
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

186,000 200M

TOP 1%154

6,900

8

Applying Artificial Intelligence to Predict the
Performance of Data-dependent Applications

Paula Fritzsche, Dolores Rexachs and Emilio Luque
DACSO, University Autonoma of Barcelona

Spain

1. Introduction

Computational science (CS) is an emerging discipline that unites science and mathematics
with disciplinary experience in biology, chemistry, physics, and other applied scientific
fields. Within the scientific method, it is often referred to as the third science paradigm,
complementing both theoretical and laboratory science (Miller & Boxer, 2005). In this work,
CS involves the collaboration of the computing discipline, the mathematical support
represented by the knowledge discovery process and by the models, and the computing
parallel environment capability. Central to this computational science problem is the
performance prediction of data-dependent applications, as shown on Figure 1. By the way,
CS allows doing things that were previously too difficult to do due to the complexity of the
mathematics, the large number of calculations involved, or a combination of both.
Therefore, new challenges are continuously arising although CS is still at an early stage of
development.

Figure 1. Computational science complementing both theoretical and laboratory science

Parallel computers provide an efficient and economical way to solve large-scale and/or
time-constrained scientific, engineering, medicine, industry, and commerce problems. It is
an alternative that makes easy to reach a solution in a fraction of the original time that
would consume a single computer. Consequently, the research community, the computer

www.intechopen.com

 Tools in Artificial Intelligence

122

designers, the professional engineers, and the end-users of these systems have a vested
interest in knowing and predicting the performance order of parallel algorithms. Although
measuring the performance of a parallel algorithm for all possible input values would allow
answering any question about how the algorithm will respond under any set of conditions,
it is impossible to make it. The situation is even worse for data-dependent algorithms where
similar input data sets may cause significant variability in execution times. For this kind of
algorithms, the performance does not depend only on the number of processors used (P)
and on the data size (N). Other parameters have to be taken into account, the values of
which are data-dependent. Great examples of this type of programs are the sorting
algorithms, the searching algorithms, the satisfiability problem, the graph partition, the
knapsack problem, the bin packing, the motion planning, and the traveling salesman
problem (TSP). Furthermore, there are important cases of practical problems that can be
formulated as TSP problems and many other problems are generalizations of this problem.
The goal of this chapter is to present a general novel methodology to the problem of
predicting the performance of data-dependent algorithms. This is a good starting point for
understanding some facts related with the non-deterministic algorithms. Briefly, the
methodology works as follows. It begins by designing a certain number of instances and
measuring their execution times. A well-designed instance guides the experimenters in
choosing what experiments actually need to be performed in order to provide a
representative sample. A data mining process then explores the collected data in search of
patterns and /or relationships detecting the main parameters that affect performance. These
common properties are modelled numerically so as to generate an analytical formulation of
the execution time, a multiple-linear-regression model. Finally, the regression equation
allows predicting how the algorithm will perform when given new input data sets.
A global pruning algorithm (GP-TSP) is used to analyze the influence of indeterminism in
performance prediction, and also to show the usefulness of the proposed methodology. It is
a branch-and-bound algorithm which recursively searches all possible paths and prunes
large parts of the search space by maintaining a global variable containing the length of the
shortest path found so far. If the length of a partial path is bigger than the current minimal
length, this path is not expanded further and a part of the search space is pruned.
The GP-TSP execution time depends on the number of processors (P), number of cities (C),
and other parameters. As a result of this investigation, right now the sum of the distances
from one city to the other cities (SD) and the mean deviation of SDs values (MDSD) are the
numerical parameters characterizing the different input data beyond the number of cities.
The preliminary experimental results of predictions are quite promising. An important fact
has been reached beyond was originally sought. Choosing the city which has minimum SD
associated value, it is possible to obtain the exact TSP solution investing less amount of time.
This chapter is organized as follows. The next section presents the novel methodology to the
problem of predicting the performance of data-dependent algorithms. Section 3 reviews the
traveling salesman problem (TSP) and provides detailed coverage of a parallel TSP
implementation called GP-TSP. Section 4 focuses on the discovering process carried out to
find the significant input parameters for the GP-TSP algorithm. Section 5 explains how to
build a prediction model and then the evaluation process in order to estimate times. Finally,
Section 6 summarizes and draws the main conclusions of this chapter identifying
challenging future research.

www.intechopen.com

Applying Artificial Intelligence to Predict the Performance of Data-dependent Applications

123

2. Entire approach

The general novel methodology attempts to estimate the performance order of a parallel
algorithm that solves a data-dependent problem. The defined methodology consists of three
main phases: the design and composition of experiments to obtain and fit the prediction
model, the validation of the model, and the use of the model developed, see Figure 2.

