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1. Introduction      

Genetic Algorithm is a widely used approach in predictive data mining where data mining 
output can be represented by If-Then rules and discovering the best rules is done by a 
genetic algorithm. The main motivation for using genetic algorithms in discovery of high-
level prediction rules is that they perform a global search in the problem space and cope 
better with attribute interaction in compare with greedy rule induction algorithms often 
used in data mining (Freitas, 2001) and therefore, one can see the following papers for a 
wide variety of representation techniques and evolution approaches in this field: (Teng et al, 
2004), (Hasanzadeh et al, 2004), (Chen & Linkens, 2004), & (Cordon et al, 1998) for evolution 
of weighted fuzzy rule base with simple linear genetic representation; (Golez & Dasgupta, 
2002) for rule base evolution with binary tree representation; (Mendes et al, 2001) for a co-
evolutionary approach which evolves fuzzy rules in one process and fuzzy membership 
functions in another process; (Ishibuchi & Yamamoto, 2004), (de la Iglesia et al, 2003), & 
(Lopes et al, 1999) use multi objective optimization approaches for rule base evolution; 
(Ishibuchi & Yamamoto, 2002) & (Tsang et al, 2005) for two stage evolution in which one 
stage generates candidate rules and the other stage selects a combination of them as a final 
rule base; (Riquelme et al, 2003) for hierarchical representation; and some other variations in 
(Zhu & Guan, 2004), (Goplan et al, 2006), (Gundo et al, 2004), & (Eggermont et al, 2003). 
There are two basic strategies for rule base evolution task and many hybrid methods that 
combine the good features of these two methods. These basic approaches are Michigan 
approach exemplified by Holland's classifier system (Holland, 1986), and the Pittsburgh 
approach exemplified by Smith's LS-1 system (Smith, 1983). In this chapter, we will first 
study these two schools with more details in section 2 and show why there is a need for a 
third school, then introduce natural process of symbiogenesis in section 3 and symbiotic 
evolution as a novel solution for this approach in section 4. Then section 5 will present the 
experimental and comparison results, followed by the summary and concluding remarks in 
section 6. 

