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Abstract

It is becoming evident that both environmental/lifestyle and genetic factors may
influence the development of many diseases. This chapter highlights the importance of
considering gene-environment interactions, which is shown on the example of our
studies into asbestosis, one of the most frequent asbestos-related diseases. Asbestos
fibres induce generation of reactive oxygen and nitric species (ROS and RNS), and it is
generally accepted that ROS and RNS are involved in the pathogenesis of asbestos-
related diseases. Human tissues contain specific enzymes that metabolise ROS and RNS,
such as superoxide dismutases (SODs), catalase (CAT), glutathione-S-transferases
(GSTs) and inducible nitric oxide synthase (iNOS). As these enzymes are encoded by
polymorphic genes, genetic variability in an individual’s capacity to detoxify these
reactive species may modify the risk for disease. Our previous studies into asbestosis
showed that the associations between the risk of asbestosis and MnSOD Ala-9Val
polymorphism and between asbestosis and iINOS genotypes were modified by CAT
—-262C>T polymorphism. A strong interaction was also found between smoking
(lifestyle factor) and GSTMI-null polymorphism, between smoking and iNOS
(CCTTT), polymorphism and between cumulative asbestos exposure (environmental
factor) and iNOS (CCTTT), polymorphism. The findings of our studies and other studies
indicate that in addition to environmental and/or occupational exposure to different
hazards and lifestyle factors, genetic factors as well as the interactions between different
genotypes, between genotypes and lifestyle factors and between genotypes and
environmental/occupational exposure to hazards may also have an important role on
the development of diseases and should be further investigated.

Keywords: asbestosis, exposure, gene-environment interactions, gene-gene interac-
tions
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1. Introduction

It is becoming evident that both environmental and genetic factors may influence the
development of many diseases [1-7]. It is therefore important to consider gene-environment
interactions when studying diseases related to exposure to different hazards and lifestyle
factors.

Environmental and lifestyle factors have been investigated in many epidemiological studies
using self-reported information obtained by questionnaires, interviews, records or measure-
ments of exposure. However, very few epidemiological studies included the information on
genetic risk factors. Similarly, many studies investigating genetic factors obtained little
information on environmental factors and lifestyle. Genetic predisposition can be presumed
from family history, from phenotypic characteristics (e.g. metabolic capacity) or, most impor-
tantly, from an analysis of deoxyribonucleic acid (DNA) sequence [8].

The research into gene-environment interactions requires the information on both environ-
mental/lifestyle and genetic factors [7, 8]. Primary candidates for gene-environment interaction
studies have been mostly genes coding for xenobiotic-metabolising enzymes [3]. Genetic
variability in these genes may lead to interindividual differences in the capacity for xenobiotic
metabolism, thus modifying an individual’s susceptibility to the development of disease [3].

The approach to the analysis of gene-environment interactions is presented using the example
of our study into asbestosis, which is one of the most frequent asbestos-related diseases.
According to the model of causation, asbestos exposure, genetic factors and possibly also
unknown causes have a crucial role in the occurrence of asbestosis [9]. Although asbestos-
related diseases are among the most extensively studied occupational diseases, and the causal
relationship between asbestos exposure and asbestosis has been well proved [10-14], relatively
little has been known about the genetic factors that might modify an individual’s susceptibility
to the development of this disease [6, 15-17].

2. Asbestos exposure

Asbestos is a commercial name for a group of fibrous silicates with certain toxic properties,
such as the ability to produce inflammation, fibrous scarring and cancer [18-20]. Based on their
physical and chemical structures, asbestos fibres can be classified into two major groups:
chrysotile and amphiboles [20-25].

Occupational exposure to asbestos occurs in asbestos mining, production and milling of
asbestos fibres; in asbestos cement industry; in construction; in machine and insulation product
industry; in ship building or repair; in car industry; in production of brakes and clutches; in
car, bus, lorry, railway carriage and aeroplane repair; in asphalt mixing; in disposal of asbestos
waste and materials; in brickworks; in textile industry and in other industries and activities
[20, 22, 26-28].
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Local population can be exposed to asbestos mostly in the neighbourhood of factories where
asbestos is produced or used (exposure to polluted air, water and food). The source of
environmental asbestos exposure may also be asbestos cement sheets, asbestos insulators and
other asbestos-containing products. Asbestos fibres may also be found in water which flows
through asbestos cement pipes, especially if they have been damaged. Workers exposed to
asbestos may bring asbestos home to the family members on clothing or hair [26-28].