Figure 2. The performance prediction methodology

2.1 Design and composition of experiments to obtain and fit the prediction model
In principle, it is important to understand the application domain and the relevant prior
knowledge, and to analyze their behavior step by step, in a deep way. It is a try-and-error
method that requires specialists to manually or automatically identify the relevant
parameters that can affect the execution time of the algorithm studied. Discovering the
proper set of parameters is the basis to obtain a good capacity of prediction. Including too
many parameters may lead to an accurate but too complicated or even unsolvable model.
Hence, great care should be taken in selecting parameters and a reasonable trade-off should
be made.
Designing an experiment involves articulating a goal, choosing an output that characterizes
an aspect of that goal and specifying the data that will be used in the study. A well-designed
instance guides the experimenters in choosing what experiments actually need to be
assessed. Once a training data has been defined, the studied parallel algorithm reads and
processes the experiments one by one obtaining their execution times.
A data mining application analyzes the quantitative measured values of the main
parameters that affect performance and summarizes these into a useful multiple-linear-

www.intechopen.com

 Tools in Artificial Intelligence

124

regression model (MLR model, T=b0+b1x1+…+ bpxp). It allows including the effects of several
input variables that are all linearly related to a single output variable (T). This is a first
approximation to deal with the problem. Figure 3 shows the knowledge construction model.
Note that the instances must provide a representative sample (a training data set) first to
obtain and fit the model and then to estimate the regression coefficients.

Figure 3. The knowledge construction model

2.2 Validation of the model

A new data set is used to be able to validate the created model. The validation data set

constitutes a hold-out sample and is not used in building of the model. This enables to

estimate the error in the predictions without having the assume that the execution times

follow a particular distribution.

The training data set is used to estimate the regression coefficients (b0,…,bp). These

coefficients are used to make predictions for each case in the validation data. The quality

analysis is a relevant issue in this stage and has to include interest measurements. The

prediction for each case is then compared to the value of the dependent variable that was

actually observed in the validation data obtaining the prediction error. The average of the

square of this error enables to compare different models and to assess the accuracy of the

model in making predictions. Figure 4 exhibits the model validation phase.

Figure 4. The validation of the model

www.intechopen.com

Applying Artificial Intelligence to Predict the Performance of Data-dependent Applications

125

Great care should be taken in analyzing the first approximations because it is difficult to
know the degree of complexity of the relationship between the parameters and execution
time. It is important to take in mind that the model aids in testing hypothesis and finding
solution to performance prediction problems.
From the scientific point of view is essential to find confidence intervals for the regression
parameters to provide some indication of how well they model the measured values. Taking
this as a basis, it could determine the necessary number of elements in the sample.

2.3 Prediction of performance order

Once a MLR model has been fit, it is used to predict how the studied parallel algorithm will
perform when given a new input data set. The b0,…,bp values are the estimated regression
parameters. To predict the dependent value (T), it is necessary to replace the independent
values x1,…,xp with known values.
At this point, it is necessary to emphasize that the MLR model provides a prediction
framework easy to use and useful, see Figure 5.

Figure 5. The prediction framework

3. Traveling salesman problem

The traveling salesman problem (TSP) is one of the most famous problems (and the best one
perhaps studied) in the field of combinatorial optimization. In spite of the apparent
simplicity of its formulation, the TSP is a complex data-dependent. Not only the complexity
of its solution has been a continue challenge to the researchers but also the prediction of its
performance due to there are many practical problems that can be formulated as TSP
problems.

3.1 Problem statement

The TSP for C cities is the problem of finding a tour visiting all the cities exactly once and
returning to the starting city such that the sum of the distances between consecutive cities is
minimized (TSP, 2008). The requirement of returning to the starting city does not change the
computational complexity of the problem.

3.2 TSP computational complexity

The TSP has been shown to be NP-hard (Karp, 1972). More precisely, it is complete for the
complexity class (FPNP)1, and the decision problem version is NP-complete. If an efficient

1 The class NP is the set of decision problems that can be solved by a non-deterministic
Turing machine in polynomial time. FP means function problems.

www.intechopen.com

 Tools in Artificial Intelligence

126

algorithm is found for the TSP problem, then efficient algorithms could be found for all
other problems in the NP-complete class. Although it has been shown that, theoretically, the
Euclidean TSP is equally hard with respect to the general TSP (Garey et al., 1976), it is
known that there exists a sub exponential time algorithm for it.
The most direct solution for a TSP problem would be to calculate the number of different
tours through C cities. Given a starting city, it has C-1 choices for the second city, C-2 choices
for the third city, etc. Multiplying these together it gets (C-1)! for one city and C! for the C
cities. Another solution is to try all the permutations (ordered combinations) and see which
one is cheapest. At the end, the order is also factorial of the number of cities. Generally, the
presented solutions are quite similar.