2. Michigan and Pittsburgh schools for rule-based classifier evolution 

There are two basic strategies for rule base evolution task and many hybrid methods that 
combine the good features of these two methods. These basic approaches are Michigan 
approach, introduced by John Holland (Holland, 1986), and the Pittsburgh approach, 
popularized by Ken De Jong and Steve Smith (Smith, 1983).  
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In Pittsburgh approach, a number of if-then rules are coded as a string and handled as an 
individual. The performance of each rule-set (i.e., each individual) is used as its fitness 
value. Thus the genetic search for finding rule-sets with high fitness values is equivalent to 
the search for rule-based systems with high performance. Hence, the optimization of rule-
based systems is directly handled by genetic algorithms that try to maximize the fitness 
function. Some good rule-sets in a current population are inherited to the next population 
with no modification as elite individuals. The performance of each rule is not explicitly 
evaluated in Pittsburgh approach. Thus even if good rules exist in the current population, 
they are not always used for generating new rule-sets. Especially when good rules are 
included in poor rule-sets, they easily disappear during the generation update. Since a 
population consists of a number of rule-sets, long computation time and large memory 
storage are required in Pittsburgh approach (Ishibuchi et al, 1999).  Interested reader can see 
(De Jong et al, 1993), (Janikow, 1993), (Sen et al, 1997), & (Smith 1983) as good examples of 
this approach. 
On the other hand, in Michigan approach where a single if-then rule is coded as a string and 
handled as an individual, the performance of each rule is used as its fitness value. That is, 
the performance of rule-sets (the entire population of current rules) is not utilized in the 
genetic search for finding rule-based systems with high performance. Thus the optimization 
of rule-based systems is indirectly performed by searching for good if-then rules. 
Performance of the current rule-set is not explicitly evaluated in the genetic search of the 
Michigan approach. Thus a good rule-set can be destroyed by the generation update (i.e. the 
performance of the current population can be decreased). Since a population includes only a 
single rule-set, computation time and memory storage in Michigan approach are much 
smaller than those in Pittsburgh approach where a population consists of a number of rule-
sets. In Michigan approach, good if-then rules in the current population (i.e., in the current 
rule-set) are inherited with no modification to the next population. The generation update in 
Michigan approach can be viewed as a partial change of the current population where bad 
rules are replaced with newly generated rules. Thus once good if-then rules are found, they 
are not likely to disappear. (Ishibuchi et al, 1999). To see some good examples, one can check 
(Holland, 1986) and (Wilson, 1987). 
There are three main viewpoints from which Pittsburgh and Michigan approaches can be 
compared: First, Pittsburgh approach seems to be better suited at batch-mode learning 
(when all training instances are available before learning is initiate) and for static domains, 
and Michigan approach is more flexible to handle incremental-mode learning (training 
instances arrive over time) and dynamically changing domains (Corcoran & Sen, 1994). 
Second, considering that many classifier systems need to cover a complex state space in a 
small group of cooperative rules, one will see that this is in contrast to the nature of 
Michigan approach in which the rules are intrinsically competitive and the Pittsburgh 
approach is more suited to the provision of cooperation. This is because the lack of 
competition between individual classifiers in the Pittsburgh method allows the algorithm to 
find novel cooperative solutions that the population-level GA can maintain and proliferate. 
Therefore, Pittsburgh approach is usually the method of choice to apply to problems that 
require the development of cooperative populations (Barry et al, 2004).  
The third  item is very similar to the second: As evolving rules of a Michigan process are 
rivals and the general fitness value of the population has no effect in evolution, two 
problems occur: First, we usually need strategies for detection and prevention of redundant 
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concept descriptions among population members (Liu & Kwok, 2000); Second, as a side 
effect of the first problem, a portion of training examples may be left unclassified and 
although the evolution would be at a stable position, there would be no rule for 
classification of this portion.  
The fact that Pittsburgh is more powerful or easier to use for evolution of rule-sets in 
environments with complex concepts, where there is an urge for evolution of cooperative 
rules, makes it more attractive for most practical problems. However, the Pittsburgh 
approach presents its own limitation as well: In particular, because the evolution operates at 
a rule-set level, GA receives only high-level feedback from the fitness function and therefore 
cannot evaluate the role of individual rules in the success of a rule-set; hence, it requires a 
large additional effort to generate optimal populations. This increased effort in addition to 
the increased computational resource required to operate at the population level can present 
new challenges when devising efficient implementations for a Pittsburgh classifier evolution 
(Barry et al, 2004). This problem is a very important and known general problem of 
traditional genetic algorithms, called the linkage problem (Watson & Pollack, 2000).  
Linkage problem has two parts: The first problem is called the problem of garbage or hitch-
hiker genes (Forrest & Mitchel, 1993). In traditional GA, each chromosome may have a 
combination of good and bad genes which affect the total fitness value of the chromosome 
together. The effect of this problem in rule base evolution task is that a rule-set may have 
some rules with very good classification accuracy and some rules that have no positive 
effect or even have negative effects on the classification task. As evaluation is only done at 
rule-set level, selection or removal of all rules inside a rule-set is done together and there is 
no distinction between rules that have positive or negative effect on the classification. These 
bad rules (genes) inside a chromosome are called garbage genes or hitch-hiker genes 
because they gain their chance of survival by sticking to good genes as parastis. 
The second part of Linkage problem is related to the recombination operator of genetic 
algorithms. During the process of this operator, some parts of the two parent chromosomes 
are extracted and merged with each other to create an offspring. Selection of appropriate 
parts from either of the parents has a great effect on the performance of the entire process, 
but there are many problem in which there is no way to identify the good sub-
chromosomes. Here in rule-set evolution, one of the interesting features of the Pittsburgh 
approach is the evolution of cooperative rules inside a rule-set, but using a crossover 
operator separates the rules of one rule-set from each other and then blindly combines them 
with some from another rule-set, with no guarantee that these parts match each other or be 
able to help each other in a common classification task. 
Many different recombination operators or alternative evolution strategies are introduced to 

cope with linkage problem in GA, such as designing more sophisticated recombination 

operators for simple genetic algorithms such as the ones with more number of cut points, 

random cut point positioning, uniform crossover, linear combination of genes, etc., see 

(Mitchell, 1999) for an extensive list; use of chromosome reordering operators and 

repositioning of genes inside the chromosome on the fly such as Inversion operator (Bagley, 

1967) and Linkage Learning Genetic Algorithm (Harrik, 1997); and algorithms based on 

partially specified chromosomes such as Messy Genetic Algorithms (mGA) (Deb, 1991), 

