effectiveness; in addition,
bacteriophages have some potential advantages over antibiotics but also have some disad-
vantages [44] (Table 2). The specificity of phage-host interaction permits the use of some
phages in therapy because they do not have influence on normal microbiota in humans,
animals, plants, food or inert surfaces. On the contrary, the use of broad spectrum antimicro-
bials has an effect on the eradication of a wide range of infecting pathogens but also kills
bacteria from the natural microbiota thus causing a disequilibrium in the host normal micro-
biota and promotes secondary bacterial or fungi infections or even physiological or endocri-
nological disorders.

5. Bacteriophages and its interaction with animals

There is a high diversity of phages in microbial communities living in symbiosis with animals,
for example, in the pig digestive tract and in the cow rumen [45, 46]. In the animals gut
microbiota, there is a complex ecosystem with approximately 500 species of microorganisms,
which are interacting with mutual benefits [47]. When the abundance of one of those bacteria
changes and alters the dynamic equilibrium, it results in some disorders or disease in the host.
Phages play an important ecological role for the health regulating the relative amount of the
different bacterial strains in microbiota. On the other hand, the presence of phages in animals
could present some disadvantages for health. When phages insert into the bacterial genome
genes that encode toxins like Panton-Valentine, Shiga and diphtheria toxins [48, 49] or some
other virulence factors, further excision may be aberrant, leading the phage genome to carry
those virulence genes by transduction. These aberrant phages may insert in new hosts and
transfer virulence properties. In fact, some genetic elements related to virulence may be
originated from aberrant prophages. Also, prophages confer its host resistance to the infection
of other phages. In addition, phages can also impact in host immune response through
modifications in bacteria’s antigenicity. Density of host bacteria determines the ability of
phages to infect and reproduce because phages encounter their host through random collision.
There are four models in the literature explaining the behavior of phages and bacteria in the
regulation of animal microbiota. (A) “kill the winner”: phages are more abundant than
bacteria but don’t infect them because of the lower abundance of its host, when some strains
overgrow, phages can depredate and kill them by lysis, and system comes back to an initial
healthy equilibrium. (B) “kill the relative”: some phages are reproduced from lysogenic strains
so they don’t need to be abundant; strains with prophages produce phages that kill their
genetically related strains which aren’t resistant to the phage. The result is an advantage in the
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abundance of lysogenic population in comparison with non-lysogenic strains. (C) “community
shuffling”: temperate phages act negatively on their host, temperate phages kill their host
under some stress situation and this don’t occur with non-lysogenic strains. Positive feedback
could take place if massive lysis causes host reactions like inflammation on another immune
response. This causes an imbalance in the microbiota and in some cases disorders or diseases
related to the change in populations. (D) “invade the relative”: prophage propagates itself by
infecting new hosts without lysing them, but establishing lysogeny [47]. Other contribution of
phages to bacteria strains in animal microbiota is when phages function as vectors of virulence,
for example, changing the expression of antigens in outer membrane like O-antigens [50],
giving to bacteria genetic adaptation; it results in new and more virulent strains for the animal
host.

6. Phage therapy in animal infections caused by S. aureus

The use of bacteriophages or bacteriophage cocktails and the use of endolysins represent a
potential alternative for the treatment of infections caused by S. aureus. Although several
diseases caused by S. aureus in animals have been described in a previous section, most of the
research in phage therapy has been done for bovine mastitis, so it will be the central point of
this section.