3.3 TSP practical problems

Besides the drilling of printed circuits boards (Duman, 2004), transportation and logistics
areas (TSP, 2008), problems having the TSP structure occur in the analysis of the structure of
crystals (Bland & Shallcross, 1989), in material handling in a warehouse (Ratliff & Rosenthal,
1983), in clustering of data arrays (Lenstra & Kan, 1975), in sequencing of jobs on a single
machine (Gilmore & Gomory, 1964), in physical mapping problems (Alizadeh et al., 1993),
in genome rearrangement (Sankoff & Blanchette, 1997), and in phylogenetic tree
construction (Korostensky & Gonnet, 2000) among others. Related variations on the TSP
include the resource constrained traveling salesman problem which has applications in
scheduling with an aggregate deadline (Miller & Pekny, 1991). The prize collecting TSP
(Balas, 1989) and the orienteering problem (Golden et al., 1987) are special cases of the
resource constrained TSP. The problem of finding a tour of maximum length is the objective
in MAX TSP (Barvinok et al., 2003). The maximum scatter TSP is the problem of computing
a path on a set of points in order to maximize the minimum edge length in the path. It is
motivated by applications in manufacturing and medical imaging (Arkin et al., 1996). Most
importantly, the TSP often comes up as a subproblem in more complex combinatorial
problems, the best known and important one of which is the vehicle routing problem, that
is, the problem of determining for a fleet of vehicles which customers should be served by
each vehicle and in what order each vehicle should visit the customers assigned to it
(Christofides, 1985).

3.4 GP-TSP algorithm

An implementation, called global pruning algorithm (GP-TSP), to obtain the exact TSP
Euclidean solution in a parallel machine has been used. For simplicity of implementation,
they were considered cities in R2 instead of Rn. The most straightforward way of computing
distances between cities in a two-dimensional space is to compute Euclidean distances.
Anyway, the election of distance measure (Euclidean, Manhattan, Chebychev) is irrelevant.
Also would be the same to work with an equivalent formulation in terms of graph theory.
This is 'given a complete weighted graph (where the vertices would represent the cities, the
edges would represent the roads, and the weights would be the cost or distance of that
road), find a Hamiltonian circuit with the least weight' (Gutin & Punnen, 2006). Therefore,
the ideas of this paper can be generalized.
The GP-TSP algorithm analyzes the influence of indeterminism in performance prediction. It
is a branch-and-bound algorithm which recursively search all possible paths. It follows the
Master-Worker programming paradigm (Fritzsche, 2007). Each city is represented by two

www.intechopen.com

Applying Artificial Intelligence to Predict the Performance of Data-dependent Applications

127

coordinates in the Euclidean plane. Considering C different cities, the Master defines a
certain level L to divide the tasks. Tasks are the possible permutations of C-1 cities in L
elements. The granularity G of a task is the number of cities that defines the task sub-tree: G
= C - L. At the execution start-up the Master sends the cities coordinates to every Worker.
A diagram of the possible permutations for 5 cities, considering the salesman starts and
ends his trip at the city 1, can be seen in Figure 6. The Master can divide this problem into 1
task of level 0 or 4 tasks of level 1 or 12 tasks of level 2 for example. The tasks of the first
level would be represented by the cities 1 and 2 for the first task, 1 and 3 for the second,
followed by 1 and 4 and 1 and 5. The requirement of returning to the starting city is without
detracting from the generality. In this closed cycle the salesman may begin and end in the
city who wants.

Figure 6. Possible paths for the salesman considering 5 cities

Workers are responsible for calculating the distance of the permutations left in the task and
sending to the Master the best path and distance of these permutations. One of the
characteristics of the TSP is that once the distance for a path is superior to the already
computed minimum distance it is possible to prune this path tree.

Figure 7. (a) Matrix of distances between cities (b) Pruning process in the GP-TSP algorithm

www.intechopen.com

 Tools in Artificial Intelligence

128

Figure 7(a) shows a strictly lower triangular matrix of distances; meanwhile Figure 7(b)
exhibits the pruning process for the GP-TSP algorithm where each arrow has the distance
between the two cities it connects. Analyzing Figure 7(b), the total distance for the first
followed path (in the left) is of 40 units. The distance between 1 and 2 on the second path (in
the right) is already of 42 units. It is then not necessary for the algorithm to keep calculating
distances from the city 2 on because it is impossible to reach a better distance for this branch.

4. Discovering the significant GP-TSP input parameters

It is clear that the GP-TSP execution time order depends on the number of processors (P), on

the number of cities (C), and ‘other parameters’. Discovering the ‘other parameters’ is the

key to obtain a good or an acceptable prediction of performance order. Undoubtedly, the

knowledge discovery in databases process (KDD process) has been one of the most

profitable stages in the scientific examination. A huge amount of data sets was processed

with the only goal of finding some common properties. First intuitions guided the different

tests in order to determine the characteristics, the relationships, and the patterns between

the data sets. As a result of the investigation, right now the sum of the distances from one

city to the other cities (SD) and the mean deviation of SDs values (MDSD) are the numerical

parameters characterizing the different input data beyond the number of cities (C). But how

these final parameters have been obtained? Next, it is described the followed way to

discover the above mentioned dependencies (SD and MDSD), the construction of a model,

and finally the evaluation of the obtained regression equation.

4.1 First hypothesis å location of the cities (geographical pattern)

For simplicity, only a particular training data set is analyzed and shown along different
sections. It consists of five different geographical patterns of fifteen cities each one (named
G1 to G5). Figure 8 illustrates the five patterns handled at the beginning.