(Goldberg et al, 1989), Cooperative Co-Evolutionary Algorithms (CCEA) (Potter & De Jong, 

1994), Symbiotic Evolutionary Adaptation Model (SEAM) (Watson & Pollack, 2000), and 

Incremental Commitment Genetic Algorithm (ICGA) (Watson & Pollack, 1999). 
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As far as the authors know, except CCEA approach which is partially used in some tasks 
and some special purpose recombination operators, none of the other above approaches 
have been used in rule base evolution and the major efforts in rule-based classifier evolution 
to cope with linkage problem have been in hybridizations of Michigan and Pittsburgh 
approaches to add the positive features of both methods together, such as (Ishibuchi et al, 
1999) & (Tan et al, 2003). Not commenting on the applicability or generality of these hybrid 
approaches, we present a novel pure approach based on Symbiotic evolution instead of 
Genetic evolution to solve this problem in the rest of this chapter. It must be emphasized 
that we introduce this algorithm as a basic approach comparable to pure Pittsburgh and 
therefore, it is not compared with hybrid approaches or extensions of other algorithms as all 
such hybridizations or extensions can be studied for this algorithm as well. Section 3 will 
represent the natural bases of this approach and section 4 will have all the details. 

3. The natural process of symbiogenesis 

The natural process of symbiogenesis (Merezhkovsky, 1909) is the creation of new species 
from the genetic integration of organisms, called symbionts. Symbiogenesis has enabled 
some of the major transitions in evolution (Maynard Smith & Szathmary, 1995), including 
the origin of eukaryotes which include all plants and animals. This kind of genetic 
integration is quite different from the transfer of genetic information in sexual reproduction. 
Sexual recombination occurs between similar organisms (i.e. of the same species) and 
involves the exchange of parts of the genome in a mutually exclusive manner; that is, every 
gene acquired from one parent is a gene that cannot be acquired from the other parent. In 
contrast, symbiotic combination may also occur between genetically unrelated organisms 
(i.e. different species) and involve the integration of whole genomes. The resultant 
composite may have all the genes from one symbiont and at the same time acquire any 
number of genes from the other symbiont (Watson & Pollack, 2000).  
Based on this idea, symbiotic combination operator is introduced (Watson & Pollack, 1999) 

& (Watson & Pollack, 2000) as an alternative for sexual recombination operator. Symbiotic 

combination operator is applied to partially specified chromosomes, i.e., chromosomes 

which have some positions with unspecified values. This operator takes two partially 

specified chromosomes and makes an offspring with the aggregation of their characteristics 

of both of them; see Fig. 1 as an example. Therefore, in contrast to the standard crossover 

operator that receives two fully specified chromosomes and creates one/two individuals 

that have received each of their genes from either parents, this operator runs over two/more 

partially specified representations and creates an offspring with can have even all genes of 

both/all parents. 
 

 

Fig 1. An example of symbiotic combination. Chromosomes A and B, each, have some 
unspecified locations, shown with ‘-‘ mark. Their combination has specified values for all 
locations that are specified in at least one of the donors. If there would be a conflict between 
the specified values, like the last gene of the above chromosomes, all conflicts are resolved 
in favor of one donor, here A. 

 Chromosome A:  1--1---0  

 Chromosome B:  --00-111 

 A + B:  1-01-110 
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This can be very beneficent for evolution of rule based classifiers in Pittsburg approach 
because each individual (chromosome) is a complete classifier. Therefore, its rules are a 
collection and they have proved to work good together. Separating them for a 
recombination and combining some parts of them with parts of another classifier may 
disrupt the functionality of both classifiers. On the other hand, adding them, assuming that 
each of them is a relatively good classifier, just adds up their classification powers. 

4. Symbiotic evolutionary algorithm 

The basic idea of Symbiotic Evolutionary Algorithm (SEA) is to replace the crossover 
operator of Pittsburgh genetic algorithm (PGA) with symbiotic combination operator. To do 
so, the evolution starts with rule-sets (individuals) which have just one rule (gene). During 
the process, similar to traditional PGA, evaluation and selection is done at rule-set level. 
Mutation operator is also quite similar to conventional PGA, but instead of crossover 
operator, sometimes two rule-sets combine using symbiotic combination and create an 
individual with more rules. If this combination shows a higher accuracy in compare to its 
parents, the parents are removed from the population and the offspring remains, otherwise, 
the offspring is neglected. 
In this section, we first present our rule-set model which is used both in SEA and the PGA 
that is used in next section for comparisons. Then will move on the details of the Symbiotic 
Evolutionary Algorithm. 