3. Asbestos-related diseases

Asbestos exposure has been associated with the development of asbestosis; pleural diseases,
such as pleural plaques, diffuse pleural thickening and pleural effusion and several types of
cancer: lung cancer, diffuse malignant mesothelioma of the pleura and peritoneum, cancer of
the larynx, cancer of the ovary as well as the cancers of the buccal mucosa, the pharynx, the
gastrointestinal tract and the kidney [11, 12, 16, 25, 29-41].

4. Clinical presentation of asbestosis

Asbestosis is an interstitial pulmonary process that develops into diffuse pulmonary fibrosis
after a long latency period [42, 43]. The disease continues to progress even after the cessation
of exposure, and the process is irreversible. One of the earliest symptoms may be dyspnoea,
which is manifested at first only after strenuous exertion, but subsequently with less and less
exertion, and eventually it appears even at rest. Another non-specific symptom and usually
late manifestation of the disease is irritating and dry, usually non-productive cough, sometimes
associated with chest pain [42, 44]. Pulmonary function changes are characterised mostly by
a restrictive impairment [27, 28, 42—44]. Later, obstructive airway impairment may also occur
[27,28]. On chest radiographs, small irregular opacities appear initially in the lower lung fields
that may enlarge with more advanced disease and involve also middle lung fields [27, 42-44].
Characteristic features of asbestosis on high-resolution computed tomography (HRCT)
include fibrotic intralobular interstitial thickening and interlobular septal thickening, sub-
pleural lines and opacities, parenchymal bands, ground-glass opacities and, in more severe
disease, variable honeycombing [27].

5. Reactive oxygen and nitric species: the link between asbestos exposure
and the development of asbestosis

The pathogenesis of asbestosis is still poorly understood. The findings of studies on cell
cultures and animal models indicate that reactive oxygen and nitric species (ROS and RNS)
are involved in the pathogenesis of this disease [23, 30, 45-55]. The most important reactive
metabolites in the pathogenesis of asbestos-related lung diseases are superoxide anion (O;"),
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hydrogen peroxide (H,0O,), hydroxyl radical (OH") and nitric oxide (NO) [46, 48, 56, 57].
Asbestos may stimulate the production of ROS in two different ways. The first mechanism
involves redox-active iron (Fe?", Fe’*) in asbestos that catalyses the formation of OH'", whereas
the second mechanism involves the production of ROS by alveolar macrophages during the
phagocytosis of asbestos fibres [58-60]. Reactive oxygen species in lungs may lead to the
production of cytotoxic and potentially genotoxic electrophilic compounds [46].

It has also been suggested that asbestos fibres may upregulate the activity of inducible nitric
oxide synthase (iNOS), thus inducing the production of NO by alveolar macrophages and
pulmonary epithelial cells [51, 61-64]. Because NO is a free radical, it reacts readily with other
reactive oxygen metabolites (as, for instance, O,"), leading to the formation of toxic metabolites,
most importantly peroxynitrite [65-69]. Nitric oxide may play a role in the initiation and
progression of asbestosis [51, 64, 70, 71]. However, the data presented by Dorger et al. [72]
indicate that iNOS-derived NO plays a dual role in acute asbestos-induced lung injury and
that although iNOS deficiency resulted in an exacerbated inflammatory response, it improved
oxidant-promoted lung tissue damage.

Reactive oxygen species and RNS can damage all types of biomolecule, including lipids,
proteins and deoxyribonucleic acid (DNA). Complex defence mechanisms, including en-
zymes, proteins and antioxidants, are involved in the prevention of cell damage [73, 74].