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40

(a) G1 (b) G2 (c) G3 (d) G4 (e) G5

(1,2)

(3,15)

(1,4) (1,6) (1,8)

(5,15)
(7,15) (9,15)

(1,15)

Figure 8. Five patterns defined for fifteen cities

The GP-TSP implementation receives the number of cities and their coordinates, and the

level as input parameters. In order to find the shortest path, it proceeds recursively

searching all possible paths and applying the global pruning strategy whenever it is feasible.

www.intechopen.com

Applying Artificial Intelligence to Predict the Performance of Data-dependent Applications

129

Hence before continuing, there are two important concepts to refresh. The main objective of
data mining is finding useful patterns and knowledge in data. Clustering is one of the major
data mining techniques, grouping objects together into clusters that exhibit internal
cohesion (similar execution time) and external isolation.
As depicted in Figure 9, five clusters were found using a k-means algorithm (MacQueen,
1967) included in Cluster-Frame environment, see Appendix B for extra information. The
idea was to obtain quite similar groups with respect to the groups (patterns) used at the
beginning. The initial centroids were randomly selected by the clustering application and
the squared error function, Equation (1), was the selected objective function

() 2

1 1

| |
k n

j

i j
j i

x c
= =

−∑∑ (1)

where |xi(j)-cj|2 is a chosen distance measure between a data point xi(j) and the cluster
centroid cj. The entire function is an indicator of the distance of the n data points from their
respective cluster centroids.

Figure 9. Cluster-Frame environment

Table 1 presents the obtained GP-TSP execution times (in sec.) by pattern (columns G1 to
G5) and starting city using 8 nodes of the parallel machine described in Appendix A.
Columns Cl1,.., Cl5 show the assigned cluster for each sample after running k-means
algorithm. For the clusters 1 to 5, the final centroids values were 92.22 sec., 16.94 sec., 37.17
sec., 10.19 sec., and 7.94 sec., respectively. A simple remark derived from pattern columns is
that the execution times belonging to a group are quite similar except for some cases.
The quality evaluation involves the validation of the above mentioned hypothesis. For each
sample, the assigned cluster was confronted with the previously defined graphic pattern.
The percentage of hits expresses the capacity of prediction. A simple observation is that the
execution times were clustered in a similar way to patterns fixed at starting; the capacity of

www.intechopen.com

 Tools in Artificial Intelligence

130

prediction was of 75% for this example (56 hits on 75 possibilities). There was a close
relationship between the patterns and the execution times.

Pattern
Starting

city G1 Cl1 G2 Cl2 G3 Cl3 G4 Cl4 G5 Cl5

1 216.17 1 36.50 3 15.34 2 10.51 4 8.03 5

2 214.44 1 36.82 3 15.19 2 10.49 4 7.82 5

3 77.25 1 38.09 3 15.57 2 10.02 4 7.71 5

4 72.64 1 37.29 3 15.02 2 10.30 4 7.91 5

5 70.94 1 18.54 2 15.84 2 10.41 4 7.83 5

6 74.21 1 17.83 2 15.24 2 10.24 4 7.71 5

7 75.59 1 18.16 2 10.31 4 10.36 4 7.93 5

8 73.72 1 18.03 2 10.34 4 10.26 4 7.87 5

9 69.47 1 17.79 2 10.27 4 9.98 4 8.14 5

10 74.96 1 17.48 2 10.23 4 9.88 4 8.22 5

11 75.89 1 17.07 2 10.24 4 9.85 4 8.04 5

12 70.17 1 17.39 2 10.28 4 9.87 4 8.12 5

13 73.73 1 18.10 2 10.36 4 9.88 4 7.98 5

14 70.87 1 17.37 2 10.17 4 9.95 4 8.02 5

15 73.30 1 18.00 2 10.32 4 9.97 4 7.78 5

Mean 92.23 22.97 12.32 10.14 7.94

Table 1. Execution times (in sec.) and assigned cluster for the GP-TSP algorithm

Conclusions: The initial hypothesis for the GP-TSP was corroborated. At this stage, the
asymptotic time complexity was defined as O(C, P, pattern). The capacity of prediction was
greater than 70% for the full range of experiments worked. This value gave evidence of the
existence of other significant parameters. Therefore, a deep analysis of results revealed an
open issue remained for discussion and resolution, the singular execution times by pattern.
Another major hypothesis was formulated.

4.2 Second hypothesis å location of the cities and starting city

Comparing Figure 8 with Table 1 it is easy to infer some important facts. The two far cities
in Figure 8(a) correspond with the two higher time values of Table 1(G1). The four far cities
in Figure 8(b) correspond with the four higher execution time values of Table 1(G2). The six
far cities in Figure 8(c) correspond with the six higher time values of Table 1(G3). The cities
in Figure 8(d) are distributed among two zones so, the times turn out to be enough similar,
see Table 1(G4). Finally, the cities in Figure 8(e) are enough closed so, the times are quite
similar, see Table 1(G5).
An additional important observation is that the mean of execution times by pattern
decreases as the cities approach (92.23, …, 7.94).
Conclusions: Without doubt, the location of the cities and the starting city (C1) play an
important role in execution times; the hypothesis was corroborated. At this point, the
asymptotic time complexity for the GP-TSP was redefined as O(C, P, pattern, C1). Anyway,

www.intechopen.com

Applying Artificial Intelligence to Predict the Performance of Data-dependent Applications

131

an open issue remained for discussion and resolution, how to relate a pattern (in general)
with the value of the execution time. This relationship would be able to establish a
numerical characterization of patterns. On this basis, a new original hypothesis was
formulated.