4.1 Rule-set model and fitness values 

To emphasize on the algorithm, we have a chosen a very simplistic representation for our 
fuzzy rules, taken from (Hasanzadeh et al, 2004), but we still insist that SEA is not 
dependent to this model or the fuzzy nature of the rules. In this model, each rule is a horn 
clause, with If-part consisting of fuzzy membership functions for different features of the 
problem data base, and Then-part stating the class to which this rule belongs. A rule-set is 
composed of one or more rules, with each rule having a weight value stating its role in final 
decision. To classify an input by a rule-set, each of the rules computes the degree of 
similarity between the input and its own If-part and based on that, it states a degree of belief 
to its Then-part. Then, a weighted sum of the degree of beliefs for each class is computed 
and the class which gets the highest value is chosen. Fig. 2 specifies the structure of the rule-
set.  
 

 

Fig .2. Formal structure of the rule set (chromosome) 

The fitness of each rule-set is defined as the accuracy of the rule-set in classification of  all 
training data. Accuracy is a measure combining the classification soundness with 99.9 

  <RULE-SET> å a set of <RULE>s 
<RULE>  å <WEIGHT> + a set of <CONDITION>s + <RESULT> 
<WEIGHT>  å a real value 
<RESULT>  å a Class Name 
<CONDITION> å a <FEATURE> [IS / ISNOT] a <MEMBERSHIP FUCNTION> 
<FEATURE>  å one of the features of dataset. 
<MEMBERSHIP FUCNTION> å  one of the possible fuzzy values for the 

respective feature. 
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percent effect and the simplicity of the rules with 0.1 percent effect. The simplicity measure 
is used to break the tie between two rule-sets with different complexities and similar 
classification rate, in favor of the simpler rule-set. Simplicity of a rule-set is computed as 
stated in equation 1. 

rulesallinconditionsofnumberTotal

conditiononejustwithrulesofNumber1
Simplicity

+
=

 

(1) 

4.2 The algorithm 
The Symbiotic Evolutionary Algorithm starts by generating a population of random rule-
sets, each having just one rule. In each iteration of the algorithm, a set of rule-sets with high 
fitness values are selected using a tournament selection algorithm; they will be called the 
Selected Set hence forth. After selection, each of these individuals undergoes a mutation and 
all mutants are added to the population. The mutation operator is presented in Figure 3. 
 

 

Fig. 3. Pseudo Code of the Mutation Operator 

After mutation, instead of the conventional cross over operator, symbiotic combination 
operator is applied over the selected set. The operator takes two members of the selected 
rule-sets and merges them, so that the combination includes all rules of both sets. If the child 
strictly outperforms both of its parents, the combination will be added to the population; 
otherwise, it will be discarded. To control the growth speed of the number of rules in each 
rule-set, there is another control mechanism that limits the size of the largest rule-set that 
can be added to the population at a time. This parameter, which will be called SizeLimit, is 1 
at the beginning and limits the size of rule-sets to just one rule. During the process, SizeLimit 
is increased with a selected strategy, and allows emergence of rule-sets with more number 
of rules. In all of our implementations, we have set the control strategy to a simple linear 
function of iterations count, but one may use a more complicated function, if it looks fit. 

  Function Name: MUTATATION 

 

 Summary: Takes a rule set and mutates it. 

 

 Input: Rule Set R. 
  Assume R ={R1,R2,...,Rn} and each Ri as  

[Weight+ (F1,C1,MF1) ∧(F2,C2,MF3)∧...∧(Fm,Cm,MFm), Class] where each 

Fj is feature, Oj is a condition(Is/Is Not), and MFj is a 
membership function from the domain of Fj. 

 

 Function Detail: 

1. Randomly choose Ri from R1 to Rn. Set m to the number of rules in 

Ri. 
2. Randomly select one of the next steps and apply it on Ri: 

a. Increase or decrease Weight. 
b. Choose j from 1..m, remove (Fj,Cj,MFj) from Ri. 
c. Randomly generate a new (F,C,MF) and concatanate it to Ri. 
d. Choose j from 1..m, reverse Cj so that Is becomes IsNot, 

and IsNot becomes Is. 
e. Choose j from 1..m, change MFj to a random new membership 

function from the domain of Fj. 