6. Enzymes involved in the detoxification of reactive oxygen and nitric
species

Human tissues contain specific enzyme systems to detoxify ROS and RNS. Superoxide
dismutases (SODs) and catalase (CAT) together with glutathione peroxidases represent an
important line of the primary antioxidant enzyme defence system against ROS. Superoxide
dismutases catalyse the dismutation of O, to H,O, and oxygen (O,), whereas CAT subse-
quently catalyses the conversion of H,O, to water (H,0) and O, [48, 75-82]. Three distinct SOD
isoenzymes have been identified in mammals: a cytosolic copper-zinc SOD (CuZnSOD or
SOD1) localised in cytoplasmic compartment with cooper (Cu) and zinc (Zn) in the catalytic
centre, manganese SOD (MnSOD or SOD2) that is localised in mitochondria and uses man-
ganese (Mn) as a cofactor and extracellular SOD (ECSOD or SOD3) that also contains Cu and
Zn in the catalytic centre and is located in the extracellular space [74, 82, 83].

Another important family of enzymes involved in the detoxification of xenobiotics and
electrophiles produced by ROS and RNS is glutathione S-transferases (GSTs) [84-87]. They
catalyse the conjugation of reduced glutathione to different electrophiles [88]. These conjuga-
tion reactions mostly result in less reactive products [89]; however, in some cases, the products
are more reactive and consequently more harmful than the parent compound [90, 91]. Seven
classes of cytosolic GST isoenzymes have been recognised in mammals (Alpha, Mu, Pi, Sigma,
Theta, Omega, Zeta) [84-86, 91, 92]. The major GST enzyme in the human lung is GSTP1, which
belongs to the Pi class [90, 91, 93], while GSTM1 (Mu class) and GSTT1 (Theta class) were most
frequently investigated [90, 91].
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7. Genetic variability of metabolic enzymes

Genetic polymorphisms are the most common cause for genetic variability of detoxification
and antioxidative enzymes [15-17, 80, 91, 94-99].

The most common functional single nucleotide polymorphism (SNP) of the MnSOD gene is C
to T substitution (c.201C>T, rs4880), which results in alanine (Ala) to valine (Val) amino acid
change at position -9 of the mitochondrial targeting sequence (MnSOD p.Ala-9Val) [96, 97,
100]. It has been suggested that this SNP alters the secondary structure of the protein and hence
may affect the efficiency of transport of the MnSOD into the mitochondria, where it would be
biologically available [96, 97].

ECSOD is secreted into extracellular space where it binds lung matrix components and inhibits
their fragmentation in response to oxidative stress [101, 102]. In the ECSOD gene, a C to G
substitution (c.896C>G, rs1799895) leads to amino acid change from arginine (Arg) to glycine
(Gly) at position 213 (p.Arg213Gly) [89, 100, 103-105]. This polymorphism causes an 8- to 15-
fold increase in the concentration of plasma ECSOD levels due to impaired binding to the
extracellular matrix [103, 104].

The most common functional SNP of the catalase gene (CAT) consists of a C to T substitution
at position —262 in the promoter region (CAT c.-262C>T) and has a substantial impact on the
basal expression as well as the CAT levels in red blood cell [80]. The findings of later studies
indicated lower CAT activity in subjects with the -262TT genotype than those with the CT and
CC genotypes [106-111].

Regarding GSTs, the most common polymorphism of the GSTM1 and GSTT1 genes in most of
the populations is null polymorphism due to homozygous deletion (null genotype) of these
genes, which result in the absence of the GSTM1 and GSTT1 enzyme activity [17, 91].
GSTM1-null genotype has been associated with an increased risk of asbestosis in some studies
[16, 86], while this association has not been proved in the others [15, 17]. No association has
been found between GSTT1 deletion polymorphism and asbestosis in the studies published
so far [17, 86]. As for the GSTP1 gene, two common single nucleotide polymorphisms in the
coding sequence were reported to result in amino acid substitution that may lead to reduced
conjugating activity of the enzyme [91, 98, 112, 113]. The first polymorphism is characterised
by adenine (A) to guanine (G) transition of nucleotide 313 in exon 5 (c.A313G), which causes
anisoleucine (Ile) to valine (Val) substitution at position 105 of the GSTP1 enzyme (p.Ile105Val),
resulting in three possible genotypes: 105 Ile/Ile, 105 Ile/Val or 105 Val/Val. The second
polymorphism involves the cytosine (C) to thymine (T) transition at nucleotide 341 in exon 6
(c.C341T), which results in alanine (Ala) to Val substitution at position 114 of the GSTP1
enzyme (p.Alall4Val). Regarding codon 114, three genotypes are also possible: 114 Ala/Ala,
114 Ala/Val or 114 Val/Val [91, 98]. Based on the presence of the polymorphisms in both codons
105 and 114, GSTP1 genotypes can be combined into groups with a presumed high, inter-
mediate or low conjugation capacity of the enzyme.