4.3 Third hypothesis å sum of distances and mean deviation of sum of distances
What parameters could be used to quantitatively characterize different geographical
patterns in the distribution of cities? Right now for each pattern, the sum of the distances
from one city to the other cities (SDj), as shown on Equation (2) and the mean deviation of
SDs values (MDSD) are the worked inputs.

() ()2 2

1

:1
C

j i j i

j
i

x x y y
j j C SD

=

− + −
∀ ≤ ≤ =∑ (2)

In the following sub sections, three different kinds of experimentations are done. One of
these is useful to see the necessity to include the both SD and MDSD parameters in the
complexity expression. Another one proves that a pattern is univariate regardless of their
scale or position. The last one is a singular case where the cities are uniformly distributed in
a circumference.

4.3.1 Experimentation 1

Columns SD1,.., SD5 in Table 2 show the values obtained by applying the Equation (2) to
each pattern and starting city. If a particular city j is very remote of the others, its SDj will be
considerably greater to the rest and consequently the execution time will grow also.

Pattern Starting
city G1 SD1 G2 SD2 G3 SD3 G4 SD4 G5 SD5

1 216.17 853.94 36.50 746.10 15.34 664.60 10.51 643.75 8.03 148.74

2 214.44 887.44 36.82 740.49 15.19 649.14 10.49 635.54 7.82 104.16

3 * 77.25 * 315.51 38.09 820.63 15.57 707.70 10.02 555.70 7.71 141.15

4 ◊ 72.64 ◊ 230.11 37.29 789.80 15.02 678.07 10.30 599.99 7.91 103.35

5 70.94 226.88 18.54 345.83 15.84 643.65 10.41 611.45 7.83 111.79

6 74.21 244.56 17.83 330.76 15.24 638.04 10.24 595.58 7.71 102.81

7 75.59 276.09 18.16 369.56 10.31 467.99 10.36 592.68 7.93 111.28

8 73.72 294.62 18.03 383.38 10.34 490.55 10.26 639.61 7.87 147.14

9 69.47 233.53 17.79 370.10 10.27 491.52 9.98 574.23 8.14 123.19

10 ◊ 74.96 ◊ 234.84 * 17.48 * 323.12 10.23 446.48 9.88 578.78 8.22 172.52

11 75.89 259.19 17.07 332.87 10.24 477.42 9.85 544.61 8.04 124.64

12 70.17 234.22 17.39 325.19 10.28 449.03 9.87 534.91 8.12 131.68

13 73.73 306.99 18.10 383.11 10.36 504.79 9.88 530.72 7.98 109.78

14 70.87 239.19 17.37 327.02 10.17 451.21 9.95 574.97 8.02 124.96

15 73.30 295.27 18.00 372.00 10.32 494.09 9.97 534.36 7.78 96.29

MDSD 140.94 165.47 90.60 31.56 16.78

Table 2. Execution times (in sec.) and sum of the distances for the GP-TSP algorithm

www.intechopen.com

 Tools in Artificial Intelligence

132

Why is it needed to consider MDSD in addition to SD as a significant parameter? Quite
similar SD values from the same experiment (same column) of Table 2 imply similar
execution times. The SD1 values for the starting cities 4 and 10 are 230.11 and 234.84,
respectively. Their execution times (G1) are similar 72.64 and 74.96 (labelled with the symbol
◊). Instead, this relation is not true considering similar SD values from different patterns
(different columns). The SD1 value for starting city 3 and the SD2 value for the starting city
10 are similar (315.51 and 323.12, respectively) but the execution times are completely
dissimilar (labelled with the symbol *). Therefore, the different MDSD(SD1) and MDSD(SD2)
values explain the different execution times for similar SD1 and SD2 values.

4.3.2 Experimentation 2

Make geometric transformations (shifting, scaling, and rotation) to well-known patterns is a

fundamental test. The idea is to prove that a given pattern is univariate regardless of their

scale or position. Applying each one of the transformations to a data set, similar times are

expected using the same algorithm.

The coordinates of a city shifted by Δx in the x-dimension and Δy in the y-dimension are
given by

 ´ ´x x x y y y= + Δ = + Δ (3)

where x and y are the original and x’ and y’ are the new coordinates.
The coordinates of a city scaled by a factor Sx in the x-direction and y-direction (the city is

enlarged in size when Sx is greater than 1 and reduced in size when Sx is between 0 and 1)

are given by

 ´ ´
x y

x xS y yS= = (4)

The coordinates of a city rotated through an angle θ about the origin of the coordinate
system are given by

 ´ cos sin ´ sin cosx x y y x yθ θ θ θ= + = − + (5)

A data set consisting of fifteen cities is chosen from the historical database (Hist). The

shifting and rotation transformations are obtained interchanging x-coordinate by y-

coordinate (Sh+Rot), and the scaling transformation dividing by two both coordinates

(Scaled). While Figure 10 shows these three patterns together, Table 3 exhibits a comparison

of the execution times by pattern and starting city using 32 nodes of the parallel described in

Appendix A. Analyzing the information by row, the historical execution times and the

execution times of the geometric transformations for a sample are quite similar as it was to

be expected. The mean deviations are smaller than 2%.