3. Return. 
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Fig. 4 presents the pseudo code of Symbiotic Evolutionary Algorithm. 

 
Fig. 4. Pseudo Code of Symbiotic Evolutionary Algorithm 

5. Experimental results 

5.1 Test conditions 

There are too many classification approaches and also many extensions to basic genetic 
based classifiers. But as we are introducing SEA as a basic new approach, we have just 

  Algorith Name: Symbiotic Evolutionary Algorithm 

 

 Summery: Takes a database of training examples and generates a 

rule-set to classify them, using symbiotic combination 

operator and Mutation function. 

 

 Parameters: SR: Selection Rate 
TS: Tournament Size 

RC: Random Rule Creation Rate 

MP: Maximum Population 

  

 Algorithm Detail: 

1. INITIALIZATION: 

a. Generate a population of random rule-sets, each having 

just one rule. 

2. PROCESS CONTROL: 

a. Update SizeLimit (Initialized to 1). 

b. If Best generated rule set is satisfactory, return it 

and exit. 

3. SELECTION PHASE: 

a. Create an empty set called SelectedSet. 

b. For SR x PopulationSize times,  
i. Randomly pick TS rule-sets from the pool, add the 

best one to SelectedSet. 

4. MUTATION PHASE: 

a. For each memer of SelectedSet such as rs, 
i. Create a mutated copy of rs using Mutation 

function, call it rs'. 
ii. Add rs' to the pool. 

5. SYMBIOTIC COMBINATION PHASE: 

a. For each two members of the SelectedSet such as rs1 and 
rs2, 

i. Create the symbiotic combination of rs1 and rs2 
and call it rs3. 

ii. If SizeOf(rs3) < SizeLimit and fitness value of 
rs3 exceeds that of rs1 and rs2, 

Add rs3 to the pool. 

6. DIVERSITY MAINTANANCE: 

a. Create RC random new rule-sets and add them to the pool. 

7. POPULATION CONTROL: 

a. While PopulationSize is above MP limit, randomly select 

and remove some random rule-sets from the poool. 

8. Goto Step 2. 
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compared it with pure Pittsburgh GA in detail. More comparisons can be done in future 
works. 
To compare the performance of SEA algorithm with Pittsburgh GA, we used six frequently 
used benchmarks: The first one is a 10% selection of KDDCUP99 dataset (MIT Lincoln Labs, 
2007) and others are selected from University of California Irvine, Machine Learning 
Repository (Blake & Merz, 1998); these datasets are gathered from real experiments, so they 
can show efficiency of the algorithm in some real circumstances. Credit Approval (CRX), 
Glass Identification (Glass), Iris Plant (Iris), 1984 United States Congressional Voting 
Records Database (Vote), and Wine Recognition (Wine) datasets are selected as the most 
frequently used datasets so as to compare the results to some other related works. The 
extensive information about these datasets is mentioned in Table 1. Although KDDCUP99 
data set has many classes of intrusion types, we consider their classes as Normal and Attack 
cases, similar to (Esposito et al, 2005), (Toosi & Kahani 2007), and (Mill & Inoue, 2004). 
General specifications of benchmarks are expressed in Table 1. The GA algorithm is 
implemented as described in (Hasanzadeh et al, 2004) with exactly the same parameters 
(expressed in Table 2). 
Likewise (Hasanzadeh et al, 2004) & (Hasanzadeh & Bagheri, 2003), Fuzzy C-Mean 
clustering (Zimmermann, 1996) was used to define the fuzzy membership function for 
continuous attributes, and fuzzy singletons were defined for none-parametric attributes. The 
number of fuzzy sets for KDD99 features is 5 and for other problems, 3 fuzzy sets are 
created. The exact parameters of SEA algorithm are presented in Table 3. 
The tests are done four-fold (Blake & Merz, 1998), i.e. the data was randomly divided into 4 
sets and in each trial, one set was taken as test set, and the other 3 were used as training set. 
Each test is repeated for 20 times, and the average, minimum and maximum classification 
rates for training and tests results are depicted in subsection 5.2 tables. The stopping 
criterion of each run is an unchanging best fitness value during 5000 fitness function calls. 
Also, the average number of fitness function calls to reach the highest classification accuracy 
and the average ratio between time and fitness function calls for each benchmark/algorithm 
is reported in subsection 5.3 as a measure of algorithms speed. 
 