The human iNOS gene is also known to be polymorphic. Several types of polymorphisms have
been identified in the promoter region of the iNOS gene [99, 114]. The CCTTT pentanucleotide
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tandem repeat polymorphisms have been associated with the transcriptional promoter
activity, which has been shown to increase with the CCTTT repeat number. Based on that,
alleles with 11 or fewer CCTTT repeats are usually defined as short alleles (S) and the ones
with 12 or more repeats as long alleles (L). Accordingly, the subjects can have SS, SL or LL
genotype [115].

8. Gene-environment interactions and asbestosis

We are presenting the example of an approach to gene-environment interaction research by
summarising and building on the results of our studies that aimed to investigate the influence
of interactions between different genotypes (MnSOD, ECSOD, CAT, GSTM1, GSTT1, GSTP,
iNOS), between genotypes and smoking and between genotypes and cumulative asbestos
exposure on the risk of developing asbestosis [6, 14, 116-119].

A nested case-control study included 262 cases with asbestosis and 265 controls with no
asbestos-related disease. All the subjects included in the study were employed in the asbestos
cement manufacturing plant of Salonit Anhovo, Slovenia, and occupationally exposed to
asbestos. Data on smoking were obtained from all subjects using a standardised questionnaire
[25, 120] and checked during the interview. The data on the cumulative asbestos exposure,
expressed in fibres/cm3-years [intensity in fibres per cm? of air multiplied by time of exposure
expressed in years], were available for all the subjects from the previous study [25]. The
diagnosis of asbestosis or ‘no asbestos-related disease’ was based on the Helsinki Criteria for
Diagnosis and Attribution of Asbestos Diseases [121] and on the American Thoracic Society
recommendations [122]. Each case was confirmed by an interdisciplinary group of experts
(consisting of an occupational physician, a radiologist and a pulmonologist) of the State Board
for Recognition of Occupational Asbestos Diseases at the Clinical Institute of Occupational
Medicine. Capillary blood samples from the finger tips of all cases and controls have been
collected on FTA Mini Cards (Whatman Bioscience) for the isolation of deoxyribonucleic acid
(DNA) and genotyping. All the genetic analyses were performed using PCR-based approaches
as previously described [6, 14, 116-119].

Before testing interactions, the associations between outcome [in our case asbestosis] and
individual variables were assessed using univariate logistic regression analysis. As expected,
asbestosis was associated with cumulative asbestos exposure, whereas no association was
found with smoking (OR = 0.98, 95%; CI = 0.69-1.39 for ever versus never smoking) [14].
Analysing the association between asbestosis and individual genotypes, an important
association was observed between asbestosis and MnSOD genotype (OR =1.50, 95% CI=1.01-
2.24 for -9Ala/Ala versus combined Ala/Val and Val/Val genotypes) [118]. Only non-signifi-
cantly elevated risk of asbestosis was observed for the ECSOD and CAT genotypes (OR =1.63,
95% CI = 0.62—4.27 for ECSOD 213Arg/Gly versus the Arg/Arg genotype and OR =1.36, 95%
CI =0.70-2.62 for CAT -262 TT compared to combined CT and CC genotypes, respectively)
[117, 118]. Regarding GSTs, no association was found between asbestosis and GSTM1-null
genotype (OR =1.01, 95% CI = 0.71-1.43), while the presence of GSTT1-null genotype showed
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a protective effect for this disease (OR =0.61, 95% CI=0.40-0.94) [14]. On the other hand, GSTP1
genotype coding for an enzyme with a high conjugation capacity versus genotypes resulting
in an intermediate or low enzyme activity significantly increases the risk of developing
asbestosis (OR = 1.49, 95% CI 1.06-2.10) [116]. A slightly elevated risk of asbestosis was also
found for the iNOS LL genotype compared to the combined SL and SS genotypes (OR = 1.20,
95% CI =0.85-1.69) [119]. Based on the above-mentioned results, it could be suggested that the
genotypes may increase, decrease or have no effect on the risk of disease, in our case asbestosis.