7. Mastitis and S. aureus

Mastitis is characterized by the inflammation of the mammary gland in one or more quarters
of the udder accompanied of leukocyte production, mainly monocytes and blood serum
proteins such as cytokines, chemokines and interleukins [51]. It is caused mostly by contagious
pathogens such as S. aureus and Streptococcus spp. and environmental pathogens such as E.
coli. Also, in less proportion, mastitis can be caused by or promoted by injury, allergies and
neoplasias [52]. Mastitis causes large economic losses in the milk and dairy products industry
for about 2 billion of dollars each year in the USA [53]. Among the pathogens causing mastitis,
Staphylococcus aureus is considered a causal agent of great concern because of the low cure rate
of S. aureus infections by antibiotic treatment and its ability to persist in a herd in the form of
undetected subclinical infections [54]. Vaccines for the treatment of mastitis have limited
efficacy. Cure rates for antibiotic treatment are often lower than 15%. This is caused by the poor
penetration of the gland by antibiotics allowing S. aureus to survive inside the epithelial or
phagocytic cells. Antibiotic resistance in S. aureus is also a growing concern, with overall rates
of antimicrobial resistance in bovine S. aureus isolates varying widely by region [55]. The
continued emergence of MRSA strains in humans and animals points to the need to develop
new antimicrobial agents or therapies treatment for this pathogen. The treatment of bacterial
infections with bacteriophages and their derivatives is such an option. Table 3 describes those
approaches.
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Experiment Observations/treatment  

Reference

Bacteriophages

Use of phage K to treat cow with

subclinical mastitis. Twenty-four

lactating Holstein cows with pre-

existing subclinical S. aureus

mastitis were treated. Prior to

experimentation with dairy cows,

the phage preparations were

screened in mice to determine

acute toxic effects

Treatment consisted of 10 ml intramammary infusions of

1.25 × 1011 PFU of phage K and infusions with saline for control,

administered once per day for 5 days. The cure rate was established

by the assessment of four serial samples collected following treatment

The cure rate was 3 of 18 quarters (16.7%) in the phage-treated group,

whereas none of the 20 saline-treated quarters were cured which were

already infected with S. aureus. Phage-infused healthy quarters

continued to shed viable bacteriophage into the milk for up to 36 h

postinfusion

 [54]

Study of bacteriophage

(MSa) active against Staphylococcus

aureus, including methicillin-

resistant staphylococcal strains

A lethal dose of S. aureus A170 was given to mice; phage MSa rescued

97% of mice and completely eradicated bacteria in vivo within 4 days

of phage treatment; when applied to nonlethal (5 × 106 CFU/mouse)

10-day infection, the phage also fully cleared the bacteria

The phage MSa, delivered inside macrophages by S. aureus, kills the

intracellular staphylococci in vivo and in vitro

Phage MSa was well tolerated by the animals, it drastically reduced

inflammation, and it did not stimulate the production of neutralizing

antibodies

 [68]

Isolation of a novel virulent

bacteriophage (MSA6) from a cow

with mastitis

Isolated phage was capable of infecting a wide spectrum of

staphylococcal strains of both human and bovine origin

 [69]

Isolation of bacteriophages

virulent against Staphylococcus

aureus associated with goat

mastitis. Bacteriophages were

isolated from soil

and fecal samples

Three of the bacteriophage isolates, phage/CIRG/1, phage/CIRG/4 and

phage/CIRG/5, exhibited lytic activity against over 80% of the

staphylococcal isolates. All isolates were stable up to 3 months at

37°C, and for 16 months at 4°C but the stability of their respective

endolysins only lasted for 12–23 days at 37°C and 6 months at 4°C.

Lytic activity was determined in vitro

 [70]

Isolation of a phage that infects S.

aureus from bovine mastitis. SA

phage was isolated from sewage

water

Authors analyzed in vitro the sensibility to phage infection of five S.

aureus strains with drug resistance. Phages were stable at wide

temperature and pH ranges

SA phage efficiently reduced bacterial growth in the bacterial

reduction assay

 [71]

Endolysins

Fusion of endopeptidase domain

from streptococcal endolysin SA2

with either lysostaphin or LysK

endolysin and the recognition

domain of endolysin LysK

In a mouse model of mastitis, chimeric SA2-E-Lyso-SH3B and SA2-E-

LysK-SH3B reduce S. aureus CFUs by 1–3 log units in cow milk and by

0.63–0.8 log units in mammary glands. Synergism with lysostaphin

reduced CFUs by 3.36 log units

 [72]
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Experiment Observations/treatment  