Dataset 
Features 

count 
Numeric 
Features 

Nominal 
Features 

Classes Instances 

KDD99 41 34 7 2 494021 

CRX 15 6 9 2 690 

Glass 10 9 1 6 214 

Iris 4 4 0 3 150 

Vote 16 0 16 2 435 

Wine 13 13 0 3 178 

Table 1.  Datasets Specification 
 

Parameter Value

Maximum Population 200 

Mutation Rate 0.7 

Elitism Rate 0.2 

Tournament Size 4 

Table 2.  Pittsburgh GA Parameters, as in (Hasanzdeh, 2003) 
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Parameter Value

Population Size 1000 

Selection Rate 6 

Tournament Size 8 

Random Creation Rate 4 

Table 3.  SEA Parameters 

5.2 Accuracy comparison results 

Tables 4 and 5 represent the classification rates of Pittsburgh Genetic Algorithm (PGA) and 
SEA training and test data, respectively. As presented there, SEA has found better rule-sets 
in compare with PGA in all cases on training sets and 4 of 5 on test sets. 
 

PGA SEA 
Data 
Sets Min Max Average Min Max Average

Average 
SEA to PGA 

Improvement1 

CRX 87.433 88.937 88.07 85.199 90.042 88.85 6.54 % 

Glass 63.921 72.023 69.42 66.923 74.812 71.43 6.57 % 

Iris 98.139 99.082 98.63 97.237 99.91 99.35 52.55 % 

Vote 96.528 98.003 97.32 96.474 97.976 97.56 8.96 % 

Wine 96.189 99.156 97.68 99.153 99.910 99.44 75.86 % 

KDD99 87.433 88.937 88.07 85.199 90.042 88.85 6.54 % 

Table 4.  Average Classification Rate of PGA and SEA, Different Data Sets, on Training Data 
 

PGA SEA 
Data 
Sets Min Max Average Min Max Average

Average 
SEA to PGA 

Improvement 

CRX 83.746 87.654 85.27 84.888 86.476 85.58 2.1 % 

Glass 63.377 71.370 68.62 67.878 74.008 70.68 6.56 % 

Iris 91.85 99.923 94.95 91.805 99.909 95.57 12.28 % 

Vote 91.789 98.661 95.31 92.611 97.972 95.04 -5.76 % 

Wine 86.293 99.902 92.9 90.821 97.683 94.59 23.8 % 

KDD99 84.263 87.654 94.36 85.156 85.16 99.31 87.77 % 

Table 5.  Average Classification Rate of PGA and SEA, Different Data Sets, on Test Data 

Table 6 presents the best classification results of some other approaches ((Gomez et al, 2002), 
(Mendes et al, 2001),   (Liu & Kwok, 2000), & (Rouwhorst & Engelbrecht, 2000)) which are 
reimplemented and tested by (Hasanzadeh, 2003) with similar settings as ours. As stated 
there, in cases that we had sufficient comparison data, SEA is better than other algorithms in 
all data sets. 
Also Table 7 presents some other results from other papers that have used almost similar 
test specifications with that of ours. It must be emphasized that the test condition of these 
results does not fully comply that of ours, in some cases not exactly specified and in other 
slightly easier or harder. As depicted there, SEA is among the top 2 best results for all 
benchmarks. 

                                                 
1 (SEA – PGA) / (100 – PGA) 
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Algorithm CRX Glass Iris Vote Wine KDD'99 

Fuzzy Classifier with Expression Tree 
Representation (Gomez et al, 2002) 

  94.84 85.42 92.22  

Fuzzy Classifier with Co-Evolution 
(Mendes et al, 2001) 

84.7  95.3    

Extended Genetic Rule Induction 
(Liu & Kwok, 2000) 

77.39 72.43 95.3    

Evolution of Decision Trees 
(Rouwhorst & Engelbrecht, 2000) 

  94.1    

SEA 85.58 70.68 95.57 95.04 94.59 99.31 

Table 6. Classification rate of some other algorithms with exactly similar settings in compare 
to SEA, from (Hasanzadeh, 2003). 