Univariate modelling was followed by multivariate analysis and interactions as the genes
usually do not act independently, but may interact. To test the interactions, simple categorical
models based on stratification were constructed first, followed by logistic regression models
using dummy variables. The analysis showed that the association between asbestosis and
MnSOD Ala-9Val genotypes was modified strongly by CAT -262 C>T genotypes. An increased
risk of developing asbestosis was observed for the combined MnSOD -9Ala/Val and Val/Val
genotypes compared to the Ala/Ala genotype only among those subjects who also had CAT
-262TT genotype, suggesting an interaction, which was further confirmed by logistic regres-
sion analysis using dummy variables (OR = 4.49, 95% CI = 1.08-18.61) [6]. Considering that
both MnSOD and CAT constitute a part of the primary defence system against ROS and
catalyse the consecutive reactions in the detoxification of ROS [48, 74, 80, 82], this interaction
could be considered as logical and biologically plausible. Similarly, the association between
asbestosis and iINOS (CCTTT), genotypes was also modified by CAT -262 C>T genotypes,
where a higher asbestosis risk for the iNOS LL genotype versus the combined SL and SS
genotypes was observed only among those who had CAT -262 TT genotype (OR = 4.78, 95%
CI = 1.15-19.81) [6]. Taking into account that reactions between ROS and NO have been
proposed to potentiate the cytotoxic and mutagenic effect of asbestos fibres [48, 51, 64, 71] and
based on the assumption that NO produced by the catalytic activity of iNOS can function as
a protective agent against toxic effects of H,O, [123], which is detoxified by CAT [48, 74, 80,
82], and vice versa that H,0O, decreases the cytotoxicity of NO [124], this interaction could also
be considered as biologically plausible [6].

Next, interactions between different genotypes and an important lifestyle factor —in our case
smoking —have been tested. We observed that the GSTM1-null polymorphism did modify the
association between smoking and asbestosis, although there was no independent association
between either GSTM1-null polymorphism or smoking and asbestosis risk (OR =2.67, 95% CI
=1.31-5.46) [6]. We can explain this modifying effect with the observation that both asbestos
and smoking increase the production of ROS [46, 125, 126], which are known to be involved
in the pathogenesis of asbestosis [23, 30, 46, 48-50]. It has been suggested that cigarette smoke
and asbestos increase DNA damage and ROS production in pulmonary cells synergistically
[125-127]. In line with these reports and considering the role of GSTMI in the defence
against ROS [84-87], this observation could also be considered as biologically plausible [6].
Similarly, the association between smoking and asbestosis was modified by iNOS (CCTTT),
polymorphism (OR = 2.00, 95% CI =0.99-4.03) [6]. Knowing that cigarette smoke is the largest
source of NO that humans are exposed to and can also increase the expression and activity of
iNOS [128, 129] and based on the suggestion that asbestos fibres may upregulate the activity
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of iNOS and thus the production of NO, which is thought to play an important role in the
initiation and progression of asbestosis [51, 70], this interaction could also be physiologically
explained [6].

Finally, we present an example of the interaction between genotypes and environmental
exposure, in our case occupational exposure to asbestos. In order to assess the interactions
between the genotypes and occupational cumulative asbestos exposure, we have first con-
structed simple categorical models that included cumulative asbestos exposure categorised as
follows: <11.23 fibres/cm?®-years and >11.23 fibres/cm3-years (11.23 fibres/cm3-years was the
average cumulative asbestos exposure for the controls). In our analysis, we have observed that
the association between asbestosis and cumulative asbestos exposure was modified by the
iNOS (CCTTT), genotypes (OR = 5.74; 95% CI = 3.30-9.99) [6].

9. Conclusions

The findings of our studies suggest that in addition to environmental and/or occupational
exposure to different hazards and lifestyle factors, the genetic factors and the interactions
between different genotypes, between genotypes and lifestyle factors and between genotypes
and environmental/occupational exposure to hazards may have an important influence on the
development of diseases and should be further investigated [6, 130-133]. In agreement with
our observations, an increasing number of molecular epidemiological studies support the
importance of investigating not only genetic predisposition but also gene-gene and gene-
environment interactions when assessing the risk of developing diseases [134-136]. Novel
high-throughput technologies may also allow the investigation of interactions between
exposure to hazards and epigenetic changes in disease risk assessment [137].
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