4.3.3 Experimentation 3

A singular case is to have the cities uniformly distributed in a circumference. The MDSD

will be near to 0 so, similar times are expected applying any worked algorithm. Different

patterns consisting of 15 to 24 cities have been studied. One of these circumferences which is

composed of 24 cities is shown in Figure 11.

www.intechopen.com

Applying Artificial Intelligence to Predict the Performance of Data-dependent Applications

133

0

5000

10000

15000

20000

25000

30000

35000

0 5000 10000 15000 20000 25000 30000 35000

x-coordinate

y
-
co
or
d
in
a
te

Hist

Sh+Rot

Scaled

Figure 10. A historical pattern, a shifted and rotated historical pattern, and a scaled
historical pattern consisting of fifteen cities

Pattern Starting
city Hist Sh+Rot Scaled

MDev

1 46.25 48.52 47.30 0.78

2 100.30 105.60 102.77 1.81

3 73.48 76.34 74.52 1.04

4 32.92 34.52 33.75 0.54

5 30.83 31.96 31.35 0.39

6 30.49 31.92 31.22 0.48

7 31.77 33.00 32.21 0.45

8 30.10 31.06 30.43 0.35

9 31.08 32.13 31.92 0.42

10 30.98 32.24 31.60 0.42

11 29.94 31.09 30.36 0.42

12 30.33 31.53 30.85 0.42

13 31.45 32.82 32.14 0.46

14 32.67 33.44 32.53 0.37

15 32.49 33.49 32.89 0.36

Table 3. Comparison of execution times (in sec.) for the three patterns using 32 nodes

www.intechopen.com

 Tools in Artificial Intelligence

134

850

900

950

1000

1050

1100

1150

850 900 950 1000 1050 1100 1150

x-coordinate

y
-c

o
o

rd
in

a
te

Figure 11. A circumference pattern composed of 24 uniformly distributed cities

Table 4 shows a comparative study of behaviour of different circumference patterns
applying the GP-TSP algorithm. As it can be appreciated in Table 4, there is a minimum
progressive increase in the times. It is remarkable that in every case, the mean deviations of
execution times were smaller than 1%.

#Cities 15 16 17 18 19 20 21 22 23 24

Mean 12.71 17.47 23.42 32.93 42.95 54.94 68.67 129.53 367.29 1085.57

Mean
deviation

0.03 0.04 0.08 0.08 0.07 0.10 0.10 0.11 0.30 2.12

Table 4. Mean and mean deviation of execution times (in sec.) by number of cities for the
GP-TSP algorithm using 32 nodes

Conclusions: It is important to emphasize that the GP-TSP algorithm obtains good results of
prediction. Their asymptotic time complexity should be defined as O(C, P, SD, MDSD).
Another important fact has been reached beyond what was originally sought. Choosing the
city which has minimum SD associated value, it is possible to obtain the exact TSP solution
investing less amount of time.

5. Predicting the GP-TSP execution time

The GP-TSP algorithm has been executed for a great amount of training patterns in order to
take enough experimental data to validate this experimental approach. At this point, the
methodology views the algorithm being study as a black box in which the normalized
measured values for the input variables (C, P, SD, MDSD) arrive, are processed, and then
produce a MLR model. A desired normalization converts values to a common basis for
comparison. It is important to take in mind that the MLR model is a first approximation to
deal with the performance prediction problem.

www.intechopen.com

Applying Artificial Intelligence to Predict the Performance of Data-dependent Applications

135

5.1 Building a MLR model for the GP-TSP algorithm

There are four independent input variables (C, P, SD, MDSD) and the basis form of the four-
dimensional regression model for the execution time (T) is

0 1 2 3 4

T b bC b P b SD b MDSD= + + + + (6)

where b0, b1, b2, b3, and b4 are the regression parameters to estimate. There exist m
measurements of the output T for various combinations of the inputs C, P, SD, and MDSD.
Each measurement can be expressed as

0 1 2 3 4i i i i i i

T b bC b P b SD b MDSD e= + + + + + (7)

where ei is the residual for the data (Ci, Pi, SDi, MDSDi, Ti).
To find the regression parameters, it is necessary to minimize the sum of squares of the
residuals, denoted SSE.

 2 2

0 1 2 3 4
1 1

()
m m

i i i i i i
i i

SSE e T b bC b P b SD b MDSD
= =

= = − − − − −∑ ∑ (8)

The Equation (8) takes on its minimum value when the partial derivatives of SSE with
respect to b0, b1, b2, b3, and b4 are all set to zero. This procedure then leads to a system of five
equations. The solution could be found by using any of the standard methods for solving
systems of equations, or using any available software package designed for this purpose
(Lilja, 2000).