 

Algorithm CRX Glass Iris Vote Wine KDD99 

Fuzzy Kohonen Network (Lorenz et al, 1997)   91.33    

Fuzzy Classifier System (Lorenz et al, 1997)   96.00    

ID3 (Dong & Kothari, 2003) 81.16      

Naive Bayes (Dong & Kothari, 2003) 77.68      

Bayesian Network (Ezawa & 
Schuermann,1995) 

86.5      

C 4.5 (Ezawa & Schuermann,1995) 85.5      

Discrimination Analysis 
(Ezawa & Schuermann,1995) 

83.4      

Fuzzy Classifier System 
(Ishibuchi & Yamamoto, 2005) 

 68.22     

k-means (Guo et al, 2006)  63.08 92.67  68.54  

MLP Neural Network (Ueda, 2000)  70.3     

Hyper Sphere SVM (Liu et al, 2007)  62.15 95.68    

MLP Neural Network (Deodhare et al, 2007)     95.8  

Rule Extraction based on Grey Lattice 
Classification 
(Yamaguchi et al, 2005) 

    86.7  

Tree Support Vector Machine (Mill & Iune, 
2004) 

     70.75 

Array Support Vector Machine (Milll & Iune, 
2004) 

     91.30 

Fuzzy Rule Base with Linear Tree Genetic 
Representation (Dasgupta & Gonzalez, 2001) 

  94.5 94.7 93.9  

       

Average of above approaches 82.84 65.93 94.03 94.7 86.23 81.02 

Best of above approaches 86.5 70.3 96.00 94.7 95.8 91.30 

SEA 85.58 70.68 95.57 95.04 94.59 99.31 

Table 7. Average Classification Rate of some other algorithms with almost similar test 
settings in compare to SEA. 
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5.2 Speed comparison results 

Figures 5-10 depict the best fitness values over time for SEA and GA on the six stated 

datasets, averaged in all runs. As it is presented in the diagrams, SEA has found a better 

solution much faster than GA in all cases. Table 8 summarizes these results, and presents the 

average time taken to find the best result by each algorithm on each benchmark. As stated 

there, SEA has reached its best result notably faster than GA in all cases. 

Also Figure 11 depicts the relation between number of fitness function calls and time for the 

two algorithms. Four curves show GA and SEA algorithms for CRX and Iris datasets which 

are, respectively, the largest and the smallest UCI ML Repository datasets used in this 

paper. The curves are almost linear with a slight trend toward taking more time for each 

fitness function call while the algorithms are proceeding. Thus, the progress of elite fitness 

can be considered through either time or fitness function calls in diagrams 5 to 10.  Number 

of fitness function calls can be considered as a rough measure of the speed complexity of the 

algorithm as it removes the effects of programming details on algorithm speed. 

 

Dataset SEA PGA 
SEA to PGA 

Improvement 

CRX 357 4650 92.32 % 

Glass 164 280 41.42 % 

Iris 40 633 93.68 % 

Vote 89 1490 94.02 % 

Wine 98 1710 94.26 % 

KDD99 7012 54306 87.08 % 

Table 8.  Average time taken by SEA and Pittsburgh GA to find the best classifier on 
different benchmarks, in seconds. 
 

 

Fig. 5. CRX benchmark, average fitness of best rule set found by Pittsburgh GA and SEA 
over time. 
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Fig. 6. Glass benchmark, average fitness of best rule set found by GA and SEA over time. 

 

 

Fig. 7. Iris benchmark, fitness of best rule set found by Pittsburgh GA and SEA over time. 

 

 
Fig. 8. Vote benchmark, fitness of best rule set found by Pittsburgh GA and SEA over time. 
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Fig. 9. Wine benchmark, fitness of best rule set found by Pittsburgh GA and SEA over time. 

 

Fig. 10. KDD benchmark, fitness of best rule set found by Pittsburgh GA and SEA over time. 