Reference

Engineering triple-acting

staphylolytic peptidoglycan

hydrolases. Both

amidohydrolase/peptidase and

amidase domains from LysK

bacteriophage fused with the N-

terminal domain of lysostaphin

Modification of the triple-acting lytic construct with a protein

transduction domain significantly enhanced both biofilm eradication

and the ability to kill intracellular S. aureus as demonstrated in

cultured mammary epithelial cells and in a mouse model of

staphylococcal mastitis shows that bacterial cell wall degrading

antimicrobial enzymes can be engineered to enhance their value as

potent therapeutics

 [73]

Endolysin gene from novel

bacteriophage IME-SA1 expressed

in pET-32a fused with Trx-SA1

Each udder quarter suffering from mild clinical mastitis received the

experimental treatment of intramammary infusion of 20 mg of

recombinant endolysin once per day. Milk samples were taken on

days 1, 2 and 3 from each infected udder quarter before treatment for

SCC determination and microbiological analysis. Preliminary results

of therapeutic trials in cow udders showed that Trx-SA1 could

effectively control mild clinical mastitis caused by S. aureus

 [74]

Table 3. Bacteriophages and endolysins therapy for treatment of S. aureus mastitis.

8. Animal models for treatment of other S. aureus infections

Animal models have been widely used to evaluate the performance of phage therapy in the
treatment of a variety of infections caused by S. aureus, usually nosocomial infections in
humans. Table 4 presents the use of phages and/or their endolysins in infections by S. aureus
in animal models.

Experiment Observations/treatment Reference

Bacteriophages

Isolation of ϕMR11 phage,

tested against S. aureus in mice

causing bacteremia

Intraperitoneal administration of purified ϕMR11 can protect mice with

bacteremia caused by methicillin-resistant S. aureus. Use of ϕMR11 did not

cause any adverse effects

[75]

Isolation of Stau2 phage from

hospital effluents. Tested in

mice infected with S. aureus S23

S. aureus inoculated in an injection with 0.5 ml in intraperitoneal cavities of

the mice. Protection by Stau2 from a lethal bacterial infection occurred in a

dose-dependent manner. Immediate phage administration provided better

protection than delayed administration. The surviving mice remained

healthy during the 14-day observation period. Injection with a large amount

of phage (7.5 × 1010 PFU) or SM buffer alone did not affect their physical

condition during the same period. Injection with a mechanical bacterial

lysate of strain S23 did not protect the mice from a lethal infection,

[76]
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Experiment Observations/treatment Reference

suggesting that bacterial components, such as bacteriocins, were not

involved in protection

S13 phage against lung-derived

lethal septicemia by S. aureus

strain SA27 in a mouse model.

Intranasal application of S. aureus strain SA27 induced 93% lethality in 3

days. S13 phage was done administered 6 h postinfection with 0.2 ml of

solution of 15 × 1010 PFU/ml. The survival rates of phage administered and

control groups were 67% and 10% on day 5, respectively.

The administration of phage S13 reduced the S. aureus cell densities with

significant phage replication in different tissues and it rescued the infected

mice

[77]

Endolysins

Endolysin LysGH15 derived

from staphylococcal phage

GH15 was used against MRSA

in vivo using mice and in vitro

Mice were infected with 2× of the minimum lethal dose of MRSA. The

bacterial growth in spleens was determined 1–24 h after the lethal infection.

Although the number of bacteria in spleens decreased slightly 6–12 h after

infection, it increased until death. In contrast, the number of MRSA cells in

spleens declined by 2 log units at 5 h after LysGH15 treatment (50 μg/

mouse) in the lethal MRSA-infected mice and continue decreasing to reach

an undetectable level. Also, LysGH15 treatment could modulate

inflammation reducing the levels of IL-6, IL-4 and IFN-γ mRNA in spleens

[78]

PlySs2 bacteriophage lysine

derived from Streptococcus suis

was used to treat MRSA which

cause bacteremia in mice

Mice were infected i.p. with MRSA (MW2). PlySs2 protected mice and result

in 89% survival in a bacteremia model, while in the control group without

treatment with PlySs2 only 6% of mice survived

[79]

Nine endolysins within an

homology group sharing SH3b

domain but diverse classes of

peptidoglycan hydrolyses

(PGHs) from S. aureus were

tested to determinate their

antimicrobial activity

Proteins were expressed, purified and tested for staphylococcal activity in

vitro. Cut sites from endolysins were determined. PGHs show different

degrees of activity in vitro. Some PGHs can eliminate biofilms. Six of the

nine PGHs protected from death at 100% of infected mice with MRSA

[80]

Table 4. Use of phages and endolysins against S. aureus infections using animals models.