5.2 Evaluating the regression equation

Finally, the regression equation is used to predict how the GP-TSP algorithm will perform
when given new input data sets. Replacing C, P, SD, and MDSM with real values in
Equation (6), it is possible to estimate the time required (T) to find the shortest path for this
master-worker global pruning TSP algorithm.

6. Conclusions

This chapter introduces a general novel methodology to estimate the performance order of
data-dependent parallel algorithms. It is important to understand that the parallel
performance achieved depends on several factors, including the application, the parallel
computer, the data distribution, and also the methods used for partitioning the application
and mapping its components onto the architecture.
Briefly, the general methodology works as follows. It begins by designing a certain number
of instances and collecting their execution-time data. A well-designed instance guides the
experimenters in choosing what experiments actually need to be performed in order to
provide a representative sample. A data-mining process then explores these collected data
in search of patterns and/or relationships detecting the main parameters that affect
performance. These common properties are modelled numerically so as to generate an
analytical formulation of the execution time. The methodology views the algorithm being
study as a black box in which the measured values for this limited number of inputs arrive,
are processed, and then produce a multiple-linear-regression model. Finally, the regression
equation allows for predicting how the algorithm will perform when given new input data
sets.

www.intechopen.com

 Tools in Artificial Intelligence

136

 A TSP parallel implementation has been studied. The GP-TSP algorithm analyzes the

influence of indeterminism in performance prediction, and also shows the usefulness and

the profits of the methodology. Their execution time depends on the number of cities (C),

the number of processors (P), and other parameters. As a result of the investigation, right

now the sum of the distances from one city to the other cities (SD) and the mean deviation of

SDs values (MDSD) are the numerical parameters characterizing the different input data

beyond the number of cities (C). The followed way to discover these proper set of

parameters has been exhaustively described. Finally, their asymptotic time complexity has

been defined O(C, P, SD, MDSD).

Building a MLR model with the four independent input variables (C, P, SD, MDSD) and,

then, using the regression equation, a prediction of performance order for a new data set it is

possible to give. Another important fact has been reached beyond what was originally

sought. Choosing the city which has minimum SD associated value, it is possible to obtain

the exact TSP solution investing less amount of time.

This work has raised certain issues that it would be interesting to address. The utility,

applicability and implementation of the methodology to other data-dependent problem still

remain to be studied. Another issue concerns the problem of the obtained performance

model. The existence of more or less parameters that affect performance may suggest

strategies to fit the final model. Last but not least, how to provide automatic useful feedback

in order to asses more studies and experiments.

Appendix

A. Specification of the parallel machine

The execution were reached with a 32 node homogeneous PC Cluster Pentium IV 3.0GHz.,

1Gb DDR-DSRAM 400Mhz., Gigabit Ethernet) at the Computer Architecture and Operating

Systems Department, University Autonoma of Barcelona. All the communications have been

accomplished using a switched network with a mean distance between two communication

end-points of two hops. The switches enable dynamic routes in order to overlap

communication.

B. Specification of Cluster-Frame environment

Cluster-Frame is a dynamic and open environment of clustering (Fritzsche, 2007). It permits

the evaluation of clustering methods such as K-Means, K-Prototypes, K-Modes, K-Medoid,

K-Means+, K-Means++ for the same data set. Using Cluster-Frame, the results reached

applying different methods and using several parameters can be analyzed and compared.

6. References

Alizadeh, F.; Karp, R.; Newberg, L. & Weisser, D. (1993). Physical mapping of chromosomes:

A combinatorial problem in molecular biology. Symposium on Discrete Algorithms,

pp. 371-381, ACM Press.

Arkin, E.; Chiang, Y. ; Mitchell, J.; Skiena, S. & Yang, T. (1996). On the Maximum Scatter

TSP, In Proceedings of the 8th Annual ACM-SIAM Symposium on Discrete Algorithms

(SODA 97), pp. 211-220, ACM New York.

www.intechopen.com

Applying Artificial Intelligence to Predict the Performance of Data-dependent Applications

137

Balas, E. (1989). The Prize Collecting Traveling Salesman Problem. Networks, Vol.19, pp. 621-

636.

Barvinok, A.; Tamir, A.; Fekete, S.; Woeginger, G; Johnson, D. & Woodroofe, R. (2003). The

Geometric Maximum Traveling Salesman Problem. Journal of the ACM, Vol.50,

No.5, pp. 641-664.

Bland, R. & Shallcross, D. (1989). Large Traveling Salesman Problems Arising from

Experiments in X-ray Crystallography: a Preliminary Report on Computation.

Operations Research Letters, Vol.8, pp. 125-128.

Christofides, N. (1985). Vehicle Routing. N. Christofides, A. Mingozzi, P. Toth, and C. Sandi,

editors, Combinatorial Optimization, pp. 315-338, Wiley, Chichester, UK.