 
Fig 11. Time versus Fitness Function Calls, GA and SEA algorithms, CRX and Iris datasets. 
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6. Summary and concluding remarks 

While the suitability of evolutionary approaches for generation of rule based classifier 
systems is shown in many different contributions, the structure and elements of this process 
are an important issue in design of a system that works efficiently. As stated in section 2, 
Michigan algorithm is faster and requires less memory in compare to Pittsburgh algorithm, 
but it has two very important problems that makes Pittsburgh the favorite one in many 
cases: First, the cooperation of single rules that are all evolved for better classification, 
regardless of other rule's behavior, will not necessarily result in a general good classifier; 
Second, some parts of the problem space might be neglected.  
Pittsburgh evolutionary algorithm also has three problems that must be dealt with during 
an efficient implementation: First, how to recombine two rule-sets? While traditional sexual 
recombination operators splits the two parents and merges their parts, how should one 
know which rules of either rule-set (parents) must be extracted to be recombined to make a 
good combination. Second, what to do with the parasite rules? And the third question is 
how many rules must a rule-set have to get a small, but accurate classifier? 
SEA algorithm uses symbiotic combination operator instead of common sexual 
recombination operator of GA, and provides a solution for the three above questions; it 
creates an offspring from two parents by combining all of their rules (genes), and adds the 
offspring to the gene pool only if it outperforms both its parents. Using this strategy, SEA 
avoids grouping separate rules before it makes sure that the group works better than the 
isolated ones, so it avoids garbage rules. It doesn't break any generated rule-set; therefore, it 
doesn't require a method to identify good working sub sets of two rule-sets. Also, as it 
grows the rule-sets only if growing results in better performance, the designer does not need 
to make a decision about chromosome sizes in advance. 
Experimental results clearly comply with this hypothesis where SEA had 6 to 75 percent 
classification error reduction on training data in compare with Pittsburg GA and 2 to 87 
percent on test data, except in one case which resulted in 6 percent more classification error. 
Moreover, this significant better accuracy was reached by 41 to 92 percent less computation 
time, in similar operating conditions.  
As SEA is introduced as a basic algorithm to resolve the problems of Pittsburgh algorithm, 
we have just compared it in details with Pittsburgh GA, but some accuracy comparisons 
with algorithms from other families were also presented in section 6 and 7. Although some 
of these comparisons are not very fair as they were taken from different sources with 
slightly different test conditions, SEA presented very good comparison results to all of them 
as well. 
Table 9 presents a features summary of SEA, Michigan, & Pittsburgh algorithms. As it is 
noted there, SEA stands between Michigan and Pittsburgh approaches from many 
viewpoints, collecting the positive points of both of them. SEA starts with light weight 
single rule individuals, as in Michigan, and gradually evolves them towards complete rule-
set individuals, as in Pittsburgh. Due its growing size of individuals, it stands between 
Michigan and Pittsburgh in speed and memory complexity measures. Similar to Pittsburgh, 
it allows cooperation inside rule-sets but unlike Pittsburgh and similar to Michigan, this 
does not result in parasite rules, keeping rule-sets neat and accurate. Inheritance is done 
both on rule level and rule-set level as there is no distinction between rule and rule-sets. As 
the fitness of a rule-set is defined over all of its rules, a single rule that correctly covers a 
small uncovered portion of training samples can increase the credit of a rule-set and 
therefore is accepted and added to the rule-set, so, unlike Michigan approach there is no 
need to set specific credit to less frequently used training samples. And at last, in contrast to 
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Pittsburgh that blindly recombines two rule-sets, SEA combines two rule-sets only if this 
increases the overall recognition performance. 
As next stages of this task, we can recommend an extra function that recognises rules that 
have redundant effects after symbiotic combinations. Also more specific representations and 
local optimization of rule-sets may result in better classification rates. 
 

 Michigan Pittsburgh SEA 

Individual A single rule A rule-set 
Starts with single rules 
and reaches rule-sets 

Selection and 
Evaluation 

On each rule On each rule-set On each rule-sets 

Rules Cooperation
None, Rules are 

rivals 
Cooperative inside rule-

sets, rival among rule-sets
Cooperative inside rule-

sets, rival among rule-sets 

Garbage Rules Not Existing Severely Existing Not Existing 

Computation Time Least Most Between others 

Memory Size Least Most Between Others 

Rule Optimization Direct Indirect Both direct and indirect 

Inheritance Good Rules Good Rule-Sets 
Both good rules and rule-

sets 

Requires class 
credit assignments

Yes No No 

Requires rule-set 
size specification 

Yes 
Yes / Controlled by a 

score function 
No, controlled by 

accuracy. 

Rule-Set 
recombination 

None 
Yes, but may result in 

lower accuracy 
Yes, always results in 

higher accuracy. 

Table 9.  Feature Comparison of Michigan, Pittsburgh and SEA. 
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