9. A functional molecular epidemiology approach to isolate bacteriophages
against specific genetic lineages of S. aureus

As stated previously, particular genetic lineages are related to host specificity and pathogenic
strategies of S. aureus. In a previous work, we isolated and typed S. aureus isolates from bovine
mastitis in backyard farms in México. Most of these isolates were related to CC5 subgroups
ST97 and ST126 and present diverse spa-types [56,57]. An isolate of ST8 (CA, human-associ-
ated) genetic background was also found. Several isolates from different STs were selected
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according to their spa-type or their antimicrobial resistance profile. Table 5 shows examples of
phages isolated using the selected molecular-typed S. aureus strains. All of the strains used for
isolation belong to CC5 subgroup 97, but differed in their spa-type and their resistance profile,
or belong to the ST8. Twenty-eight bacteriophages were isolated from 10 different S. aureus
genetic lineages. Host ranges of isolated phages included strains from the same genetic lineage
(CC5 subgroup 97). NST-1 corresponds to a new ST that is a single locus variant of ST126. None
of these bacteriophages were active against the isolate with ST8 genotype. Restriction fragment
length polymorphism with XbaI enzyme revealed only four different phage genotypes (data
not shown). Phages MICHSAF5 and MICHSAF9 were clustered in the same RFLP group,
whereas MICHSAF1 and MICHSAF15 were from different groups.

Phage Strain for

isolation

Genotype (ST and spa‐type) and

antibiotic resistance

Susceptible STs Susceptible CCs

MICHSAF1 MRI-166 ST352/t267/GM 97, 352 5 subgroup ST97

MICHSAF5 MRI-150 ST97/t4570/NB, GM, FOX 126, NST-1, 97, 3525 subgroups ST97 and ST126

MICHSAF9 MRI-150 ST97/t4570/NB, GM, FOX 126,NST-1, 97, 352 5 subgroups ST97 and ST126

MICHSAF15MRI-151 ND/ND/NB, GM, FOX, C, CC, L, E, LZD 97, 352 5 subgroup ST97

NB, novobiocin; GM, gentamicin; FOX, cefoxitin; C, chloramphenicol; CC, clindamycin; L, lincomycin; E,
erythromycin; LZD, linezolid; ND, not determined.

Table 5. Preliminary analysis of phage isolation using a molecular typing background.

It is interesting to note that phages MICHSAF5 and MICHSAF9 were isolated using the same
strain as host, and both presented the same host range and RLFP pattern. Phages MICHSAF1
and MICHSAF15 were associated with strains with different STs and resistance patterns, and
the genotypes of the susceptible S. aureus strains were similar. All strains used for the isolation
of bacteriophages and the susceptible strains belonged to CC5 subgroups ST97 and ST126.
These results suggest that genetic background of the strain used for isolation of the bacterio-
phage will determine the host range of the bacteriophage.

10. Conclusions

Bacteriophages and their endolysins in its natural or recombinant forms have proven to
function in animals and animal models to control diverse forms of S. aureus infections. More
structure-function studies of endolysins will contribute to design recombinant enzybiotics for
the control of S. aureus infections. Functional molecular epidemiology is the applied use of the
knowledge generated by molecular epidemiology to establish strategies for the control of
infectious diseases [58] such as bacteriophage therapy. Bacteriophage selection using finely
typed strains will help to properly select phages for therapy and to analyze the host range of
the isolated bacteriophages. The strains typed by molecular approaches may also be useful to
test ranges of activity of phage-derived endolysins. These, along with genetic engineering for
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the study and expression of endolysins, will help to design better biotechnological approaches
for the control of infectious diseases.
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