Duman, E. & Or, I. (2004). Precedence constrained TSP arising in printed circuit board

assembly. International Journal of Production Research, Vol.42, No.1, pp. 67-78, 1

January 2004, Taylor and Francis Ltd.

Fritzsche, P. (2007). ¿Podemos Predecir en Algoritmos Paralelos No-Deterministas?, PhD

Thesis, University Autonoma of Barcelona, Computer Architecture and Operating Systems

Department, Spain. http://caos.uab.es/

Garey, M.; Graham, R. & Johnson, D. (1976). Some NP-complete geometric problems, STOC

'76: Proceedings of the eighth annual ACM symposium on Theory of computing,

pp. 10-22, Hershey, Pennsylvania, United States, ACM, New York, NY, USA.

Gilmore, P. & Gomory, R. (1964). Sequencing a One-State-Variable Machine: A Solvable

Case of the Traveling Salesman Problem. Operations Research, Vol.12, No.5, pp.

655-679.

Golden, B.; Levy, L. & Vohra, R. (1987). The Orienteering Problem. Naval Research Logistics,

Vol.34, pp. 307-318.

Gutin, G. & Punnen, P. (2006). The Traveling Salesman Problem and Its Variations, Springer, 0-

387-44459-9, New York.

Karp, R. (1972). Reducibility among combinatorial problems: In Complexity of Computer

Computations. Plenum Press, pp. 85-103. New York.

Korostensky, C. & Gonnet, G. (2000). Using traveling salesman problem algorithms for

evolutionary tree construction. BIOINF: Bioinformatics, Vol.16, No.7, pp. 619-627.

Lenstra, J. & Kan, A. (1975). Some simple applications of the Travelling Salesman Problem.

Operations Research Quarterly, Vol.26, No.4, pp. 717-732.

Lilja, D. (2000). Measuring computer performance: a practitioner's guide, Cambridge University

Press, ISBN: 0-521-64105-5, New York, NY, USA.

MacQueen, J. (1967). Some Methods for Classification and Analysis of MultiVariate

Observations, Proc. of the fifth Berkeley Symposium on Mathematical Statistics and

Probability, Vol.1, pp. 281-297, L. M. Le Cam and J. Neyman, University of

California Press.

Miller, D. & Pekny, J. (1991). Exact Solution of Large Asymmetric Traveling Salesman

Problems. Science, Vol.251, pp. 754-761.

Miller, R. & Boxer, L. (2005). Algorithms Sequential and Parallel: A Unified Approach, Charles

River Media. Computer Engineering Series, 1-58450-412-9.

www.intechopen.com

 Tools in Artificial Intelligence

138

Ratliff, H. & Rosenthal, A. (1983). Order-Picking in a Rectangular Warehouse: A Solvable

Case for the Traveling Salesman Problem. Operations Research, Vol.31, No.3, pp.

507-521.

Sankoff, D. & Blanchette, M. (1997). The median problem for breakpoints in comparative

genomics, Proceedings of the 3rd Annual International Conference on Computing and

Combinatorics (COCOON'97), Vol.1276, pp. 251-264, New York.

TSP page (2008). http://www.tsp.gatech.edu/history/.

www.intechopen.com

Tools in Artificial Intelligence

Edited by Paula Fritzsche

ISBN 978-953-7619-03-9

Hard cover, 488 pages

Publisher InTech

Published online 01, August, 2008

Published in print edition August, 2008

InTech Europe

University Campus STeP Ri

Slavka Krautzeka 83/A

51000 Rijeka, Croatia

Phone: +385 (51) 770 447

Fax: +385 (51) 686 166

www.intechopen.com

InTech China

Unit 405, Office Block, Hotel Equatorial Shanghai

No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820

Fax: +86-21-62489821

This book offers in 27 chapters a collection of all the technical aspects of specifying, developing, and

evaluating the theoretical underpinnings and applied mechanisms of AI tools. Topics covered include neural

networks, fuzzy controls, decision trees, rule-based systems, data mining, genetic algorithm and agent

systems, among many others. The goal of this book is to show some potential applications and give a partial

picture of the current state-of-the-art of AI. Also, it is useful to inspire some future research ideas by identifying

potential research directions. It is dedicated to students, researchers and practitioners in this area or in related

fields.

How to reference

In order to correctly reference this scholarly work, feel free to copy and paste the following:

Paula Fritzsche, Dolores Rexachs and Emilio Luque (2008). Applying Artificial Intelligence to Predict the

Performance of Data-dependent Applications, Tools in Artificial Intelligence, Paula Fritzsche (Ed.), ISBN: 978-

953-7619-03-9, InTech, Available from:

http://www.intechopen.com/books/tools_in_artificial_intelligence/applying_artificial_intelligence_to_predict_the_

performance_of_data-dependent_applications

© 2008 The Author(s). Licensee IntechOpen. This chapter is distributed

under the terms of the Creative Commons Attribution-NonCommercial-

ShareAlike-3.0 License, which permits use, distribution and reproduction for

non-commercial purposes, provided the original is properly cited and

derivative works building on this content are distributed under the same

license.

